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Abstract. Machine learning systems heavily rely on training data, and any biases or limitations in datasets can
significantly impair the performance and trustworthiness of these models. This paper proposes an instance hardness
data-centric approach to enhance ML systems, leveraging the potential of contrasting the profiles of groups of easy and
hard instances on a dataset to design classification problems more effectively. We present a case study with a COVID
dataset sourced from a public repository that was utilized to predict aggravated conditions based on parameters col-
lected on the patient’s initial attendance. Our goal was to investigate the impact of different dataset design choices on
the performance of the ML models. By adopting the concept of instance hardness, we identified instances that were
consistently misclassified or correctly classified, forming distinct groups of hard and easy instances for further investi-
gation. Analyzing the relationship between the original class, instance hardness level, and the information contained
in the raw data source, we gained valuable insights into how changes in data assemblage can improve the performance
of the ML models. Although the characteristics of the problem condition our analysis, the findings demonstrate the
significant potential of a data-centric perspective in enhancing predictive models within the healthcare domain.

CCS Concepts: • Computing methodologies → Machine learning algorithms.
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1. INTRODUCTION

Machine learning (ML) fundamentally involves extracting patterns from data, assuming that models
will generalize to future instances. This process can be divided into two stages: first, the selection of
algorithms and their adjustment to a dataset; second, revisiting the data to attempt to build better
algorithms [Zha et al. 2023]. These stages describe two complementary approaches when developing
ML models: model-centric and data-centric research. Although both stages are important, research on
models is much more advanced than research on data. The role of data in ML is often neglected and
undervalued, with models being the focal points of publications and conferences, becoming increasingly
evident that research on data has been underdeveloped [Sambasivan et al. 2021]. However, the field
of ML is undergoing a profound transformation. While the past focused on pursuing innovative
algorithms and architectures, the present and future are increasingly centered on data.

As large models become the norm and real-world efficacy becomes paramount, the emphasis is
shifting towards the entire data lifecycle, from collection and storage to transformation and integration
of results into other systems. The importance of addressing societal issues through data further
underscores this shift. In particular, there is growing recognition of the value of small datasets and
the need for meticulous data curation and preprocessing to ensure the quality and representativeness
of the data used in ML models [Oala et al. 2023]. The central role of data in advancing AI research
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is now widely recognized. For example, last year, a conference dedicated to data-centric ML research
established a new journal in this field [Oala et al. 2023]. This shift highlights the disparity between
the vast array of tools and strategies developed for model training - such as those popularized by
scikit-learn [Pedregosa et al. 2011], and strategies for hyperparameter tuning [Bergstra et al. 2015] -
and the still largely manual, time-consuming process of building robust datasets [Seedat et al. 2022].
The reliance on trial and error in data preparation is the norm in these cases with the risk of neglecting
the quality and safety of the data underlying models [Sambasivan et al. 2021].

In this work, our goal is to contribute to data-centric ML research by providing a strategy to
quantify the benefits of different decisions made during data preprocessing. We propose evaluating
the Instance Hardness (IH), a metric proposed by [Smith et al. 2014] that assesses the difficulty
level in correctly classifying individual instances within a dataset. Instances that are consistently
misclassified by multiple ML techniques are deemed hard, while those consistently classified correctly
are considered easy. Based on the average IH value for each class or a specific subgroup, we argue
that it is possible to justify whether a particular preprocessing decision improves data quality and
increases class separability. To support our proposal, we present a case study demonstrating how this
approach can benefit the process of assembling datasets in healthcare.

By analyzing the IH values, we can evaluate problem design decisions, enhancing the resulting ML
models’ overall robustness and accuracy. Our approach emphasizes the importance of meticulous data
preparation, highlighting that even minor adjustments in preprocessing can significantly impact model
performance. This work offers a practical methodology for assessing data quality and contributes to a
broader understanding of how data-centric practices can lead to more reliable and fair ML outcomes.
As the field evolves, our findings underscore the necessity of integrating data-centric perspectives
into ML development and deployment, ensuring that models are not only technically sound but also
ethically and socially responsible.

2. MEASURING THE DIFFICULTY OF A PROBLEM

Each dataset has different characteristics and levels of difficulty. This might happen for various reasons
and can be analyzed from different perspectives. For example, overlapping regions in the feature
space can make it difficult to separate classes [Hüllermeier and Waegeman 2021]. Another reason is
the presence of outliers that may interfere in delineating a precise decision boundary among classes
[Napierala and Stefanowski 2016]. In this way, how can we measure data adequacy for a classification
task? This concern has led to the recent focus on Instance Hardness (IH) analysis [Smith et al. 2014;
Liu et al. 2024; Paiva et al. 2022; Lorena et al. 2024; Seedat et al. 2024], by identifying which instances
are systematically misclassified by ML models.

This approach was explored by [Chatzimparmpas et al. 2022] in selecting instances for oversampling
when dealing with imbalanced classification problems. [Smith et al. 2014] and [Seedat et al. 2022]
investigated the impact of removing difficult instances, noting an increase in predictive performance,
although this improvement is not always consistent. [Seedat et al. 2024] examined the correlation
between the difficulty level and the underlying mechanism that generates hardness, noting that it is
not always possible to clearly identify the type of generation mechanism.

In previous work, we explored how the performance of models on difficult instances could serve as
an explainability strategy, facilitating collaborative work between domain experts and data scientists
[Valeriano et al. 2024; Valeriano et al. 2024]. Our goal here is to investigate the impact of different
dataset design choices on the performance of ML models. By utilizing the concept of instance hardness,
we identified instances that were consistently misclassified or correctly classified, forming distinct
groups of easy and hard instances for further investigation.

Most methods for assessing hardness at the instance level depend on the adopted algorithm, meaning
the model itself can influence the characterization of individual data samples [Seedat et al. 2022].
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Misclassification depends on the learning algorithm and the relation of the instance with the entire
training dataset. In this way, the probability of an instance being misclassified is relative. Ideally,
we seek a measure inherent to the data difficulty independent of any specific model. The goal is to
ensure that the measure reflects the inherent difficulty of the data.

Each ML technique adopts a specific strategy to identify and learn patterns within the data and
may be more adequate for certain types of learning tasks while potentially being less effective for
others. Consequently, if an instance consistently receives incorrect classifications from multiple ML
techniques with different biases, it can be considered difficult to classify or hard [Smith et al. 2014].
Building on this, an empirical definition based on the classification behaviour of a set of algorithms is
proposed by [Smith et al. 2014]. At the same time this is a quantitative measure, it also can support
subjective evaluations [Valeriano et al. 2023; Valeriano et al. 2024].

In order to define IH, as proposed by [Smith et al. 2014], consider D as a dataset containing n pairs
of observations (xi, yi). Each xi ∈ X is an instance described by m input features that belong to
the class specified by yi ∈ Y , the instance label. In addition, let h : X → Y denote a classification
hypothesis, that is, an ML predictive model generated from D. In practice, h is determined by
a learning algorithm l trained on a dataset D using specific hyperparameters β. In this way, the
hardness level (IH) of the instance xi with respect to h can be expressed as:

IHh

(
xi, yi

)
= 1− p(yi | xi, l(D,β)), (1)

where p denotes the probability the learning algorithm l assigns xi to its expected class yi.

To obtain a more robust measure of instance hardness, consider a set of representative learning
algorithms denoted as L [Smith et al. 2014]. This set consists of ML algorithms with different biases.
A comprehensive measure of IH can be derived by evaluating the performance of the instance under
consideration across multiple algorithms in L. The IH measure can then be expressed as:

IHL
(
xi, yi

)
= 1− 1

|L|

|L|∑
j=1

p
(
yi | xi, lj(D,β)

)
(2)

This equation expresses that if an instance consistently gets misclassified by a diverse pool of
learning algorithms, denoted as L, it can be considered hard to classify. Conversely, easy instances
are expected to be correctly classified by any learning algorithm.

3. CASE STUDY

The dataset analyzed in this study was obtained from a publicly available repository1[Mello et al.
2020]. It consisted of the results of laboratory blood tests collected during the COVID-19 pandemic
from a large hospital in São Paulo, Brazil. Raw data also includes patient demographics such as age
and sex, place of hospitalization, and dates of hospitalization and discharge. The dataset was framed
as a binary classification problem, aiming to predict severe cases of hospitalized COVID-19 from the
blood tests collected on the first day of attendance. We have adopted as severity criteria 14 or more
days of hospitalization or death. All decisions were made in consultation with a data specialist from
the medical field. We refer to a previous work for a detailed description of the dataset assembling
[Valeriano et al. 2022].

The resulting dataset contains 1432 instances, among them 36.7% belonging to the severe class,
and 17 input features. We conducted an initial evaluation of the predictive performance of models in
these dataset. The algorithms adopted were Random Forest, Gradient Boosting and Support Vector
Machine. Performance was assessed with a ten-fold cross-validation approach. Hyper-parameters

1https://repositoriodatasharingfapesp.uspdigital.usp.br/
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were tuned in grid-search strategy. Despite challenges such as inconsistent data, missing values, and
class imbalance, our ML models achieved promising results with an AUC of 0.75. Details about
models training and a deep discussion on the methodology and results can be found in our previous
work [Valeriano et al. 2022]. In the present work, our objective was a better understanding of the
performance of the ML models. Particularly on how the definition adopted to consider a severe case
could negatively impact the predictive results registered. We conduct our investigation by analyzing
hard and easy instances of the dataset.

3.1 Selecting hard and easy instances

To calculate the instance hardness level, we adopted the measure as implemented in the PyHard library
[Lorena et al. 2024]. The error probability, when predicting the label of each instance averaged across
multiple ML models, is assessed using a five-fold cross-validation procedure with five repetitions. The
adopted algorithms are Bagging, Support Vector Machines (with linear and RBF kernels), Multilayer
Perceptron, Gradient Boosting, Logistic Regression, and Random Forest. They were all trained with
the default hyperparameter values of the scikit-learn Python package. The resulting instance hardness
(IH) levels consist of values in the interval [0,1], where higher values are attributed to harder instances.

To determine easy and hard instances, we utilized the 10th and 90th percentiles of the IH values,
stratified by class. This stratification resulted in four groups: the hard and easy groups of the non-
severe class contain 89 instances each, while groups of the severe class contain 52 instances each.

3.1.1 Formulating hypothesis with the data specialist. We aim to assess the impact of our dataset
assembly decisions on the performance of the ML models. These decisions were made in collaboration
with an expert to ensure consistent preprocessing, although they remain subject to debate. Once we
identified hard and easy instances, we sought to understand if our dataset design choices contributed to
a higher difficulty level for specific instances. We discussed potential factors that could have influenced
the models’ performance and formulated two research questions.

RQ1: How is the distribution of hospitalization days among hard and easy patients? As mentioned
earlier, we used a 14-day criterion to differentiate between severe and non-severe patients. We hy-
pothesize that hard patients would exhibit hospitalization length closer to the classification boundaries
(between 12 and 16 days) as they possess characteristics similar to those of the opposite (non-severe)
class, making them more challenging to classify.

RQ2: Are patients progressing to death easier or harder to classify than patients with extended
hospitalization? Death among COVID-19 patients is a rare event compared to the disease recovery
rates. When assembling our dataset, we included patients with extended hospitalizations as severe
cases to address potential class imbalance bias in our ML models. Thus, our proxy for severity
comprises two criteria: death and extended hospitalization. We aim to determine if either of these
events is easier to classify in the absence of the other.

3.2 Results

Our goal is to understand how our dataset assemblage decisions impact the predictive performance of
ML models. To test our hypotheses, we explored the difference between hard and easy instances.

RQ1: How is the distribution of hospitalization days between hard and easy patients? We adopted
14 days as the criterion to split data into severe and non-severe patients. To verify if instances with
a hospitalization length of around 14 days are harder to classify, we inspected the distribution of
hospitalization days inside our four groups: easy and severe, easy and non-severe, hard and severe,
and hard and non-severe. Figure 1 presents the histograms representing these distributions. Our
analysis confirmed the hypothesis that instances with hospitalization lengths of around 14 days tend
to be more challenging to classify. In the non-severe class, easy patients predominantly exhibited
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hospitalization lengths of fewer than 8 days, while hard patients generally had lengths exceeding 10
days. Conversely, within the severe class, hard instances were concentrated around fifteen days. Easy
instances in the severe class demonstrated a wide range of hospitalization days. This group includes
a significant proportion of death cases for which we do not have hospitalization length information.
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Fig. 1. The distribution of hospitalization days according to class and hardness level. Non-severe
cases are represented in yellow, while the severe class is depicted in dark pink. Hard instances present
hospitalization days close to the value adopted to split classes.

RQ2: Patients progressing to death are easier or harder to classify than patients presenting an
extended hospitalization? Since our proxy to severity consisted of two criteria (extended hospitalization
or death), we would like to understand if any of them is easier to classify. We analyzed the presence of
death cases inside our groups of severe instances. Among easy and severe patients, there are 29 death
cases, while one is placed in the hard severe group. This indicates that death is an outcome easier to
predict than extended hospitalization. Next, we present an investigation to understand if predicting
only death results in an easier problem.

Exploring Different Definitions of Extended Hospitalization: Based on the insights gained so far,
we have identified opportunities to enhance the performance of our ML models. Given that instances
close to the threshold for defining an extended hospitalization were more challenging to classify, we
sought to identify the optimal value for defining this cutoff. We tested cutoff values ranging from 7
to 30 days and measured the performance of our models. To evaluate the impact of different cutoff
values, the instance hardness value was assessed again in each new definition of severity. We also
conducted a performance evaluation using a five-fold cross-validation strategy. We employed the same
set of seven algorithms adopted to measure IH. To deal with class imbalance, a random subsampling
in the majority class was performed within each training set generated in the cross-validation process.

In addition to investigating the impact of different definitions of extended hospitalization, we also
assessed the performance of our models when considering death as the sole criterion for determining
aggravated conditions, given the evidence suggesting that death is relatively easier to predict. Figure
2 illustrates the evolution of mean instance hardness values and model performance metrics across
different day thresholds used to split classes. We evaluate instance hardness both overall and separately
by class. To understand the decrease in precision, we present additional plots showing the evolution
of false positives and true positives relative to the actual number of instances in each class.

Analyzing Figure 2, we observe that as the cutoff value for splitting classes increases, the metrics
evolve in a generally consistent manner. When considered across the entire dataset, instance hardness
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Fig. 2. Evolution of several metrics as the number of days considered for classifying severe and non-
severe cases increases from 7 to 30 days. The dotted line represents values when considering only death
as the severity criterion. The dashed line represents the current dataset (14 days of hospitalization).
The continuous line in the last three rows represents the average of seven ML models, and the shaded
area indicates the standard deviation. Results were obtained in a five-fold cross-validation procedure.

values decrease almost linearly. When examining IH values by class, we see a peak in difficulty for
the negative class around 10 days. This peak decreases quickly, reaching the lowest level before 15
days, then rises again and follows a linear decrease pattern. Conversely, IH values for the positive
class exhibit the opposite behaviour, indicating that classifying one class may be easier at the cost
of misclassifications in the other. In all three scenarios, considering only death as a severity criterion
presents the lowest level of IH while considering 14 days presents an intermediate profile. Regarding
performance metrics, we observe a consistent increase in AUC, recall for both classes and precision in
the non-severe class. When considering only death as the severity criterion, we achieve the highest
predictive performance values, while considering 14 days of hospitalization results in intermediate per-
formance values. However, precision in the positive class shows the opposite behaviour; performance
declines as the cutoff value to separate classes increases, with the poorest performance occurring when
considering only death as the severity criterion.

To better understand these values, we plot the ratios of false positives to actual negatives, true
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positives to actual positives, and false positives to actual positives. Analyzing these plots in the
second row of Figure 2, we realize that the number of false positives decreases in proportion to the
size of the negative class, with the lowest rate achieved when considering only death as the severity
criterion. The number of true positives increases relative to the actual size of the positive class,
with the highest level achieved when considering only death as the severity criterion. Thus, models
correctly classify positive samples but also present more false positives. This is why precision in the
severe class decreases while all other metrics increase. In the context of predicting whether a patient
will be severe or non-severe, achieving high accuracy in the positive class is the most important metric,
even if it means classifying some non-severe patients as severe. The consequences of misclassifying a
severe case are much more serious than misclassifying a non-severe case. Therefore, considering only
death as the criterion for a severe condition is the best option for distinguishing patients despite the
lower precision achieved.

4. DISCUSSION

In this case study, we adopted a data-centric approach to explore the potential of leveraging instance
hardness values analysis to enhance the performance of ML models. Our focus was on a classification
task to predict aggravated conditions associated with COVID-19. Our investigation aimed to assess
how the decisions made during the dataset assembly process have influenced the models’ performance.
To accomplish this, we leverage instance hardness values to distinguish between challenging and
straightforward instances for each class.

In collaboration with a data specialist, we explored hypotheses that could influence the difficulty
level of instances in the dataset. Our analysis confirmed our intuition that instances characterized
by hospitalization lengths around 14 days (the initial cutoff for distinguishing severe from non-severe
COVID cases) pose a more significant classification challenge. Notably, the distribution of hospi-
talization days varied significantly between easy and hard instances in both severe and non-severe
classes. Furthermore, we investigated the distinction between patients who succumbed to the disease
and those with prolonged hospital stays concerning their hardness level. Our analysis revealed that
patients who progressed to death were classified as severe easily compared to those who were hospi-
talized for a long period. This suggests that death is a strong indicator of severity, and it might be
easier to distinguish death cases from non-severe outcomes than extended hospitalizations. Drawing
from these insights, we conducted experiments to explore different cutoff limits for defining prolonged
hospitalizations. The results indicated that extending the duration considered for classifying hospi-
tal stays as prolonged led to improved predictive performance of the ML models. Moreover, focusing
solely on mortality as a criterion for severity prognosis yielded the best predictive outcomes. However,
this led to a decrease in precision in the positive class, because the number of false positive instances
increased. This trade-off is justified, as misclassifying a non-severe case as severe is less detrimental
than the opposite scenario.

These results underscore the significance of adopting a data-centric approach in designing and
analysing ML systems. By focusing on the characteristics and limitations of the training data, we gain
valuable insights into the factors contributing to instance hardness and the performance of predictive
models. This, in turn, informs the refinement of problem design and feature selection, ultimately
enhancing the accuracy and reliability of ML models, particularly in the healthcare domain.

As a case study, this work does not aim to present a framework or methodology applicable in a
general context. This is not a limitation, as data-centric solutions are inherently specific to the data
they address. The approach can be easily extended to other domains and problems, as the criterion
for identifying instances that are easy and hard to classify per class is generic and not domain-
specific. However, the hypothesis to be investigated regarding the profiles of the easy and hard
instances per class will naturally vary based on the domain characteristics. In addition to the specific
contributions to the problem at hand, we also showcase how model performance can be enhanced
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through improvements in data quality. Furthermore, we illustrate how instance hardness can support
this process. This does not exclude adopting more robust models and optimising hyperparameters,
but in a better-designed problem, any model engineering will succeed more effectively.
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