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Abstract. Image segmentation is a classic computer vision set of techniques that partitions a digital image into
discrete groups of pixel-image segments to inform object detection and related tasks. It has been successfully explored
in biological studies, such as in the identification of wounds. However, recent approaches towards using black-box
deep learning algorithms for image and semantic segmentation of objects have higher computational costs than classic
techniques. In this study, we evaluated the effectiveness of thresholding and deep learning techniques for semantic
segmentation of wound images of mice. Experiments were performed with a real dataset developed by the Pain,
Neuropathy, and Inflammation Laboratory at the State University of Londrina with the approval of the University
Ethics Committee on Animal Research and Welfare. The results were promising, showing that deep learning and
thresholding were able to recognize wound areas, with an average IoU of 0.75 and 0.72, respectively. However, when
estimating the wound areas, deep learning results were the most close to the ground truth.

CCS Concepts: • Computing methodologies → Machine learning algorithms.

Keywords: area estimation, image segmentation, thresholding, wound identification

1. INTRODUCTION

Wound assessment is crucial in medical research, particularly in understanding wound healing pro-
cesses and evaluating treatment outcomes. Recent advances in Computer Vision (CV) and Machine
Learning (ML) have opened up new possibilities for automated wound analysis [Zhang et al. 2022].
However, choosing the proper technique remains a challenge. In CV, traditional techniques for image
segmentation have long been employed to delineate objects and regions of interest within images.
These techniques encompass a spectrum of methods, including edge detection, region growing, and
clustering algorithms such as K-means and Gaussian mixture models. Among these, thresholding
is a fundamental approach, where pixel values are partitioned based on a predefined threshold to
differentiate between foreground and background elements.

Thresholding methods involve setting intensity thresholds to segment wound regions based on color
model values for each pixel. These techniques are the most common segmentation approach due to
ease of use, simplicity, and fast computation. Still, they may struggle with complex textures or when
the lighting conditions vary across the image [Alsahafi et al. 2023]. On the other hand, Deep Learning
(DL) models, such as Convolutional Neural Networks (CNNs), have shown remarkable success in
various image segmentation tasks [Long et al. 2015]. They can learn complex features from data but
require substantial computational resources, time and labeled training data [Manakitsa et al. 2024].

Thus, in this paper we investigate the hypothesis that traditional thresholding methods can be as
accurate as DL models in segmenting wounds. Experiments were performed with two main approaches:
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thresholding techniques and state-of-the-art DL models for semantic segmentation. This paper is
organized as follows: Sections 2 and 3 present the theoretical concepts necessary for understanding
the work and related works found in the literature; Section 4 describes the proposed methodology for
comparing and evaluating the segmentation techniques; Section 5 presents the experimental results;
and finally, Section 6 presents conclusions and suggestions for future work.

2. BACKGROUND

Semantic segmentation is an active area of research in CV that involves identifying and classifying
individual pixels within an image. Its applications span diverse fields, from autonomous driving
to medical image analysis [Csurka et al. 2023]. The conventional methods for this task demand
substantial amounts of meticulously annotated data, which is time-consuming and expensive or prone
to noise generation. Most semantic segmentation networks commonly utilize cross-entropy as their
loss function and assess network performance using the intersection-over-union (IoU) metric [Huang
et al. 2020].

On the other hand, image segmentation [Minaee et al. 2020] seeks to separate an image into distinct
regions based on characteristics such as color, texture, or intensity. Unlike semantic segmentation,
which categorizes pixels into specific classes, non-semantic segmentation groups similar pixels or re-
gions but does not assign semantic meaning. Image processing is used in traditional methods, while
ML algorithms and CNNs are used in modern approaches.

2.1 Thresholding

Thresholding is a simple and crucial tool for dividing an image into regions of interest. Based on
their intensity values, these techniques define a threshold separating image pixels into two distinct
categories.Values below the found threshold are assigned to one class, while values above the threshold
are assigned to the other class. Among the methods applied to determine the ideal threshold, we can
list Otsu, Isodata, Mean, Li, and Yen [Van der Walt et al. 2014], each using different approaches to
calculate threshold values.

2.2 Machine Learning

Machine Learning (ML) is a core field of Artificial Intelligence (AI) focused on automating tasks
through data-driven training. It involves algorithms learning from past experiences to improve future
performance. ML can be supervised, unsupervised, or reinforcement learning, with supervised learning
being the most common [Marsland 2015]. In supervised learning, algorithms are trained with correct
input-output pairs provided by specialists, enabling them to generate correct outputs for new inputs
after training.

Different learning algorithms can be explored when dealing with classification tasks. While many
algorithms exist, some demonstrate consistent performance across a wide range of problems and tasks.
One such algorithm is Random Forest (RF) [Breiman 2001], which often excel in predictive tasks
because they can mitigate overfitting and handle high-dimensional data effectively. Therefore, despite
the availability of numerous classifiers, the robustness and versatility of algorithms like Random Forest
make them a compelling choice for various machine learning applications.

Unlike traditional ML algorithms, DL [Aggarwal 2018] has been widely used to solve image clas-
sification and segmentation problems. It extracts high-level abstract features, but its use depends
on the data amount used to train models, i.e., it is ideal to have a massive dataset with hundreds
of thousands or millions of samples. In this study, we mention the U-Net algorithm as a CNN ar-
chitecture developed for image segmentation, which is efficient in several applications in the medical
context [Punn and Agarwal 2022; Azad et al. 2022]. The network design consists of a symmetric
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network with descending pooling layers to encode low-level information into a high-dimensional repre-
sentation, ascending convolution (or transposed convolution), and up-sampling layers to reconstruct
the segmented image.

3. RELATED WORKS

3.1 Thresholding for Image Segmentation

Many studies review thresholding algorithms, providing concise evaluations of their efficacy. In [Pare
et al. 2020], the authors presented a comprehensive review of optimization algorithms applied to multi-
level thresholding in image segmentation. A survey of 157 relevant research publications is conducted,
encompassing parametric and non-parametric approaches. The study categorizes image threshold-
ing methods to address diverse segmentation challenges. Optimization algorithms are increasingly
utilized across numerous domains, including image-processing tasks like enhancement, compression,
classification, and pattern recognition. Swarm intelligence algorithms are notably gaining traction for
multilevel thresholding in gray-scale and colored natural and satellite images. However, the effective-
ness of specific algorithms varies depending on image types, requiring tailored approaches for different
image classes.

In a different study [Hosny et al. 2023], the authors introduced a modified optimization algorithm
for image segmentation, employing a hybrid approach of Otsu’s and Kapur’s entropy methods to
determine optimal thresholds. The proposed algorithm outperformed other techniques in image seg-
mentation performance. A specific enhancement for satellite image segmentation is proposed, utilizing
chaotic initialization and a hybrid fitness function, demonstrating superior results. Furthermore, [N
and S 2016] introduced a locally adaptive thresholding method for image binarization, employing
local mean and standard deviation to distinguish foreground and background pixels. It compares the
performance of Niblack and Sauvola local thresholding algorithms, mainly focusing on medical image
applications. Evaluation metrics include the Jaccard Similarity Coefficient and Peak Signal Noise
Ratio (PSNR). Results demonstrated that the Niblack algorithm outperformed Sauvola in reducing
background noise, as indicated by segmentation quality metrics.

3.2 Deep Learning for Semantic Segmentation

Recently, most of the research in the field has turned to DL algorithms for solving the semantic
segmentation of wounds. For instance, in [Wang et al. 2020], semantic segmentation of ulcers’ images
was conducted using cutting-edge models like U-Net, FCN-VGG16, Mask-RCNN, and MobileNetV2.
U-Net demonstrated the highest accuracy, achieving an FScore of 0.915 and the highest recall of
0.912. In parallel, [Kaymak et al. 2020] explored Fully Connected Networks (FCN) for segmenting
skin lesions, comparing their performance with other networks like U-Net and SegNet.

Another study [Niri et al. 2020] focused on segmenting diabetic foot ulcers using DL models such as
U-Net, V-Net, and SegNet. Based on accuracy, IoU, and FScore metrics, the evaluation favored U-Net
across all three criteria, achieving scores of 0.949, 0.948, and 0.972, respectively. Furthermore, [Kang
and Nguyen 2019] proposed a hybrid framework that combines RF with DL for image segmentation.
Their approach, tested on hand segmentation and other semantic segmentation datasets, achieved
real-time segmentation with limited computational resources, showcasing its efficacy in various appli-
cations.

4. METHODOLOGY

An overview of the flow of experiments, including sub-steps, is shown in Figure 1. The following sub-
sections give additional details regarding them: the image dataset, data preparation, classification
algorithms used, models’ training and evaluations, and the area estimation.

Symposium on Knowledge Discovery, Mining and Learning, KDMILE 2024.



4 · B. U. Marcato et al.

Predictions
(output)

Original Image1

Crop Image Histogram 
Equalization

Thresholding 
tehcniques

2 3 4Segmentation 
Strategies

Data Preparation

Convert to 
HSV

Image Labeling
Data 

Preprocessing

Data 
Augmentation DL baselines

H and S channels

RGB 
image

Binary 
mask

Area 
Estimation

Fig. 1: Experimental methodology for automated area estimation of mice wounds. Adapted from
[Marcato et al. 2024].

4.1 Image Dataset

The dataset used in this study comprises 71 images of mice with wounds on their backs. It was
developed by the Pain, Neuropathy, and Inflammation Laboratory at the State University of Londrina
(UEL) with the approval of the UEL Ethics Committee on Animal Research and Welfare (process
number 15654.2019.33). Images were acquired with no protocol, so there are files with different
resolutions (36 images have 1024 × 768 pixels, while the remaining have 4032 × 3024 pixels). The
classes (pixel labels) were defined manually using the Labelme tool1.

4.2 Data Preprocessing

When applying thresholding methods, each image segmented the region of interest to the wound to
avoid unnecessary information in the image histogram. More specifically, the images, with a resolution
of 256 × 256 pixels, are cropped in the regions [80, 210] on the vertical axis and [80, 200] on the
horizontal axis, where all wounds are found for all images.

Initially, the images are converted to the HSV color space, and equalization is applied to the H and S
channels. Histogram equalization is helpful in fulfilling pixel gradation level and adding color contrast
between background and foreground. The reason for using HSV instead of RGB is that it separates
color information (chroma) from intensity or lighting (luma). Because the values are separated, it is
possible to construct a histogram or thresholding rule using only saturation and hue.

Considering the baselines, images were resized to 256 × 256 pixels and normalized from [0, 255] to
interval [0, 1]. Data Augmentation (DA) was applied to increase the dataset size (71 images). Five
transformations were applied: horizontal and vertical flips, rotations (up to 35 degrees), salt and
pepper noise, and image translation [Marcato et al. 2024]. DA expanded the dataset to 426 images
for training, ensuring model precision and preventing overfitting.

4.3 Segmentation Techniques

Considering thresholding methods, six strategies were explored:

—Otsu: is a thresholding technique that calculates the ideal threshold to segment an image, finding
values that minimize the variance within classes while maximizing the variance between classes of
pixels;

1https://github.com/wkentaro/labelme
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—Isodata: is an iterative algorithm that calculates the threshold based on the average of the pixel
values. It divides the image pixels into two classes, updating the threshold until the difference
between successive thresholds is less than a predefined value;

—Mean: is a simple method that calculates the threshold as the average of the intensity values of
the pixels in the image;

—Li: is a method based on image histogram analysis and minimization of entropy between classes.
It calculates the optimal threshold that maximizes the entropy between the two classes resulting
from the segmentation;

—Yen: is a technique based on histogram analysis that determines the optimal threshold considering
the variability between classes and the entropy of the image and

—Voting: Voting application of all the methods mentioned above.

We evaluated thresholding techniques with and without Binary Closing, a morphological operation
that smooths object boundaries and improves image connectivity. Binary Closing involves dilation
followed by erosion, reducing noise, and closing small gaps in object outlines. By comparing model
performance with and without Binary Closing, we aimed to assess the efficacy of this operation in
improving segmentation accuracy.

We also explored two different DL baselines for wound recognition, previously evaluated in [Marcato
et al. 2024]: i) U-Net: a state-of-the-art DL architecture for Semantic Segmentation; and ii) RF +
VGG16: a cheap alternative combining VGG16 latent features trained in a Random Forest model.
U-Net was trained with Adam optimizer and a α = 0.0001 learning rate. The optimized loss function
was binary cross entropy. The activation functions between convolutional layers are ReLu functions
and a sigmoid in the last fully connected layer. U-Net was trained for 100 epochs using batch size = 2.
The RF setup was defined with 100 trees and the ‘Gini ’ index as the attribute evaluation criterion. It
was fed with 64 feature maps extracted from the first two convolutional layers of the VGG162 neural
network [Simonyan and Zisserman 2015], pre-trained in the ImageNet dataset.

4.4 Area Estimation

We defined a green square marker of a fixed size of 1cm× 1cm = 1cm2 to estimate the wound areas.
These squares are annotated in all the original images. Thus, by counting the number of pixels
in the marker, we establish a pixel-to-area ratio that translates pixel measurements into real-world
dimensions. The wound areas from binary mask images are considered the ground truth. This ratio
is then applied to the thresholding/semantic segmentation outputs using their obtained IoU scores.
The IoU scores are multiplied by the ground truth area, resulting in the estimated wound area in the
output. This approach leverages the IoU score as a scaling factor, adjusting the ground truth area
based on the segmentation accuracy.

4.5 Experimental Setup

We evaluated DL models using a cross-validation resampling with five folds. Moreover, to prevent any
data leakage, we performed DA only on the training set after separating training and testing sets in
each iteration. All the strategies (Thresholding, UNet, and RF) were evaluated using the Intersection
Over Union (IoU) metric. This measure divides the intersection of two masks by their union, obtaining
the perfect prediction when both are equal. IoU is one of the most used metrics in image and semantic
segmentation [Goyzueta et al. 2021].

To ascertain the statistical significance of our findings, we evaluated the results using non-parametric
Wilcoxon with a significance level α = 0.05. This method enabled us to rigorously compare the

2Visual Geometry Group, 16 layers.
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performance of our threshold techniques against the baselines. By employing statistical tests, we can
assess the significance of performance differences by considering the different evaluated techniques. All
the code was developed in Python: Threshold techniques used scikit-image library; DL algorithm
used PyTorch; RF and the ML methodological functions used scikit-learn and Keras. Finally, DA
methods used albumentations. The code repository of this study is also publicly available3.

5. RESULTS

5.1 Predicting Wound Pixels

Table I shows the general results of the Thresholding techniques applied to all the available images.
In the table, the mean IoU and standard deviation values are reported. The best results are reported
in bold. We preferred the method with the lowest sd when two techniques obtained the same mean
value. The last two rows of the table present DL baselines. Considering results without Binary Closing,
the Mean technique presented the best result among thresholding methods, with values close to the
RF+VGG baseline, and showed a difference of 10% about the UNet baseline. On the other hand,
when using Binary Closing, the Isodata and Otsu techniques were the best strategies, outperforming
the RF+VGG baseline, with a slight difference between UNet.

Table I: Mean IoU and standard deviation results obtained by experiments

Technique Mean IoU (sd)

Without Closing With Closing

Thresholding

Isodata 0.633 (0.212) 0.717 (0.194)
Li 0.593 (0.198) 0.682 (0.190)
Mean 0.645 (0.217) 0.682 (0.201)
Otsu 0.631 (0.213) 0.717 (0.195)
Yen 0.497 (0.234) 0.617 (0.242)

Voting Thr. Voting 0.633 (0.210) 0.714 (0.196)

DL Baselines U-Net 0.752 (0.197) 0.752 (0.197)
RF + VGG 0.644 (0.241) 0.644 (0.241)

The non-parametric Wilcoxon test with α = 0.05 (95% of significance) was applied to assess the
statistical significance of these results. For Mean and UNet methods, a p-value < 0.001 was obtained,
meaning a statistical difference in favor of UNet. Otherwise, for tests with Mean and RF, Isodata and
UNet, and Isodata with UNet (p-values of 0.313, 0.124, and 0.057, respectively), the null hypothesis
is considered, meaning no statistical difference between the distributions.

Figure 2 depicts individual image results for the best techniques, considering both scenarios: with
and without Binary Closing. The x-axis shows all the individual images in the dataset, while the
y-axis segmentation techniques: the darker the cell, the better the IoU values. There are some
images whose predictions for all the methods are inaccurate. It happens with images 28, 29, and 60,
presenting lower values of IoU. These images depict minor wounds in an advanced stage of healing,
almost closed. At this point, the wounds may have minimally affected pixels, making segmentation
challenging. Moreover, as healing progresses, the color of the wounds may blend with that of the
surrounding tissue, further complicating segmentation. On the other hand, images 70 and 71 achieved
accurate results with all methods. This is likely because these images depict wounds at an early stage
and bigger size, with significant regions and clear differentiation from the mice’s skin.

3https://github.com/BrunoMarcato/MiceWoundSegmentation
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Fig. 2: IoU heatmap of best Thresholding technique and UNet

5.2 Estimating Wound Areas

The results of estimating wound areas using DL and thresholding techniques show notable differences,
as shown in 3. Figure 3a depicts the distribution of area errors for each technique. DL obtained an
average absolute error of 0.021, while thresholding obtained 0.025 when considering all the wound
areas. Although error estimations of both techniques may seem close, DL predictions show a more
significant concentration of values close to zero, indicating individual lower errors. The thresholding
technique shows a broader distribution with some outliers.

Additionally, Figure 3b demonstrates the individual differences by plotting ground truth areas
against predicted areas. The diagonal line represents perfect predictions. The closer to the diagonal
line, the better the technique and the estimated area. Figure highlights that DL red points are
better than thresholding points (black triangles). An inaccurate group of images is concentrated in
the middle of the chart. These images contain animals with tiny wounds that are hard to predict.
Nevertheless, DL provided better estimations than thresholding. Thus, it is safe to state that DL
generally outperforms the thresholding technique.
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Fig. 3: Area errors obtained by the induced models.

6. CONCLUSION

In this study, we investigated Thresholding techniques for mice wound image segmentation. Experi-
ments were carried out with an image dataset generated by the Pain, Neuropathy, and Inflammation
Laboratory at the State University of Londrina, composed of 71 images showing wounds in mice. The
Isodata, Otsu, Mean, Li, and Yen methods were applied considering the application of Binary Closing
method to fill regions not wholly identified.
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Threshold methods obtained promising results in terms of IoU. The best thresholding technique
was the Isodata with Binary Closing, with an average IoU of 0.72 compared to 0.75 for UNet. When
applying the non-parametric Wilcoxon test, there was no statistical difference between the technique’s
performances, which favors thresholding techniques that require a few seconds to be applied in contrast
to the hours required to induce DL models and does not require training set.

Both strategies provided accurate results when estimating the wound areas, with DL being more
consistent even when estimating tiny wounds in the most challenging images. For future works, we can
explore different DL architectures and traditional ML while automating the entire pipeline, providing
a more robust comparison.
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