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Abstract. Most machine learning tools aim at creating good predictions for new samples. However, obtaining 100% is

not feasible in most problems, and therefore modeling the uncertainty over such predictions becomes necessary in several

applications. This can be achieved by estimating conditional densities. In this work, we propose a novel method of
conditional density estimation based on Fourier series and artificial neural networks, and compare it to other estimators

on five distinct datasets. We conclude that our proposed method outperforms the other tested methods.

Categories and Subject Descriptors: G.3 [Probability and Statistics]: Nonparametric Statistics; I.2.6 [Artificial

Intelligence]: Learning

Keywords: conditional density estimation, neural networks, Fourier series, pytorch

1. INTRODUCTION

Density estimation is among the most fundamental problems in Statistics. On the other hand, the field
of Machine Learning and the so called algorithmic modeling has seen a recent surge in its popularity
and applicability, due to, among other things, the vast amount of data available nowadays and a rapid
increase of computational processing power.

However, this field has generally been more concerned with the problem of regression function
(formally, the expected value E[Y |x]) than that of density estimation. In this work, we attempt
to workout the problem of density estimation using a tool from such field that is also attracting
great interest from researchers worldwide: artificial neural networks. More specifically, we show how
artificial neural networks can be used to estimate a conditional density f(y|x) in a fully nonparametric
way. Conditional densities are more informative than regression functions: they model all uncertainty
one has about Y given information x, and not only its expected value. Some well known methods of
conditional density estimation are given by [Fan et al. 1996; Hall et al. 2004; Takeuchi et al. 2009;
Efromovich 2010; Sugiyama et al. 2010]. Although such methods have good performance in several
settings, they do not scale well to large datasets [Izbicki and Lee 2016; Izbicki and B. Lee 2017]; see
[Bertin et al. 2016] and references therein for other methods.

The major contribution of this work is the proposal of a new method of conditional density es-
timation using neural networks which is highly scalable. In section 2, we introduce the problem of
conditional density estimation. In section 3, we have a brief review of one of the tools that we use
to work out such problem: feedforward artificial neural networks together with some recent advance-
ments in the field which we take advantage to carry out this work. In section 4, we present a brief
introduction to Fourier series, which is another tool that we use on our method of conditional density
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estimation. We also briefly review some known methods of conditional density estimation that are
useful to develop this work. In section 6, one can find empirical results of our proposed method using
five datasets. Finally, section 7 concludes the article.

2. CONDITIONAL DENSITY ESTIMATION

Let (X1, Y1), . . . , (Xn, Yn) be i.i.d. random vectors, where Yi ∈ R is the response (label) and Xi ∈ Rd
are covariates (features). Given that, problem of conditional density estimation can be stated simply

as finding a good estimator f̂ for the conditional density of Yk|Xk, which we denote by f(.|Xk) :
[0, 1] → R ∈ L2[0, 1], where Xk = (Xk1, Xk2, ..., Xkd). A simple solution for this problem is, for
example, an ordinary least squares estimator:

f̂(y|Xk) = Gaussian(XT
k β̂OLS , σ̂

2
OLS)

Of course, such a simple estimator lacks flexibility for problems with complex structures both in
terms of marginal density and in the structure of the covariates. Therefore, the goal of a good estimator
is to be able to have considerable flexibility to model complex structure without incurring in excessive
overfitting (bias-variance trade-off). In the next sections we review an already established method
to deal with conditional density estimation using Fourier series, and introduce our proposed method
which makes use of neural networks.

3. TOOLSET 1: NEURAL NETWORKS

Feedfoward artificial neural networks is one of the tools we make use of to carry out this work. In this
section, we present its specification as follows:

Optimizer: we work with the Adamax optimizer ([Kingma and Ba 2014]) and decrease its
learning rate if improvement is seen on the validation loss for a considerable number of epochs.

Initialization: we used the initialization method proposed by [Glorot and Bengio 2010].

Layer activation: we chose ELU ([Clevert et al. 2015]) as activation function.

Stop criteria: a 90%/10% split early stopping for small datasets and a higher split factor for
larger datasets (increasing the proportion of training instances) and a patience of 50 epochs
without improvement on the validation set.

Normalization and number of hidden layers: batch normalization, as proposed by [Ioffe and
Szegedy 2015], is used in this work in order to speed-up the training process, specially since our
networks have 10 hidden layers each.

Dropout: here we also make use of dropout which as proposed by [Hinton et al. 2012].

Software: we have PyTorch as framework of choice which works with automatic differentiation.

4. TOOLSET 2: FOURIER SERIES

4.1 Deterministic function approximation

Let L2([0, 1]) be the linear space of continuous functions hi : [0, 1]→ R such that
∫ 1

0
hi(x)dx ≤ ∞ for

i ∈ {1, 2}. The usual inner product is defined by 〈h1, h2〉 =
∫ 1

0
h1(x)h2(x)dx and this inner product

induces the following norm and distance in L2([0, 1]):

‖h1‖ =

(∫ 1

0

h21(x)dx

)1/2

and
√
M(h1, h2) =

(∫ 1

0

(h1(x)− h2(x))2dy

)1/2
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where h1, h2 ∈ L2([0, 1]). The sequence of functions {φ0, φ1, φ2, ...} is called orthogonal system
when 〈φi, φj〉 = 0 for i 6= j and ‖φi‖ 6= 0 for all i. Furthermore, such system is called orthonor-
mal basis if for any h1 ∈ L2([0, 1]) there exists an unique sequence of scalars {αn}n∈N+

such that∥∥∥h1 −∑I
k=1 αkφk

∥∥∥ → 0 as I → ∞. Also, as of theorem 3.5.2 from [Kreyszig 1989], we have

αk = 〈h1, φi〉.

Thus, h1 has the following series representation given by
∑∞
i=0〈h1, φi〉φi.

Here, we shall consider the Fourier basis where φi : [0, 1]→ [−
√

2,
√

2] and

φi(x) =


1 if i = 0√

2 sin(π(i+ 1)x) if i ∈ {1, 3, 5, ...}√
2 cos(πix) if i ∈ {2, 4, 6, ...}

4.2 Non-conditional density estimation

Given i.i.d. random variables Y1, Y2, ..., Yn with density function f : [0, 1]→ R ∈ L2[0, 1], then:

f̂I(y) = 1 +

I∑
i=1

α̂iφi(y) with α̂i =
1

n

n∑
j=1

φi(Yj) ≈
∫
φi(y)f(y)dy = 〈φi, f〉

is an approach to infer f from a frequentist perspective using Fourier series. Here, the choice of the
estimator cutoff parameter I can be seen as bias-variance trade-off problem (in practice, a possible
solution is to use cross-validation or data splitting to choose I).

However the estimate from f̂I might not respect the constraint ∀y ∈ [0, 1], f(y) ≥ 0, in which case
a “surgery” method is necessary (see [Wasserman 2006] and [Glad et al. 2003]). In case of Bayesian
non-conditional density estimation, we have to define and work with priors in a constrained space
where f(y) ≥ 0 for all y ∈ [0, 1].

One way to overcome this issue is to use the approach of sieve priors suggested by [Scricciolo 2006]
and applied in [Inacio et al. ress], which places a prior directly on the coefficient vector β of the
Fourier series expansion of log(f) (instead of f) so that conditionally on the threshold parameter
(cutoff parameter) I we have:

f(y|I, β) =
1

g(β, I)
exp

{
I∑
i=1

βiφi(y)

}

where g is a normalizing factor such that g(β, I) =
∫ 1

0
exp

{∑I
i=1 βiφi(y)

}
dy. This is necessary in

order to have
∫ 1

0
f(y|I, β)dy = 1. Note that each βi lives in R, solving the constrained space problem.

As a drawback, we introduced the difficulty of calculating a normalizing factor (using numerical
integration) when evaluating the likelihood function. As we shall see later, we will use a similar
aproach to force f(y) ≥ 0 for our proposed method.

4.3 Conditional density estimation: Flexcode

The Flexcode estimator ([Izbicki and B. Lee 2017]) is a natural extension of the frequentist density
estimator method of section 4.2 to the conditional case and is used in this article as baseline to compare
the results of our method. It consists in two steps:

(1) Estimate a regression function r : Rd → [−
√

2,
√

2]I where r(.) = (r(.)1, r(.)2, ..., r(.)I) and with
φ1(Y ), φ2(Y ), ..., φI(Y ) as targets and X as covariates. Such regression function can be obtained
using a well known methods such as OLS, Lasso or KNN.
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(2) Use the estimated regression to obtain following density estimate:

f̂(yk|xk) = 1 +

I∑
i=1

r(X)iφ(Yk)

To understand why this procedure works, first notice that

f(yk|xk) = 1 +

∞∑
i=1

(∫ 1

0

φi(y)f(y|xk)dy

)
φ(yk) = 1 +

∞∑
i=1

E(φi(Y )|xk)φ(yk)

and that the fitted value r(Xk)i of a regression of φi(Y ) against X is itself an estimate of E(φi(Y )|Xk).
It follows that the choice of a cut-point I is a problem of bias-variance trade-off (in similar fashion
to the non-conditional density estimator in 4.2) and, that in practice, this can be solved by cross-
validation or data splitting.

5. OUR PROPOSED METHOD: CDFSNET

Our approach builds on Flexcode in order to achieve better performance and scalability. In our initial
tests, we directly applied the Flexcode strategy to neural networks. That is, we trained a Neural
network M with:

Input: a row vector input xk = (xk1, xk2, ..., xkd) of length d.

Output: a row vector (M(xk)1,M(xk)2, ...,M(xk)I) of length I.

where the estimated density given by

f̂(yk|xk) = 1 + φ1(yk)M(xk)1 + ...φI(yk)M(xk)I

and the loss on the training set is given by

n∑
i=1

I∑
j=1

(φj(yi)−M(xi)j)
2

However, this bare bones Flexcode procedure has shown to perform poorly on neural networks,
even after applying the various neural networks techniques to avoid overfitting and local minimum
convergence that we described in section 3 and even after attempting two different “surgery” methods
(in order to force the estimated densities to be positive and integrate to 1).

On the order hand, instead of calculating a squared error on the regression (as in step 1 of Flexcode),
we can work directly with the loss function and we can also apply a exponential transformation in
similar fashion to what is proposed in 4.2 (i.e.: calculate the Fourier components of log(f) instead of
f). In this case, the performance increases dramatically. Therefore we have a Neural network N with:

Input: a row vector input xk = (xk1, xk2, ..., xkd) of length d.

Output: a row vector (N(xk)1, N(xk)2, ..., N(xk)I) of length I.

where the estimated density given by

f̂(yk|xk) =
exp{

∑I
i=1 φi(yk)N(xk)i}
g(N(xk), I)

and where g(N(xk, I)) is a normalizing factor. Here, we work with the integrated squared distance
between the true and estimated density functions as loss function:∫

χ

∫ 1

0

(f(y|x)− f̂(y|x))2dydP (x).
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This loss can be estimated by

n−1
n∑
i=1

∫ 1

0

(f(y|xi)− f̂(y|xi))2dy = n−1
n∑
i=1

∫ 1

0

(
(f̂(y|xi))2 − 2f(y|xi)f̂(y|xi)

)
dy + k

where k is a constant. It follows then that the loss function on the training set is given by a numerical
approximation to

n−1
n∑
i=1

(∫ 1

0

(f̂(y|xi))2dy − 2f̂(yi|xi)
)

(1)

where the integration can be estimated numerically using, for example, the trapezoidal rule.
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Fig. 1. Comparison of softplus, exponential
and identity functions. Note that softplus
function is always closer to the identity func-
tion that the exponential.

Moreover, on preliminary tests we also consid-
ered the softplus transformation1 which is defined by
1
b log(1 + exp(b ∗ x)) where b = 1 (PyTorch default2).
Since softplus transformation lead to better perfor-
mance than the exponential transformation for a fixed
amount of Fourier Series components, we decided to
use it instead. This implies that we are in fact calcu-
lating the Fourier basis components of softplus−1(f)
and have the estimated density given by

f̂(yk|xk) =
softplus{

∑I
i=1 φi(yk)N(xk)i}

g′(N(xk), I)

where g′(N(xk), I) is another normalizing factor.

The intuition behind softplus giving some improve-
ment over exponential is the fact that such transfor-
mation attempts to not significantly alter the value of
its input (specially for large values), therefore poten-
tially preserving the smoothness of the original (un-
transformed) density function. Figure 1 illustrates
such property: softplus function is always to closer to the identity function that the exponential.

It is also worth noticing that this transformation and target loss function take advantage of the
natural flexibility that neural networks have to minimize “arbitrary” loss functions and the speed
GPUs can achieve when working with matrix multiplication which required for numerical integration
inside the loss function. A Python package that implements the method that we therefore propose
(and call CDFSNet) is available at https://github.com/randommm/nncde.

6. RESULTS AND ANALYSIS

We now present a comparison of CDFSNet and three implementations of Flexcode using five real world
datasets that we describe in the subsections. The Python source code of these analysis is available at
https://github.com/randommm/nncde_implementation.

6.1 Datasets and preprocessing

We compare FlexCode with CDFSNet on the following datasets:

1Softplus can also be used as an activation, but here we restrict its use as transformation to constrain the density
function to positive values.
2We also tried other values for b, however the default value has shown to give better performance.
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Spectroscopic dataset: We take spectroscopic data from [Izbicki and Lee 2016] and [Izbicki
et al. 2017]. We take two subsets of the provided dataset. The first one with 10000 instances (in
similar fashion to the one used by [Izbicki and Lee 2016]) and the second one with 100000. We
work with the redshift income as the response variable.

Pnad dataset: We take a dataset from the Brazilian National Sample Survey of Households
(PNAD), which is a research taken from Brazilian families and intends to extract information
such as income, marriage, health, habitation and fecundity. For each attribute, we create an
additional category to capture not available variables. We work with the family income as the
response variable.

SGEMM dataset: We take a dataset from [Nugteren and Codreanu 2015] where the running
time of a matrix-matrix product is measured, using a parameterizable SGEMM GPU kernel. For
each combination of attributes, 4 runs were performed. For simplicity, we take the average of the
4 runs as the response variable.

Diamonds dataset: We take the classical diamonds dataset which is readily available from
ggplot2 library and Kaggle. We work with carat as the response variable.

We use the following preprocessing in our experiments:

Response variable preprocessing: before training every model, we preproccess the response
variable by taking its log and then transforming it to lie in the (0, 1) interval. This is done for
every dataset, with the exception of the spectroscopic dataset for which the response variable (the
redshift of a galaxy) was already in the range of 0 to 1 in our received version.

Feature preprocessing: before training the neural networks, we preproccess all the features to
have to mean 0 and variance 1 for all datasets, with the exception of the SGEMM dataset where
we use PCA-Whitening transformation.

The score evaluation being carried out in a test dataset3 (which was not used to train the models
nor in the validation procedure for early stopping the neural networks).

6.2 Results
Table I. Score (greater is better) of different methods for a given
dataset. Here we compared Flexcode (using nearest neighbors, XG-
Boosting and random forests) with CDFSNet. NA represents a case
where we were unable to train the model due to RAM limitations.

Dataset
Spectroscopic Pnad SGEMM Diamonds

Sample size 10000 100000 117939 241600 48940
Nº attributes 10 10 901 15 26

FC KNN 9.44 10.73 13.11 15.66 7.45
FC XGB 11.28 13.26 NA 18.86 15.56
FC RF 11.58 13.72 15.89 30.61 16.09

CDFSNet 13.57 16.63 15.95 54.74 19.79

In Table I, we present the
score (the opposite of the inte-
grated squared distance loss as
given by equation 1) of CDF-
SNet using the Flexcode im-
plementation of nearest neigh-
bors, XGBoosting and ran-
dom forests4 as the compar-
ison baseline and using the
aforementioned datasets.

In Figure 2, where we
present the estimated con-
ditional probability density
function of the Fourier ANN and Flexcode Random Forest methods for the SGEMM dataset (condi-
tional on a point chosen at random).

3The test dataset size was set to be the minimum between 5000 and 10% of the instances of the dataset.
4For such task, we used the Python Flexcode implementation available at https://github.com/tpospisi/FlexCode

with the number of Fourier series components and some of the internal parameters of the estimators chosen by a

data-splitting procedure.
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6.3 Analysis

We notice from Table I that CDFSNet has outperformed all the other Flexcode based estimators. We
note four possible reasons for such behaviour:

First, the neural network is trained to directly minimize the loss of interest, rather than several
regression loss functions. Second, the Fourier series allows for a large number of Fourier series com-
ponents to be used. Indeed, no hard cross-validation/data splitting procedure was necessary in order
to choose the “cut point” of the Fourier series in our proposed method: a reasonably large neural
network with 100 Fourier components works well “out-of-the-box” probably due to early stopping and
dropout are already taking care of overfitting problems. On the other hand, for Flexcode estimators,
a data splitting procedure generally dictates a much smaller number of Fourier series components due
to the bias/variance tradeoff mentioned earlier.

Third, one of the limitations of the Flexcode method is that a Fourier series expansion might be
negative in some regions, requiring some surgery procedures, and from Figure 2, we can see visually
is that a large proportion of the density function is zeroed.

0.0 0.2 0.4 0.6 0.8 1.0
y

0

100

101

102

f(y
)

ANN Fourier
FC RF

Fig. 2. Estimated probability conditional den-
sity function of the Fourier ANN and Flex-
code Random Forest methods for the SGEMM
dataset (conditional on a point chosen at ran-
dom).

This also leads to a secondary effect of “stretch-
ing” the curve in points which already have positive
density (in order force the density to integrate to 1).
Intuitively, these effects may be causing an additional
bias on the FlexCode density estimation for a given
number of Fourier series components (a large number
of Fourier series components might be able to over-
come this issue, but at the price of larger variance).
A theoretical study confirming this possibility is sug-
gested as an extension of this work.

A fourth reason might be given by [Zhang et al.
2016] which discusses the capabilities that neural net-
works have in achieving generalization without falling
into overfitting possibly due to properties of stochastic
gradient descendant.

7. CONCLUSION

In this work, we have reviewed the concepts of Fourier
series and conditional density estimation as well as an already established method of conditional
density estimation using Fourier series. We have proposed a novel method of conditional density
estimation that combines both Fourier series and artificial neural networks and compared it to the
well established one using five datasets.

We have concluded that CDFSNet has outperforms the other tested methods while, in future
works, we plan to explore how different architectures may lead to significantly better estimates of the
conditional densities when dealing with non-standard data such as images and texts.
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