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Abstract.

Severe weather events significantly impact daily life, especially during emergencies, affecting human lives and the
economy. Decision-making in such events, like heavy rainfall, strong winds, and flash floods, is challenging due to
the rapid changes and strong interconnections between the variables involved. Nowcasting models use real-time data,
commonly from weather radars, to forecast short-term rain up to 6 hours ahead, supporting decision-making in severe
weather situations. These models provide early warnings and precise information about the location, intensity, and
duration of these events. Recently, machine learning models for precipitation forecasting have gained prominence due
to their ability to learn from data and offer reliable and fast predictions. This study explores precipitation nowcasting
using weather radar data in the southeast of Pará, Brazil, focusing on a one-hour forecast horizon utilizing the U-Net
architecture. Four models based on U-Net algorithm, investigating past horizons of 30, 60, 90, and 120 minutes, are
evaluated using categorical and continuous metrics, and a visual comparison of the 60-minute forecast horizon. The
results demonstrate that the model with a past horizon of 120 minutes outperforms the other models in all evaluated
metrics, achieving 37.96 and 0.5476 scores in continuous and categorical metrics, respectively, improving the forecast of
severe events and decision making up to a 60-minute forecast horizon.

CCS Concepts: • Computing methodologies → Neural networks.
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1. INTRODUCTION

During emergencies, severe weather events profoundly affect various aspects of daily life impacting
human life and the economy, with sectors that heavily rely on accurate meteorological information
being particularly harmed. Decision-making in severe events like heavy rainfall, strong winds, and
flash floods is extremely challenging, as the variables involved are strongly interconnected and change
rapidly during the event.

Nowcasting models use real-time data, commonly from weather radar, to forecast short-term rain,
up to 6 hours, to support decision-making in severe events. These models provide early warnings
and precise information about the location, intensity, and duration of these events. Machine learning
models for precipitation forecasting have gained prominence in recent years, standing out for learning
from data and providing reliable and fast predictions.

Machine learning for precipitation nowcasting using weather radar data has been studied with a
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focus on various regions of Brazil to investigate the amount of input data (past horizon) required
for models to achieve better performance, given a determined number of outputs, i.e., the forecast
horizon.

The work by [Jorge et al. 2022] investigates precipitation nowcasting using weather radar data
with a temporal resolution of 10 minutes, through the ConvLSTM architecture initially proposed
by [Shi et al. 2015]. The study explores past horizons of 40, 50, and 60 minutes to forecast the next
40 minutes in the metropolitan area of São Paulo. The results presented by [Jorge et al. 2022] show
lower prediction errors compared to persistence models, although the results do not indicate significant
differences between models with different past horizons.

Similarly, [Caseri et al. 2022] utilizes ConvLSTM with weather radar data to forecast heavy rainfall
around Campinas, in southeastern Brazil, due to the high number of floods in this region. The study
investigates rain prediction for the next 10, 20, and 30 minutes, given the previous 50 minutes, with
radar data generated every 10 minutes. The results indicate that the longer the forecast horizon, the
lower the prediction accuracy, although these forecasts outperform the persistence model for different
forecast horizons.

On the other hand, the work by [Bonnet et al. 2020] performs precipitation nowcasting using
radar data from Ponta Nova (São Paulo) through the PredRNN++ algorithm. This architecture
was previously proposed by [Wang et al. 2018] for solving space-time predictive learning problems.
The study by [Bonnet et al. 2020] frames precipitation nowcasting as a video prediction problem,
evaluating the forecast of a sequence of images over one hour, based on the sequence of images from
the previous hour. This study demonstrates the potential of the model as a nowcasting tool to assist
in decision-making and efficient alerts.

This work uses the U-Net architecture for precipitation nowcasting. U-Net was initially designed
by [Ronneberger et al. 2015] for biomedical image segmentation. In the context of precipitation
forecasting, [Ayzel et al. 2020] was one of the first to treat it as an image-to-image translation problem
using the encoder and decoder components.

Therefore, this study aims to explore precipitation nowcasting using weather radar data in the
southeast of Pará, Brazil, considering a one-hour forecast horizon utilizing the U-Net architecture.
Four models are created to investigate the number of input images, determining which past horizon
best captures and improves the complex patterns in precipitation nowcasting. The past horizons
investigated are 30, 60, 90, and 120 minutes. Each model is evaluated using categorical and continuous
metrics, as well as a visual comparison of the 60-minute forecast horizon. Additionally, a full day of
forecasts is analyzed for municipalities within the radar coverage area.

2. MATERIALS AND METHODS

2.1 Coverage area and data

The data used in this work come from the weather radar located in southeastern Pará, in the northern
region of Brazil. The radar operates with a sweep covering 150 km and has a temporal resolution of
5 minutes, generating data volumes (with a resolution of 300 x 300) that include information such as
maximum reflectivity, which is the variable used for precipitation nowcasting in this work. Figure 1
shows the map of Pará with the radar’s coverage area (red circle) in the southeast of the region.

The database consists of 5,353 data volumes generated by the weather radar, covering 28 days of
2021 within the rainy season in the region, which occurs between November and April. These data
are used to generate the sequences for training the precipitation nowcasting model.

To evaluate the performance of the precipitation forecasts at specific points within the coverage area,
three municipalities in the northern region of Brazil are investigated: Canaã dos Carajás, Curionópolis,
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Fig. 1: Map of the state of Pará in the north of Brazil showing an overview of the weather radar coverage area located
in the southwest region of the state.

and Parauapebas. Figure 2 shows the three municipalities and their locations within the radar’s
operational area.

2.2 Reflectivity and precipitation

The variable used in this work is maximum reflectivity (dBZ), which corresponds to the maximum
value of each data volume at ten elevations of the weather radar, representing the data collection
between 1-10 km in height. The relationship between reflectivity and precipitation (rainfall) is given
by the power relationship presented in Equation 1:

Z = aRb (1)

Where a and b are the parameters that influence the transformation, R is the precipitation rate
(mm/h), and Z is the reflectivity factor (mm6/m3). The reflectivity used here represents the loga-
rithmic version of Z.

Table I presents the relationship between reflectivity and precipitation values. To generate the
relationship, the parameters a and b were set to 200 and 1.6, respectively, which are widely used and
were originally defined by [Marshall and Palmer 1948].

It is possible to observe that the relationship between Z and R is a power relationship (Table I),
where any change in reflectivity values significantly alters the precipitation values. For example, a
variation of 10 dBZ between 20 and 30 dBZ results in a 321% increase in precipitation. The value of
20 dBZ (in bold) indicates light rain.
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Fig. 2: Municipalities in southeastern Pará within the meteorological radar coverage area.

Table I: Relationship between reflectivity and precipitation values. The first line represents reflectivity (dBZ), and the
line below shows precipitation values in mm/h.

Reflectivity (dBZ)
5 10 20 30 40 50 60

0.0748 0.1537 0.6484 2.7343 11.5307 48.6246 205.0483

2.3 Next hour prediction approach

The approach used in this work aims to investigate the necessary past horizon to achieve better
forecasts for a one-hour prediction horizon (60 minutes). In other words, it evaluates the number of
radar data volumes/images needed (or not) to precipitation nowcasting for the next 60 minutes of a
meteorological event.

T T + 30 T + 60T - 30T - 60T - 90T - 120

Forecast horizon

Past horizons

Fig. 3: Overview of the evaluated approach for next-hour precipitation nowcasting.
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An overview of the approach evaluated for forecasting the next hour’s precipitation is presented in
Figure 3. Here, the focus is on the 60-minute forecast horizon, represented by the orange timeline
from T to T + 60. The past horizons are represented by blue-toned lines. Four past horizons are
investigated: 30 minutes, 60 minutes, 90 minutes, and 120 minutes, represented by the times T − 30,
T − 60, T − 90, and T − 120 to T , respectively.

To ensure consistency in constructing precipitation nowcasting model sequences and to maintain a
fixed forecast horizon for evaluation, all past horizons are based on a 120-minute past horizon, filtering
data to represent specific past horizons for each model. For example, sequences for 30 and 60-minute
past horizons, starting at 08:00, have fixed inputs from 08:00 to 10:00 and outputs from 10:05 to 11:00,
with inputs for the 30-minute model from 09:30 to 10:00 and for the 60-minute model from 09:00 to
10:00.

2.4 Training setup

In this work, we use the U-Net architecture for precipitation nowcasting. The encoder portion consists
of 4 blocks with 16, 32, 64, and 128 filters, respectively, each block having a kernel size of 3 x 3 and
ReLU activation function. The central block contains 512 filters, with the same kernel size and
activation function. The decoder portion has the same blocks, filters, kernel size, and activation
function as the encoder, with the difference being the presence of a transposed convolutional layer at
the beginning of each block, aimed at expanding the dimensionality of the filters with a kernel size of
2 x 2. Finally, the final convolutional layer uses a linear activation, with the number of outputs equal
to 12, corresponding to the forecast horizon analyzed in this work.

The work investigates previous horizons, so the input data size of the U-Net architecture varies
between 7, 13, 19, and 25 images, representing previous horizons of 30, 60, 90, and 120 minutes,
respectively. To maintain a fair forecast horizon of 60 minutes during sequences building, the past
horizon was set to 120 minutes, regardless of the past horizon, by selecting the appropriate number
of input images for the specified past horizon during training.

The loss function used in this work is the mean squared error (MSE), which evaluates the errors
between observed and predicted data sequences. Additionally, the Adam optimizer is used to minimize
the loss function over 100 training epochs with a batch size of 4.

The complete dataset consists of 3,981 input and output sequences generated from 28 days of
weather radar data. For model training, 80% of the data was used for training and 20% for testing,
resulting in 3,184 and 797 sequences, respectively.

2.5 Evaluation metrics

To evaluate the quality of precipitation nowcasting, both continuous and categorical metrics are
considered. The continuous metric is MSE, which measures the mean squared difference between
observed and predicted values; the lower the MSE, the better the model’s performance. MSE is
defined by Equation 2, where y is the observed data, ŷ is the forecast and M is total number of
observations.

MSE =
1

M

M∑
i=1

(yi − ŷi)
2 (2)

For categorical metrics, it is necessary to first transform the observed and predicted values through
binarization, so the values become 0s or 1s (true or false). In this work, a threshold of 20 dBZ,
representing light rain (bold in Table I), is used to binarize both forecasts, where values greater than
20 dBZ represent category 1 and values less than this threshold are designated as category 0.
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Thus, these metrics are similar to those derived from the confusion matrix commonly used in
machine learning, considering true positive (TP), false positive (FP), false negative (FN), and true
negative (TN).

The categorical metric used in this work is the critical success index (CSI), a technique frequently
used by the meteorological community for precipitation nowcasting, that the higher the value obtained
by the CSI metric, the better the performance of the forecast. It can be defined as the fraction of
predicted values correctly categorized as 1 relative to all values categorized as 1, whether observed or
predicted. The categorical metric CSI is defined by Equation Y,

CSI =
TP

TP + FP + FN
(3)

3. RESULTS AND DISCUSSIONS

The results presented in Table II show that the past horizon of 120 minutes outperforms for precipi-
tation nowcasting in the next hour using weather radar reflectivity data. For both metrics, this past
horizon achieves the best results, with an MSE of 37.9635 and a CSI of 0.5476.

Based on MSE, the 30-minute model has the poorest performance, presenting the highest error
among the models, with an MSE of 43.1882. Despite this, it performs well in terms of CSI, ranking
second only to the model with a past horizon of 120 minutes.

Table II: General result of the next hour’s precipitation nowcasting given the different past horizons.

Metrics 30 min 60 min 90 min 120 min

MSE ↓ 43.1882 40.2114 42.9521 37.9635
CSI ↑ 0.5460 0.5401 0.5234 0.5476

The results for the 90-minute past horizon (Table II) indicate low performance for both metrics. Re-
garding CSI, it has the lowest value among all models. For MSE, it has the second worst performance,
with an error of 42.9521.

Figure 4 presents a comparison between the observed data and the forecasts made by the models
with past horizons of 90 and 120 minutes, specifically the data volumes at times T + 5, T + 30, and
T +60. The images in Figure 4 represent the forecast horizon from 20:05 to 21:00 on March 13, 2021,
with model inputs from 18:30 to 20:00 and 18:00 to 20:00 for the 90-minute and 120-minute past
horizons, respectively.

It is observed in Figure 4 that as time progresses from T , the forecasts degrade in terms of reflectivity
values, although the movement of the meteorological event is captured efficiently. It is also noted that
the results presented in Figure 4 align with the general results presented in Table II, where the 120-
minute past horizon shows better performance compared to the 90-minute horizon. This is especially
evident in the forecasts at T + 30 and T + 60, where reflectivity values above 20 dBZ are better
distributed throughout the meteorological event, slightly closer to what is seen in the observed data.

A comparison between reflectivity and precipitation variables, in terms of observed data and fore-
casts for a full day in the municipality of Curionópolis, from the 60-minute and 120-minute past
horizon models, is presented in Figure 5. The chosen day for analysis is January 8, 2022, meaning the
data presented here are outside the training and testing sets.

Figure 5a presents the comparison between observed data and forecasts for the 60-minute and 120-
minute horizons. Additionally, the red dashed line indicates the 20 dBZ threshold, which represents
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Fig. 4: Comparison between observed data and forecasts from past horizons of 90 and 120 minutes to forecast horizons
of 5, 30 and 60 minutes for March 13, 2021.
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Fig. 5: Comparison between observed data and forecasts from past horizons of 60 and 120 minutes for the reflectivity
and precipitation variables.

light rain. On the other hand, Figure 5b presents the same values as Figure 5a, but transformed into
precipitation using Equation 1, as demonstrated in Table I.
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When comparing the results of Figures 5a and 5b, it is generally observed that the model with a
120-minute past horizon performs better. Both models have significant errors, especially below the
20 dBZ threshold, although the forecast with the 60-minute past horizon is considerably worse during
times with no reflectivity (Figure 5a), such as between 09:00 and 12:00 and 15:00 and 18:00.

Despite the large errors (reflectivity, Figure 5a) below the threshold, it is noted that when trans-
formed into precipitation (mm/h), Figure 5b, the errors become negligible. Analyzing the forecasts
above the threshold, it is possible to observe a distinct behavior compared to the results below the
threshold. Here, forecasts with a difference of less than 5 dBZ, such as the results between 07:00 and
09:00 and around 15:00 (Figure 5a), generate much larger errors when converting from dBZ to mm/h,
as shown in the same time intervals in Figure 5b.

4. CONCLUSIONS AND FUTURE WORKS

This study investigates precipitation nowcasting using weather radar data located in southeastern
Pará, Brazil. Past horizons of 30, 60, 90, and 120 minutes are evaluated to estimate a 60-minute
forecast horizon using the U-Net architecture. Results indicate that the 120-minute past horizon
model outperforms others, achieving an MSE of 37.9635 and CSI of 0.5476. Additionally, visual
analysis of forecasts and a comprehensive day of predictions in Curionópolis municipality contribute
to these findings.

Future work will explore other forecast horizons for the various past horizons and include additional
continuous and categorical metrics, as well as similarity metrics, to better evaluate precipitation
nowcasting performance. Furthermore, persistence models widely used in meteorological community
will be evaluated to compare with models for each past horizon, alongside other machine learning
approaches.
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