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Abstract. Hard Disk Drives (HDDs) are widely used for data storage in various applications. However, their failure
can result in significant data loss and system downtime. Therefore, accurate prediction of the remaining useful life (RUL)
of HDDs is crucial for proactive maintenance and data backup strategies. In this paper, we propose a novel approach to
predict the RUL of HDDs using Long Short-Term Memory (LSTM) networks and incorporating weighted loss functions.
The proposed model leverages the Self-Monitoring, Analysis, and Reporting Technology (SMART) features of HDDs,
which provide valuable information about the health of the drive. We evaluated two weighting approaches that improve
the general performance and enhance predictions within a given timeframe. Our experiments showed that the models
outperformed traditional methods in terms of Mean Squared Error (MSE) at given time intervals.

CCS Concepts: • Computing methodologies → Machine learning algorithms.
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1. INTRODUCTION

The degradation of components within Hard Disk Drives (HDDs) is widely recognized as a potential
cause of severe data loss. Consequently, there is a pressing need to identify and predict the deterio-
ration of HDDs. To address this challenge, manufacturers introduced the Self-Monitoring, Analysis,
and Reporting Technology (SMART) system. SMART continuously monitors various disk parameters
and compares them against predefined thresholds. Despite its widespread use, the failure detection
rate of SMART is typically low, ranging from 3% to 10% [Murray et al. 2005].

Recently, researchers have made substantial efforts to develop more dependable methods for pre-
dicting HDD failures. Many of these studies involve integrating machine learning techniques with
the SMART attributes. Notably, [Murray et al. 2005] conducted one of the pioneering works in this
field, exploring multiple machine learning algorithms for such task. [Chaves et al. 2016] employed
Bayesian Networks, while [Lima et al. 2021] achieved some of the most promising results using Long
Short-Term Memory (LSTM) models. Other deep learning-based models achieved remarkable results
that are reported in [Cahyadi and Forshaw 2021; Pereira et al. 2022; Hu et al. 2020].

Despite extensive research conducted and the results of deep learning models, previous developments
in the field have treated all Remaining Useful Life (RUL) predictions as equally important during the
training phase. This means that both long-term and short-term predictions have had the same impact
on the loss function of the model. As a result, the final network has not been specifically designed
to prioritize either long or short predictions, even though such a characteristic may be desirable.
However, in real-world applications, the ability to predict failures within a specific timeframe before
they occur is crucial for effective maintenance planning. Therefore, incorporating this feature into the
model becomes essential for enabling adequate maintenance strategies.
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To incorporate such feature in neural network models, we evaluate the use of weighted loss function
to LSTMs. In this work, we introduce two different weighting schemes for the cost functions. The
first scheme assigns weights to training samples based on their distance to the end of life of the HDD.
By emphasizing the importance of accurately predicting samples far/close to failure, our model aims
to capture the critical period leading up to HDD failure.

The second weighting scheme assigns weights to each sample based on its prediction error during
a training epoch. This approach does not focus on improving the performance of LSTM at any
timeframe before the failure but to alleviate the impact of very poor predictions, allowing the model
to focus on improving its overall performance by reducing the influence of outliers.

By using one of these two weighting schemes and by combining them, our proposals may address the
importance of accurate predictions near the end/beginning of life and the need to mitigate the impact
of highly erroneous predictions. This comprehensive approach aims to improve the final prediction
accuracy and enhance the reliability of HDD failure prediction.

Experimental evaluations conducted on a large dataset of HDDs demonstrate the effectiveness of our
proposed models. Compared to existing approaches, our models achieve superior prediction accuracy
when analyzing different time intervals.

2. BACKGROUND

2.1 HDD Failure Prediction

As aforementioned, the usual method for diagnostic monitoring in hard disk drives is through the
SMART technology [Ottem and Plummer 1995]. The HDD manufacturer defines a set of attributes
from sensors to error counters, such as temperature sensor, flying high sensor, read error rate, reallo-
cated sectors count, etc. The manufacturer also defines a threshold for the attributes that, once it’s
reached, indicates an imminent failure.

Also, studies such as [Murray et al. 2005] and [Pinheiro et al. 2007] concluded that predictions based
on those thresholds have low accuracy, and that SMART data has limited usefulness in anticipating
disk failure. Therefore, the two main issues with the SMART threshold approach are its limited utility
to detect faulty disks and the fact that it only detects near-term failures.

To help to solve those issues for failure prediction, studies have been dealing with the task in
different ways. One of them is to model the problem as a classification task, where day intervals from
the Remaining Useful Life (RUL) are seen as different health levels (or classes) [Lima et al. 2021].
Another way is to treat the problem as a regression on the RUL directly [Lima et al. 2018]. In this
work we will follow the second approach, i.e. for each hard drive, on a given day, the model will
predict the remaining days until a failure.

2.2 Long Short-Term Memory

The default Recurrent Neural Networks (RNNs) cannot capture long dependencies in the context.
Such a fact encouraged the design of Long Short-Term Memory (LSTM) [Hochreiter and Schmidhuber
1997], which works by adding gate mechanisms that control the entrance and the exit of information
in the cell state. These gates are associated with internal memory to RNN cells, controlling the flow
of information from the input and the previous states. The LSTM cell is shown in Fig. 1 (adapted
from [Olah 2015]).

The LSTM unit has the forget, input, and output gates to control the information flow. The forget
gate controls how much information the unit accepts from the input and the last state. On the other
hand, the input state regulates how much information is added to the current state cell. The output
gate determines how much information can be output from the current cell state. The equations below
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Fig. 1: LSTM cell (adapted from [Olah 2015])

define how to calculate all these gates, cell states, and hidden states for the forward pass of an LSTM
layer. In these equations, t denotes the processed index within a sequence x. The symbol ⊙ represents
the Hadamard product. W and U are both the recurrent and input matrices, respectively, with a
subscript indicating the associated gate. The parameter b is the bias term and the c and h are the
cell and hidden state, respectively.

c̃t = tanh(Wcht−1 + Ucxt + bc) candidate state (1)
it = σ(Wiht−1 + Uixt + bi) input gate (2)
ft = σ(Wfht−1 + Ufxt + bf ) forget gate (3)

ct = it ⊙ c̃t + f t ⊙ ct−1 cell state (4)
ot = σ(Woht−1 + Uoxt + bo) output gate (5)
ht = ot ⊙ tanh(ct) output (6)

3. METHODOLOGY

3.1 Sample weighting methods

Sample weighting in training is a technique usually employed to correct biases, such as solving data
imbalance. It does that by giving more importance to specific samples defined by a criterion.

In the same way, we can use sample weighting to correct bias in data, we also can use it to force
bias in the training phase. In this work, we are focusing on how to use sample weighting to improve
the Remaining Useful Life prediction of hard disk drives. When no sample weighting is employed,
the same importance is given to every sample of the data. We will call this baseline model as equal
weighting.

Since we are dealing with the problem of predicting the failure of a device, it is reasonable to
consider the closeness to the failure day as an important aspect to model. Thereby, we propose a way
to emphasize this by using sample weights.

Therefore, we are proposing to define sample weight functions based on the ground truth Remaining
Useful Life. Since the days close to the failure point are more critical, it is natural to give more weight
the closer the prediction is to them. Following this, the first RUL based sample weighting we are
proposing is a linear function that maps the ground truth RUL to a weight range. We can describe
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it as a function that maps linearly the domain [1, 360] to [Wmax,Wmin], where Wmin < Wmax are
hyperparameters. Their difference measures how much importance we should give to the last day.
In this work, the predictive model can make predictions up to 360 days, which is why the domain
is limited. However, it can be increased for predictive models with longer range. We call this the
Dynamic Sample Weighting - Decreasing (DSW-D) weighting method.

Although giving more weight to the last days of life of the device is reasonable, one may want to
focus on the opposite, increasing the prediction accuracy in a timeframe way before the last day of the
failure. This approach may be useful to avoid false alarms with more trustworthy predictions in the
long term. In a similar way to the decreasing weighting, we can describe the new method as a function
that maps linearly the domain [1, 360] to [Wmin,Wmax], where Wmin < Wmax are hyperparameters.
Their difference measures how much importance we should give to the longest prediction the model can
make. We call this the Dynamic Sample Weighting - Increasing (DSW-I) weighting method.

Also, the model predictions can be affected negatively by the presence of very poor predictions in
the training phase. For this reason, we are also proposing an approach to consider it by changing the
sample weights. We are proposing to use the absolute error of each sample as part of its weights. This
is done by combining the current error with the historical weight given to each sample in previous
epochs through an affine combination. The equation that defines this method is shown in 7, where i
is the current epoch, error[i] is the absolute error of the epoch i and 0 < α < 1 is a hyperparameter
that defines how much of the error of the current epoch should be considered, similar to the smoothing
factor in the exponential smoothing formula. Since the weights from one epoch to the next are being
combined, to avoid large differences in those weights, a linear normalization is performed to set the
weight values to the range [Wmin,Wmax], where Wmin < Wmax. We call this the Dynamic Sample
Weighting - historical Error based (DSW-E) weighting method.

weights[i] = α× error[i] + (1− α)× weights[i− 1] (7)

Also, since the sample weighting methods are simple multiplications to the sample errors, more
than one weighting scheme can be applied to them. Therefore, we are also proposing to combine these
methods by applying the historical error based and the increasing (DSW-E+I method), and by
applying the historical error based and the decreasing (DSW-E+D method).

3.2 Metrics

To properly assess the model’s predictions, the used metrics are an important decision. Since it is
a regression task, for the general evaluation of the results, the Mean Squared Error (MSE) is an
appropriate metric.

However, since we are studying the impact of sample weights in different time frames of the life of
HDDs, different metrics should be used to take it into account. For that reason, we are also using
the MSE at the first and the last useful 30 days of life of the HDDs as two new separate metrics.
With this, we should be able to compare the impact of sample weighting in far and close-to-failure
scenarios.

It is important to state that, even though this study is about sample weighting in training, these
metrics are the regular MSE with no weighting to the samples.
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4. EXPERIMENTS AND RESULTS

4.1 Dataset

To evaluate the performance of the methods, we conducted a set of experiments using a public dataset
provided by the Backblaze Company [Backblaze 2023]. This dataset contains daily reports of SMART
attributes of several HDDs, ranging from April/2013 until December/2022. These observations contain
the serial number, model, SMART attributes, and a label indicating if the HDD has failed or if it
presented some indication that will fail.

For this study, we selected the HDD manufacturer model with the largest amount of data, specifically
the Seagate ST4000DM000 model, and selected only serials that failed. We limited our analysis to
the last 360 days of HDD life and excluded serials whose daily observations were interrupted without
a faulty label or disks with data measurements after being labeled faulty. After these processes, our
dataset contains 1,631,802 daily observations divided into 4,936 serials.

To improve the results of the model, we use only a limited number of the SMART attributes
collected in the dataset, chosen by sequential feature selection with the linear regression estimator
from Scikit-Learn 1.0.2 library. These features are described in Table I.

Attribute ID Attribute Name
SMART 9 Power-On Hours
SMART 10 Spin Retry Count
SMART 12 Power Cycle Count
SMART 184 End-to-End Error
SMART 187 Reported Uncorrectable Errors
SMART 190 Temperature Difference
SMART 193 Load Cycle Count
SMART 194 Temperature
SMART 197 Current Pending Sector Count
SMART 240 Head Flying Hours
SMART 241 Total LBAs Written
SMART 242 Total LBAs Read

Table I: SMART attributes used as features to the model

4.2 Experimental procedure

In this study, we use a model to predict, for each day, the remaining useful life (RUL) of HDDs in
days, modeling it as a regression task. Every disk data is a time series and we used 60% of the disks
for the train, 20% of the disks for the validation, and 20% of the disks for the test.

The analysis of the preprocessed dataset showed us that the vast majority of samples, but not all,
have 360 days of observations. To balance our dataset, we partitioned each training sample randomly,
into up to three parts, containing each part at a minimum of 30 days, according to its size. Every 120
days we add one partition, and combine them to form new samples, as shown in Fig. 2. After this
process, only the amount of train samples changed, so we have 16,199 train samples, 976 validation
samples, and 1032 test samples. The model uses the validation set as a criterion for early stopping.

To evaluate the performance of the methods under discussion, we used a model composed of an
LSTM, followed by a Dense layer, a Dropout layer, and another Dense layer. The Min-max normaliza-
tion is applied to the model output. The model flowchart is shown in Fig. 3, and its hyperparameters
can be consulted in Table II.
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Observation Days

P1 P2 P3

P4

P5

P6

1 2 3 4 ... 357 358 359 360

Fig. 2: Days partition for the training dataset.

Hyperparameter Value
Epochs 5,000

Learning Rate 1e-3
Batch Size 1,024

Early Sttoping Patience 600
Optimizer Adam

LSTM Cell Dimension 128
Dense 1 Output Dimension 64
Dense 2 Output Dimension 1

Dense 1 Activation ReluDense 2 Activation
Dense 1 L1 Penalty

1e-5Dense 1 L2 Penalty
Dense 2 L1 Penalty
Dense 2 L2 Penalty

Dropout Rate 1e-1

Table II: Predictive model hyperparameters.

LSTM Dense 1 Dense 2

Input Output

Dropout

Fig. 3: Predictive model. The input is the time series for each HDD and the output is the RUL prediction.

Also, linear normalization was applied to all proposed methods. The Wmin and Wmax hyperparam-
eters of methods are set, respectively, to 1 and 10. In the historical error-based method, the smoothing
factor (α) was set to 0.3. Each method was run 3 times using TensorFlow 2.8.0.

4.3 Results

Test MSE First 30 Days MSE Last 30 Days MSE
Equal (baseline) 0.01720 0.05552 0.02374
DSW-Increasing 0.01180 0.03753 0.03470
DSW-Decreasing 0.03794 0.15166 0.01796
DSW-E 0.01159 0.03724 0.02561
DSW-E+Increasing 0.00950 0.03046 0.02932
DSW-E+Decreasing 0.02359 0.09934 0.01926

Table III: Results for the test dataset.

Table III presents the performance of each sample weighting method for each metric. As afore-
mentioned, each method was run 3 times and the table shows their average. As it can be noticed,
for the standard MSE metric, the historical error-based + increasing (DSW-E+I) has the best result,
followed by the historical error-based (DSW-E) employed alone. This supports the idea that the
DSW-E method can improve the predictions by focusing on large prediction errors, improving the
overall performance.

On the other hand, for the first 30 useful days MSE metric, again, the historical error based +
increasing method has the best result, followed by the historical based error employed alone. It shows
us that, in fact, the Increasing (DSW-I) method works to obtain more accurate predictions far to
failure of HDDs, and when combined with the DSW-E improves substantially the accuracy of model
predictions.
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For the last 30 days MSE metric, the Decreasing (DSW-D) method is the best, followed by the
historical error based + decreasing (DSW-E+D). Although the difference between those two best
methods is small, it may indicate that the close-to-failure time frame is difficult to predict, so focusing
only on the last days (DSW-D method alone) is better than integrating the historical error-based
method that also makes the model give attention to early days predictions depending on their losses.

Fig. 4 shows an example of the RUL predictions to one HDD and the several methods applied. It is
clear in the figures that the equal weighting method has issues predicting both the beginning and the
end life of the HDD. However, employing the increasing and decreasing methods improves the early
and last days, respectively. It is also clear that applying the historical error-based method improves
the overall predictions, even when employed by itself. One interesting aspect of this example is that,
mainly when the decreasing method is not applied, the model tends to be alarmist in the last days,
predicting a lot of days as the failure point. This endorses the hypothesis that the close-to-failure
time frame is hard to predict and shows that an intervention - such as sample weighting methods -
can be useful.

Fig. 4: Expected RUL and prediction results of the experimented models for the HDD S301GN45.
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5. CONCLUSION

In this article, we proposed several methods of sample weighting to improve the accuracy of predictions
of the HDD’s remaining useful life, addressing the need to do better predictions near the end/beginning
of its life. We conducted experiments that demonstrate the effectiveness of these methods for their
respective purposes.

To obtain better predictions for the last 360 days of life of HDDs, in general, the historical error
based combined with the increasing method proved to be the best method, getting an improvement of
about 45% for MSE metric when compared to the baseline (Equal) method. Still, all methods seem
to work in what they are designed for.

In future works, we are going to evaluate the impact of changing the hyperparameters of the methods
and new combination sets of these methods on the accuracy.
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