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Abstract. Preprocessing techniques can increase the quality or even enable Machine Learning algorithms. However,
it is not simple to identify the preprocessing algorithms we should apply. This work proposes a methodology to
recommend a noise filtering algorithm based on Meta-Learning, predicting which algorithm should be chosen based on
a set of features calculated from a dataset. From synthetics datasets, we created the meta-data from an extracted set
of meta-features and the f1-score performance metric calculated from the DT, KNN, and RF classifiers. To perform
the suggestion, we used a meta-ranker that returns the rank of the best algorithms. We selected three noise filtering
algorithms, HARF, GE, and ORBoost. To predict the f1-score, we used the PCT, RF, and KNN algorithms as meta-
rankers. Our results indicate that the proposed solution acquired over 60% and 80% accuracy when considering a top-1
and top-2 approach. It also shows that the meta-rankers, when compared with a random choice and single algorithms
as a baseline, provided an overall performance gain for the Machine Learning algorithm.

CCS Concepts: • Computing methodologies → Machine learning algorithms.

Keywords: meta-learning, noise detection, preprocessing, machine learning, ranking

1. INTRODUCTION

Machine Learning (ML) can be defined as the ability to adapt to new circumstances and to detect
and extrapolate patterns [Russell and Norvig 2009]. Nowadays, to facilitate the implementations
of ML algorithms, we have several frameworks, such as Weka, Scikit-learn, H2O, Tensorflow, and
Pytorch. However, applying ML algorithms to datasets and acquiring information from them is very
time-consuming. Usually, the user follows a Data Mining (DM) methodology such as CRISP-DM
[Wirth and Hipp 2000] and KDD [Fayyad et al. 1996]. Those methodologies indicate that a few steps
will be necessary to successfully extract the information, such as preprocessing, algorithm selection,
hyperparameters tunning, and presentation. Unfortunately, choosing the preprocessing algorithm is
not trivial and can influence the entire ML process. In fact, the choice of the preprocessing techniques
that should be applied may vary according to the ML algorithm that is selected [García et al. 2015].

Since the demand for ML systems has grown in the past years, forming market pressure for ML
specialists, not to mention that this process is commonly tedious and repetitive, the idea of automating
the ML process became promising [Truong et al. 2019]. This field, called Automated ML (AutoML),
aims to automatically find the best approach for a particular problem when provided with a dataset
[Hutter et al. 2019]. For this, the AutoML systems may search for the best data preprocessing, features
engineering, ML models, hyperparameters of the algorithm, and architecture [Truong et al. 2019]. At
each step, the AutoML systems will have to search for algorithms, a problem usually solved with
Bayesian optimization, Genetic Programming, or Meta-Learning (MtL) [Nagarajah and Poravi 2019].
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It is also important to notice that the preprocessing step is not extensively covered by most of the
AutoML solutions [Truong et al. 2019].

The preprocessing step covers all actions applied before the data analysis starts [Famili et al.
1997]. It is essentially a transformation applied to the raw data returning a new dataset ready for
data analysis. There are several different reasons why it is necessary to implement a preprocessing
technique: data may have missing values, too many or not enough attributes, noisy instances, and
others problems [Famili et al. 1997]. However, since noise data may provide lower accuracy for
classifiers, it is hard to find a generalized algorithm to remove it and they commonly appear on real
data [Zhu and Wu 2004]. In this work, we focus on noise detection algorithms.

Our goal is to present a recommendation system that provides a rank of the best noise detection
algorithms with MtL techniques. MtL, commonly known as learning how to learn, is a form of using
previous experiences to solve similar tasks [Vanschoren 2019]. When applied to algorithm selection
problems, it performs the recommendation based on a set of meta-features (MFe) extracted from the
dataset that contains relevant information that influences the algorithm choice [Brazdil et al. 2009].

Since 50% to 80% of the DM time is dedicated to preprocessing the data [Munson 2012], most
of the AutoML lack extensive preprocessing support [Truong et al. 2019], and MtL is frequently
used for algorithm recommendation [Vanschoren 2019]. We believe that a noise detection algorithm
recommendation could be useful in an AutoML system, improving the quality and flexibility of current
solutions. Also, MtL is a feasible approach to predict the best algorithm reducing the suggestion cost
based on previous experience.

The main contributions of this article can be summarized as follows: (i) Applies MtL to produce a
rank of the most suitable noise detection algorithm for a given dataset from a set of MFe; (ii) Proposes
a flexible methodology that could be expanded to other preprocessing techniques and integrated into
current AutoML systems; (iii) Evaluates the effects of the noise filter algorithms on datasets and both
meta and base levels of the MtL approach.

The rest of this article is divided as: In Section 2, we present a theoretical background on MtL and
noise detection methods and introduce some previous works that use MtL to suggest preprocessing
techniques; Section 3 explains the proposed methodology; In Section 4, we present the results; and in
Section 5, we conclude with some discussions and future works.

2. BACKGROUND AND RELATED WORKS

2.1 Algorithm Selection and Meta-learning

One of many utilities for MtL applications is to use previous knowledge to select an algorithm [Van-
schoren 2019]. Rice [Rice 1976] was one of the first to propose a solution for the algorithm selection
problem. Rice divided it into four different spaces: (i) The problem space P is the set of problems
involved that usually has high dimensions and some independent characteristics that are important for
the algorithm selection; (ii) The feature space F is the set of features extracted from the instances P ;
(iii) The algorithm space A is the set of algorithms considered in the selection; (iv) The performance
space Y contains the metrics used to evaluate the performance of the algorithms.

Rice proposed that, from P we could extract f(x) ∈ F reducing the problem complexity, from F
we use the function S(f(x)) to map the algorithm a ∈ A. Ideally, S(f(x)) will result in the best
algorithm according to the performance metric y ∈ Y . Smith-Miles [Smith-Miles 2008] expanded the
solution proposed by Rice to support MtL dividing it into three phases. The first one aims to build
a meta-data set formed by the features F , extracted from P , and the algorithm performance results
Y , acquired from the algorithms A. In the second phase, we use empirical rules in the meta-data
to perform the algorithm selection. In phase three, the theoretical support is applied to adjust the
empirical rules and refines the algorithms.
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We separate the MtL process into the base level, used to build the meta-data from the P , F , A, and
Y space, and the meta level, where we interpret the meta-data [Brazdil et al. 2009]. At the base level
occurs the extraction of the MFe, forming the F space, which can be divided into six groups [Rivolli
et al. 2022]: simple; statistical; information-theoretic; model-based; landmarking; and others. The
recommendation process happens at the meta level, where we can apply classifications, regressions,
or rank algorithms to predict which algorithm to choose based on the F and Y [Brazdil et al. 2009].

2.2 Noise detection

In real-world datasets, it is common to occur mistakes in its values called noise, which can appear both
in the attributes and the data class. When performing data analysis, the class noise will probably
cause more interference in the results than the attributes noise [Zhu and Wu 2004].

If the noise is detected, we may choose between ignoring, removing (filtering), or altering the
instance [Gupta and Gupta 2019]. Usually, when filtering or modifying the instance, we can apply
methods such as [Frénay and Verleysen 2014] (i) classification filter, where a classification algorithm
is used to identify the noisy instance and then remove it; (ii) voting filter, where multiple algorithms
are executed and each one votes to remove or keep the instance; (iii) distance-based methods, where
the algorithm utilizes K nearest neighbors (KNN) sensibility to noise to identify it; (iv) ensemble or
boosting methods, where proprieties of the algorithm, such as the tendency to overfitting, are used to
identify the noise.

A list of noise filters is presented by Morales [Morales et al. 2017], of which we used the following
algorithms: (i) High Agreement Random Forest (HARF) [Sluban et al. 2014]: Uses the Random
Forest (RF) classifier as a noise filter. Instead of classifying each instance, it defines a percentage
threshold of agreement trees. According to this value, an instance is considered noise and removed;
(ii) Generalized Edition (GE) [Koplowitz and Brown 1981]: Is a variation of the ENN [Wilson
1972] algorithm that allows the possibility to correct the noisy instance. The instance is corrected if
the number of agreement neighborhoods is higher than k′. Otherwise, it is removed; (iii) Outlier
Removal Boosting (ORBoost) [Karmaker and Kwek 2006]: it uses the propriety of AdaBoost
[Freund and Schapire 1995] to enhance the weights of the outliers instances to implement the filter.
If the weights are higher than a defined threshold d it is considered noise and removed. Note that
each one approaches noise detection differently: HARF is a voting approach based on an ensemble
algorithm, GE is a distance-based algorithm, and ORBoost is an ensemble boosting algorithm.

2.3 Related Works

To validate the possibility of using an MtL approach to recommend preprocessing algorithms, we
performed a systematic review on the subject of MtL and preprocessing techniques. Although it is
not the focus of this work to present the results of this review, in this section, we present some studies
that use MtL techniques to recommend preprocessing algorithms.

Bilalli [Bilalli et al. 2019] presents a preprocessing recommendations system that ranks the most
suitable preprocessing techniques. The recommendation includes discretization, normalization, miss-
ing data imputation, and dimensionality reduction techniques. To create the meta-data, they used
over 500 real datasets extracted from OpenML, of which they extracted over 60 MFe and applied
five different ML algorithms to calculate the performance metrics. They compared the results with
baseline algorithms and real users. In both cases, the recommendation was efficient, acquiring better
accuracy than random algorithms and non-specialists.

Parmezan [Parmezan et al. 2021] presents a methodology to suggest a feature selection algorithm
applying MtL systems in sequence. First, they used multiple MtL systems to select the type of
algorithm is more adequate, then, depending on the selected type, it suggests an algorithm, and
finally, another MtL system is applied to suggest the algorithm parameters. A total of nine meta-data
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Fig. 1: Base level diagram.

Fig. 2: Meta level diagram.

were created, two to select the type of algorithm, two to select the algorithm, and five to suggest
the algorithm with its parameters. Five algorithms are supported: CBF, CFS InfoGain, Relief, and
wrapper subset evaluation. 213 datasets were selected and 161 MFe were used to create all nine
meta-data. The proposed solution acquired up to 90% accuracy.

Garcia [Garcia et al. 2016] implements an algorithm selection system for noise filter algorithms. It
uses 53 datasets extracted from UCI and KEEL. They artificially generate noise into these datasets
with a percentage varying between 5% to 20% of the total instances. The meta-data was built with 70
MFe and with the performance metric f1-score as a prediction target. They compared three different
algorithms to perform the recommendation: KNN, RF, and Support Vector Machine (SVM). After
the analysis of the mean square error of each regressor, they concluded that RF was a better choice.

In this work we present a noise filtering recommendation methodology. Although a similar problem
was approached by [Garcia et al. 2016], here we are trying to predict the performance of a specific
classification algorithm, verifying if the combination of filtering and classifier is adequate, while in
the aforementioned work, the authors predict how well the filter would find the noise. We are also
generating the results as a rank, increasing the versatility of the results. Considering the MFe choice,
Bilalli [Bilalli et al. 2019], due to the computation cost, decided to use only simple, statistical, and
information-theoretic features. In this work, we also used landmark and model-based features to
increase the information available to the meta-ranker. Furthermore, in addition to the methodology,
we provide an analysis of the effects of the noise filtering algorithms in the performance metric and
what were the most critical MFe for the recommendation.

3. METHODOLOGY

This section describes the proposed methodology for the noise filter algorithm recommendation. We
divided it into two levels, the base level, where we build the meta-data set, and the meta level, where
we implement the recommendation algorithms and analyze its results.

Figure 1 shows a diagram of the base level, the methodology begins with the data collection. We
used the OpenML1 platform to collect the 323 datasets2 that were used. The platform allows us to
filter the datasets according to our needs. We used sets with up to 10000 instances, 50 attributes,
without missing values, and with only two classes, thus, reducing the preprocessing step needed to
extract the ML metrics. To guarantee and control the class noise level, we randomly changed the
instance’s class, generating artificially random noise in 5%, 10%, 20%, and 40% of the instances. To
avoid bias in cases where the noise is applied in instances outliers, we repeated the process 10 times
for each percentage of noise, resulting in 40 synthetics sets for each dataset, forming the P space.

1https://www.openml.org/
2The list of datasets and MFe used can be found at https://bit.ly/KDMiLeDatasets and https://bit.ly/KDMiLeMFes
respectively
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With the class noise introduced in the datasets, we calculate the performance metric Y after apply-
ing the noise filter algorithms. To calculate Y , first, we apply the filter and then run a classification
algorithm that will allow us to compute the f1-score. We run the three different filters that com-
pose the algorithm space A: HARF, GE, and ORBoost. All filters were implemented with the
NoiseFiltersR package and their default configurations. After executing the filter, we used three dif-
ferent ML algorithms to extract the f1-score: DT CART [Breiman et al. 2017] algorithm, RF [Breiman
2001] with 100 trees, and KNN [Mitchell 1997] with k = 5. To compute the MFe we used the pymfe3

[AlcobaÇa et al. 2020] library, which allows us to calculate a large variety of features, including: sim-
ple, statistical, information-theoretic, model-based, and landmarking. We extracted a total of 73 MFe
producing the F space. Combining both the F space and the Y space resulted in our meta base used
in the meta level to apply the regressions and form the ranking containing 12915 instances, 73 MFe,
and 3 performance metrics.

Figure 2 shows the meta level, where we implement the meta-ranker and evaluate its performance.
The induced meta-model is obtained by an ML algorithm that performs a regression. The goal is,
based on the MFe, to predict the ML classifier f1-score on the dataset after the filter execution. Later,
the set of regressions is transformed into a rank, being ordered and then labeled according to the
higher f1-score, in case of a draw between different approaches both are labeled equally as the best.

To perform the regression, we used three different4 ML algorithms: the Predictive clustering trees
(PCT) [Todorovski et al. 2002] that is based on a DT and performs all the regression of each filter at
once; the KNN [Mitchell 1997] with k = 5, which is a distance-based algorithm; and the RF [Breiman
2001] composed with 100 trees, an ensemble algorithm. Note that both KNN and RF can only predict
the performance of one filter, meaning they will run once for each filter. Since each dataset generates
40 synthetics noisy datasets, during the training, to avoid bias, we implemented a variation of the
leave-one-out cross-validation [Cawley and Talbot 2003], in which we separated each set of the 40
datasets derivated from the same original OpenML dataset and validate them together.

To compare the results we built three baselines, which are the results when we always select the
same filter algorithm and a random algorithm selection, which selects the algorithm randomly. At
the base level, we selected the best algorithm predicted by each meta-ranker and compared it with
the baselines and the random approach, allowing us to quantify the gain in the f1-score metric we
acquired with each ML algorithm. At the meta level, we evaluated the accuracy of the top-k best
position in the generated rank, we used k = 1 and k = 2, meaning we consider a rank as correct if the
best algorithm is in the top-1 and top-2 position of the rank. Again, we compare the top-k accuracy
with the random approach and with the baselines, allowing us to identify when the recommendations
were efficient. Finally, to evaluate the rank, we apply Spearman’s rank correlation [Zar 2014] between
the optimal rank and the one returned by the meta-ranker.

4. RESULTS

We first analyze the effects of the filters, verifying if they had a positive or negative impact on the
f1-score. Table I presents the percentage of times each filter had a positive, negative, or neutral
influence. Both HARF and GE filters usually have a positive effect. Otherwise, compared with the
other filters, ORBoost generated negative and neutral results more often.

The percentage of times each algorithm appears in each position in an optimal rank is presented
in Table II. Note that the ORBoost is labeled the best more often, however it is also the worst more
often, thus, it would probably benefit from an algorithm recommendation technique. Also, HARF is
more often found as the second position while GE is more evenly distributed between all placements.

3https://pymfe.readthedocs.io/en/latest/
4In this work we used three classifiers to calculate the f1-score and three regressions algorithm to generate the ranking.
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DT KNN RF
+ - 0 + - 0 + - 0

GE 89.1 9.5 1.2 87.2 11.4 1.2 89.5 9.2 1.2
ORBoost 71.0 27.5 1.4 56.0 13.7 30.1 71.3 27.4 1.2
HARF 94.4 4.9 0.6 88.1 11.0 0.8 95.5 3.8 0.6

Table I: Percentage of times the filters had a positive
(+), negative (-), or neutral (0) result.

DT KNN RF
1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

GE 28.9 38.0 33.0 33.1 50.7 16.1 29.9 41.9 28.1
ORBoost 51.1 6.3 42.5 51.1 13.4 35.3 52.0 5.1 42.8
HARF 17.8 54.8 27.3 16.1 41.8 42.0 15.9 52.0 32.0

Table II: Percentage of times each algorithm should
be ranked first, second or third best.

GE ORBoost HARF Random
MtL-RF 42.9 38.3 61.1 48.1

MtL-PCT 44.9 32.7 61.0 46.6
MtL-KNN 37.4 28.8 54.7 40.5

Table III: The percentage of times the MtL was better
compared to each filter and random selection.

GE ORBoost HARF Random
MtL-RF 12.6 24.1 17.2 18.0

MtL-PCT 17.8 19.3 20.5 19.1
MtL-KNN 23.4 25.0 27.0 25.0

Table IV: The percentage of times the MtL was worse
compared to each filter and random selection.

Fig. 3: Graph containing the sum of the gain in all data sets
after the application of filters.

Fig. 4: Meta-rankers accuracy considering the best filter
in the first or second position, top 1 or top 2, respectively.

Fig. 5: 20 most important features for the regression of
the RF meta-ranker.

We then start evaluating the meta-rankers. We used three ML regressors to create our ranks: PCT
(MtL-PCT), RF (MtL-RF), and KNN (MtL-KNN). Figure 3 shows the cumulative gain of the f1-score
given the first recommendation of each predictor, the baselines, and the random algorithm choice. The
results show that MtL-PCT and MtL-RF produced a better gain compared to the baselines, while
MtL-KNN is better than ORBoost, HARF baselines, and the random selection, but sometimes worst
than the GE. Furthermore, all approaches using the MTL-RF led to the greatest gains in performance.

When examining the number of times each meta-ranker performed better and worse than each
approach over all classifiers, Table III and Table IV respectively, once again, show the performance of
MtL-RF was the best, however, MtL-PCT sometimes performed better. Also, none of the approaches
obtained worse results more often than good results, indicating that they are more effective than the
baselines and the random selection.

Another way of evaluating the prediction is by verifying the rank accuracy, allowing us to compute
the performance metrics of the meta-rankers and compare the recommendations. Since we are return-
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ing the results as a rank, to consider a classification correct, we used a top-k approach meaning that if
the best algorithm is in the k first positions in the rank, the recommendation is classified as accurate.
Figure 4 presents the accuracy considering the top-1 and top-2 positions. We can notice that MtL-RF
and MtL-PCT are, once again, better than the baselines and the random selection, with an exception
being the GE filter when using the KNN classifier considering the top-2 positions. Also, MtL-KNN
top-1 results are always worse than the ORBoost accuracy, enforcing the poor performance of the
meta-ranker. We also acquire accuracy of around 60% and 80% for the top-1 and top-2, respectively,
on both RF and PCT meta-rankers.

To evaluate the ranks produced by each meta-ranker, we calculated Spearman’s rank correlation
between the rank acquired by them and the optimal rank. The best ranker was MtL-RF acquiring
0.44, 0.40, and 0.44 correlation when using the DT, KNN, and RF classifiers respectively, MtL-KNN
got 0.2, 0.23, and 0.22, while MtL-PCT got 0.43, 0.38, and 0.41. It is important to notice that the
poor performance of the MtL-KNN may be due to the high number of MFe suffering with the curse of
dimensionality, nevertheless, it acquired better results than the random selection, which, as expected,
got a 0 correlation.

Finally, we decided to select the best meta-ranker and examine the MFe that were most important
for the algorithm. Since we are using leave-one-out cross-validation we had to calculate the mean of all
RF we used during the result validation process. Figure 5 presents the mean importance of the top-20
MFe that were used in the algorithm, we can notice that the landmarks features were more present
appearing 9 times, followed by information-theoretic (5), statistical (3), simple (2) and model-based
(1) 5. Also, the most important feature, worst_node.mean, is a DT-based landmark, meaning its high
importance may be due to the RF DT dependence.

5. CONCLUSIONS

In this work, we proposed a methodology to recommend noise filtering algorithms with MtL. From
the datasets, we extracted MFe and the f1-score of KNN, DT, and RF classifiers. With those values,
we built a meta-data that was used as input to a meta-ranker that returned a rank of the suggested
filtering algorithms. We selected the PCT, KNN, and RF algorithms as meta-ranker. Our experiments
indicated that RF was the best choice for a meta-ranker, providing performance gain compared to a
random approach and the three baselines, in addition, it acquired around 60% and 80% accuracy in
the recommendation when considering the top-1 and top-2 algorithms, respectively. We also studied
the MFe importance noticing that landmark features are more present in the top-20 Mfe.

For future works, we intend to expand the preprocessing techniques supported by the system,
showing that the same methodology could be applied for problems such as missing values or imbalanced
data. We also aim to enhance the number of algorithms and include a hyperparameter optimization,
which would increase the solution search space. Finally, it would be interesting to study if the used
MFe could be simplified, making it possible to acquire similar results with a smaller set of features or
if we could improve the system performance with a more complex set of MFe.
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