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Abstract. Robust assessment of temporal causal-inference models is hampered by the lack of benchmark datasets
whose underlying mechanisms are fully known. We introduce the Causal Synthetic Data Generator (CSDG),
an open-source tool that creates longitudinal sequences governed by user-defined structural causal graphs with autore-
gressive dynamics. By allowing fine-grained control over confounding intensity, treatment policies, intervention timing,
and noise, CSDG furnishes a flexible, domain-agnostic test-bed for stress-testing causal-learning algorithms. To de-
monstrate its utility, we generate synthetic cohorts for a one-step-ahead outcome-forecasting task and compare classical
linear regression with encoder–decoder recurrent networks (vanilla RNN, LSTM, and GRU). The results reveal how
predictive accuracy degrades as causal complexity increases, underscoring the need for models that explicitly exploit
causal structure. Beyond forecasting, CSDG naturally extends to counterfactual data generation and bespoke causal
graphs, paving the way for comprehensive, reproducible benchmarks across diverse application contexts.

The generator and reproducible experiments are available at github.com/angeruzzi/causal-synthetic-data-gen.

CCS Concepts: • Computing methodologies → Machine learning algorithms.
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1. INTRODUÇÃO

A inferência causal tem como objetivo identificar relações de causa e efeito entre variáveis, estimando
o impacto de uma variável sobre outra. Diferentemente da correlação, que capta apenas associações
estatísticas, a inferência causal permite prever desfechos contrafactuais - isto é, cenários hipotéticos
que descrevem o que teria ocorrido sob diferentes condições ou intervenções. Essa capacidade é crucial
em áreas como medicina, finanças e ciências sociais, onde a compreensão meramente correlacional não
é suficiente para fundamentar decisões confiáveis [Cheng et al. 2022].

Os ensaios controlados aleatorizados (Randomized Controlled Trials - RCTs) são amplamente reco-
nhecidos como o padrão-ouro para a inferência causal. Contudo, sua aplicação muitas vezes é inviável
devido a restrições financeiras, éticas ou logísticas. Nesse contexto, métodos baseados em dados obser-
vacionais tornam-se essenciais. Avaliar tais métodos, no entanto, representa um desafio significativo,
uma vez que os contrafactuais verdadeiros são, por definição, não observáveis [Rubin 1974].

Além disso, há uma escassez de dados reais e benchmarks padronizados que permitam a valida-
ção rigorosa desses métodos [Kaddour et al. 2022]. Segundo Cheng et al. [2022], essa lacuna é o
principal gargalo da área, especialmente em contextos longitudinais, onde os efeitos se acumulam ou
se transformam ao longo do tempo, exigindo dados que capturem essas dinâmicas temporais com
precisão.

Nesse cenário, dados sintéticos surgem como uma alternativa promissora, ao possibilitar a geração de
cenários com variações controladas de complexidade e estrutura causal - algo frequentemente inviável
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com dados reais. No entanto, muitos dos geradores atualmente disponíveis falham em representar
cenários realistas, sobretudo em contextos temporais e com variáveis contínuas [Cheng et al. 2022].

Este trabalho parte da premissa de que a ausência de conjuntos de dados longitudinais com estrutura
causal conhecida limita a validação empírica de modelos de inferência causal. Propomos, portanto,
o gerador CSDG como uma solução para esse problema. A hipótese subjacente é que, ao permitir o
controle explícito sobre a estrutura causal, dinâmica temporal, intervenções e contrafactuais, o CSDG
torna possível a construção de cenários reprodutíveis para benchmarking de modelos causais em séries
temporais.

2. FUNDAMENTAÇÃO TEÓRICA

Esta seção apresenta os conceitos fundamentais que embasam o desenvolvimento deste trabalho, in-
cluindo as estruturas causais, os tipos de variáveis e junções causais, a aplicação e natureza dos dados
longitudinais, bem como o conceito de resultados potenciais e cenários contrafactuais.

2.1 Estruturas Causais

Desde os primeiros estudos de Wright, diagramas de trajetória passaram a ser utilizados para repre-
sentar de forma gráfica relações causais entre variáveis [Wright 1921]. No entanto, com os avanços pro-
postos por Judea Pearl, por meio dos grafos direcionados acíclicos (DAGs - Directed Acyclic Graphs) e
dos modelos causais estruturais (SCMs - Structural Causal Models), que se consolidou uma estrutura
formal e poderosa para a representação e análise de sistemas causais complexos [Pearl 2000].

Os DAGs são grafos orientados e acíclicos cujos nós representam variáveis e as arestas direcionadas
indicam relações causais diretas. Diferem dos diagramas de Wright por modelarem explicitamente a
a causalidade unidirecional e por não permitirem ciclos, garantindo clareza na direção dos efeitos.

Os SCMs expandem os DAGs ao incorporar equações que descrevem como cada variável é determi-
nada por suas causas diretas (pais no grafo) e por um termo de erro exógeno, geralmente considerado
como ruído aleatório. Dessa forma, os SCMs combinam a representação gráfica com uma base quanti-
tativa, permitindo a simulação de intervenções (do-operations) e a análise de cenários contrafactuais.

Adotamos neste trabalho definições consolidadas na literatura de inferência causal, segundo as
quais diferentes tipos de variáveis desempenham papéis específicos nas relações causais. Variáveis
mediadoras são aquelas que se interpõem entre a causa (tratamento) e o efeito (desfecho), atuando
como o mecanismo pelo qual a intervenção exerce sua influência. As confundidoras são variáveis que
afetam simultaneamente tanto o tratamento quanto o desfecho, podendo gerar associações espúrias que
distorcem a estimativa do efeito causal real. Essas variáveis, muitas vezes não observáveis, costumam
aparecer em diagramas causais como causas comuns de ambas as variáveis principais.

Além disso, é fundamental compreender as estruturas de junção causal [Pearl 2018], que servem
como base para a análise de dependências e independências condicionais. Na estrutura de cadeia (A
→ B → C), a variável intermediária B transmite o efeito de A para C, e condicionar em B rompe essa
dependência. Na bifurcação (A ← B → C), B é um fator comum que influencia A e C; ao condicionar
em B, elimina-se a correlação espúria entre elas. Por fim, na configuração de colisor (A → B ← C), A
e C influenciam conjuntamente B, e, diferentemente dos casos anteriores, condicionar em B - ou em
qualquer um de seus descendentes - introduz uma dependência artificial entre A e C.

No gerador de dados proposto neste trabalho, tais relações são explicitamente codificadas nas es-
truturas utilizadas, garantindo um controle preciso sobre os mecanismos causais simulados.
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2.2 Dados Longitudinais

Dados longitudinais referem-se a medições repetidas de uma ou mais variáveis ao longo de um domínio
ordenado, geralmente o tempo. Essa estrutura permite investigar a evolução temporal de fenômenos,
modelar trajetórias individuais e estimar os efeitos de variáveis que variam no tempo, ao mesmo tempo
em que controla a heterogeneidade não observada entre unidades de análise. Os dois principais tipos
de dados longitudinais são as séries temporais, que representam observações sequenciais de uma única
variável ao longo do tempo, e os dados em painel, que englobam observações de múltiplas variáveis
ou múltiplas unidades em diferentes momentos [Diggle et al. 2002].

Um modelo estatístico clássico para séries temporais univariadas é o modelo autorregressivo inte-
grado de médias móveis (ARIMA), desenvolvido por Box e Jenkins [1970]. Esse modelo combina três
componentes: autorregressão (valores passados da variável), média móvel (erros de previsão passados)
e diferenciação (para lidar com a não-estacionaridade dos dados). A natureza autorregressiva das sé-
ries temporais é central em diversos domínios aplicados, como macroeconomia - na análise de inflação
e PIB - e finanças - na modelagem de retornos e preços de ativos [Enders 2010].

Além das séries univariadas, o campo de séries temporais multivariadas (Multivariate Time Series
- MTS) tem ganhado destaque. Nesse contexto, analisa-se a dinâmica conjunta de múltiplas variáveis
temporais, explorando relações de dependência e causalidade entre elas. Ferramentas estatísticas como
VAR (Vector Autoregressive) e VARMA (Vector Autoregressive Moving Average) são amplamente
empregadas em análises desse tipo, especialmente em econometria [Lütkepohl 2005].

Nos últimos anos, observou-se um avanço significativo no uso de modelos de aprendizado profundo
(deep learning) para previsão com MTSs. Arquiteturas como Redes Neurais Recorrentes (RNNs),
Transformers e Graph Neural Networks (GNNs) têm sido exploradas para capturar padrões complexos
e melhorar a acurácia preditiva [Mendis et al. 2024].

No contexto da inferência causal, dados longitudinais oferecem oportunidades e desafios únicos. A
dependência temporal e a heterogeneidade não observada entre unidades exigem técnicas especiali-
zadas. Métodos tradicionais, como Diferença em Diferenças e Modelos com Variáveis Instrumentais
para Dados em Painel, continuam sendo amplamente utilizados. No entanto, novas abordagens vêm
sendo desenvolvidas para estimar efeitos causais de intervenções (especialmente binárias) ao longo do
tempo em múltiplas unidades observacionais [Arkhangelsky and Imbens 2024].

Paralelamente, o uso de deep learning tem sido investigado na modelagem causal longitudinal.
Abordagens como as Statistical Recurrent Units (SRUs) [Kaddour et al. 2022] propõem formas ino-
vadoras de capturar dependências temporais em contextos causais, ampliando o leque de ferramentas
disponíveis para a descoberta de relações de causa e efeito ao longo do tempo.

2.3 Resultados Potenciais e Contrafactuais

A formulação adotada neste trabalho fundamenta-se no framework de Resultados Potenciais (Potential
Outcomes Framework) [Rubin 1974], amplamente utilizado na inferência causal moderna. De acordo
com esse modelo, para cada indivíduo (ou instância observacional) i, existem dois desfechos possíveis:
Yi(1), caso o indivíduo receba o tratamento, e Yi(0), caso não receba. No entanto, apenas um desses
desfechos é observado na prática - aquele que corresponde à condição de tratamento efetivamente
atribuída - enquanto o outro permanece contrafactual.

Essa impossibilidade de observar simultaneamente ambos os resultados potenciais para o mesmo
indivíduo caracteriza o chamado problema fundamental da inferência causal, o qual representa uma
limitação central na validação de modelos em cenários com dados observacionais reais.

Nesse cenário, a geração de dados sintéticos com contrafactuais conhecidos oferece uma solução
eficaz. Ao tornar observáveis tanto Yi(0) quanto Yi(1), é possível avaliar de forma direta a capacidade
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dos algoritmos em estimar efeitos causais - seja em nível individual (Individual Treatment Effect -
ITE), médio (Average Treatment Effect - ATE) ou condicional (Conditional Average Treatment Effect
- CATE) [Cheng et al. 2022].

A abordagem proposta neste trabalho, por meio do uso do Causal Synthetic Data Generator
(CSDG), viabiliza a criação explícita de contrafactuais sintéticos com suporte a tratamentos con-
tínuos, múltiplos períodos e intervenções em diferentes componentes de grafos causais. Essa flexibili-
dade permite construir cenários de teste abrangentes e realistas para validar o desempenho de modelos
causais contemporâneos, como o Causal Transformer [Melnychuk et al. 2022], que operam em dados
longitudinais complexos e dependem de representações estruturais e temporais ricas.

3. TRABALHOS CORRELATOS

Diversos trabalhos recentes têm explorado a geração de dados sintéticos longitudinais, embora com
objetivos e metodologias distintas da proposta apresentada neste estudo.

Em Bun et al. [2024], os autores propõem a geração de dados sintéticos longitudinais a partir de
registros médicos reais, com ênfase na preservação da privacidade e na manutenção das propriedades
estatísticas dos dados originais. Embora represente uma contribuição relevante para aplicações em
saúde, o foco deste trabalho difere substancialmente do nosso. Enquanto os autores buscam reproduzir
as características estatísticas observadas nos dados empíricos, a proposta aqui apresentada concentra-
se na simulação controlada de cenários causais, com estrutura subjacente conhecida, permitindo a
avaliação rigorosa de algoritmos de inferência causal.

De forma semelhante, Kühnel et al. [2024] propõem a geração de dados longitudinais a partir
de bases reais, utilizando o método VAMBN (rede bayesiana modular com codificação variacional)
combinado com uma camada de redes neurais recorrentes para capturar dependências temporais em
estudos nutricionais. Embora compartilhem o foco em dados longitudinais autorregressivos, tanto este
trabalho quanto o de Bun et al. priorizam a fidelidade estatística aos dados reais, enquanto nossa
abordagem busca a exploração e controle explícito da estrutura causal, fundamental para experimentos
controlados e reprodutíveis com algoritmos preditivos e contrafactuais.

CausalTables.jl [Balkus and Hejazi 2025] é uma biblioteca para a linguagem Julia, voltada à simula-
ção de dados causais tabulares com base em modelos causais estruturais, oferecendo suporte à geração
de contrafactuais e acesso a estimativas de referência como o efeito médio do tratamento. Apesar de
permitir a simulação de cenários com conhecimento causal, sua limitação reside no foco exclusivo em
dados estáticos, sem suporte para a evolução temporal ou dependência autorregressiva. A proposta
deste trabalho complementa essa abordagem ao gerar dados longitudinais e dinâmicos, que represen-
tam a evolução de tratamentos, desfechos e covariáveis ao longo do tempo - aspectos fundamentais
para a avaliação de algoritmos causais em contextos temporais realistas.

4. PROPOSTA DE MÉTODO

A proposta deste trabalho consiste em um gerador que simula dados com relações causais definidas por
equações estruturais autorregressivas, modelando o comportamento das variáveis ao longo do tempo.
As estruturas causais foram baseadas em padrões da literatura e a saída do gerador inclui séries
temporais sintéticas de tratamentos e desfechos, com suporte opcional a covariáveis e contrafactuais.

4.1 Notação

Nesta seção, a nomeclatura das variáveis principais são denotadas em relação ao tempo t: Tt representa
o tratamento, Yt o desfecho e Xt a covariável (confundidor ou mediador). Os coeficientes de ajuste
são: Φ, que representa a dependência temporal (autoregressiva), e β, o efeito entre variáveis. Outros
componentes são: ε, o termo de erro aleatório com distribuição normal, e δ, a intervenção aplicada ao
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tratamento para gerar o cenário contrafactual. Por fim, as funções f(·) e g(·) definem a complexidade
da relação, podendo ser lineares ou não lineares.

4.2 Composição das Estruturas de Geração

As variáveis T (tratamento) e Y (desfecho) são modeladas como processos autorregressivos de primeira
ordem (AR(1)), em que o valor atual depende do valor anterior e de um termo de erro aleatório. Essa
modelagem captura a dinâmica temporal típica de séries longitudinais reais.

As funções f(·) e g(·) determinam a natureza da relação entre variáveis. No caso linear, f(x) = x.
Para equações não lineares, o gerador aplica funções quadráticas, senoides ou logarítmicas, atribuídas
aleatoriamente.

O termo de erro ε é modelado como uma variável aleatória com distribuição normal de média zero
e variância σ2, definida por um parâmetro do gerador e sorteada a cada iteração:

ε ∼ N (0, σ2) (1)

4.3 Estruturas Causais Implementadas

A seguir, são descritas as estruturas causais implementadas, cada uma com suas respectivas equa-
ções geradoras. As variáveis de Tratamento (T ) e desfecho (Y ) possuem uma dinâmica temporal
autoregressiva em todas as estruturas, mas são influenciadas de maneiras distintas.

Relação Causal Direta (Direct): O tratamento (T ) não é influenciado por outras variáveis no
modelo, enquanto o desfecho (Y ) é influenciado diretamente por T , caracterizando a estrutura causal
T → Y . Um exemplo que poderia ser modelado por esta estrutura seria o efeito da dose de um
medicamento (T ) sobre a pressão arterial (Y ), sem considerar outros fatores.

Tt = ΦT · Tt−1 + εTt
(2)

Yt = ΦY · Yt−1 + βTY · f(Tt) + εYt
(3)

Cadeia Causal (Chain): Assim como na estrutura anterior, o tratamento (T ) não sofre outras
influências, mas afeta o desfecho (Y ) por meio de uma covariável mediadora (X), formando a estrutura
causal T → X → Y . Por exemplo, o efeito da prática de atividade física (T ) sobre o nível de colesterol
(Y ), mediado pela perda de peso (X).

Tt = ΦT · Tt−1 + εTt
(4)

Xt = βTX · f(Tt) + εXt
(5)

Yt = ΦY · Yt−1 + βXY · f(Xt) + εYt
(6)

Confundidor (Confounder): Nesta estrutura, uma variável (X), gerada aleatoriamente e de forma
independente a partir de uma distribuição uniforme, atua como um confundidor, influenciando tanto
o tratamento (T ) quanto o desfecho (Y ). T também influencia diretamente Y , resultando na estrutura
X → T → Y e X → Y . Um exemplo seria o nível de estresse diário (X), que pode influenciar tanto
a decisão de praticar exercícios (T ) quanto a qualidade do sono (Y ) em cada dia.

Xt ∼ U(a, b) (7)

Tt = ΦT · Tt−1 + βXT · f(Xt) + εTt
(8)

Yt = ΦY · Yt−1 + βXY · f(Xt) + βTY · g(Tt) + εYt
(9)
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4.4 Cenários Contrafactuais

Para permitir a avaliação de métodos em cenários contrafactuais, o gerador simula mudanças no
tratamento a partir de um ponto de intervenção no tempo tint, criando trajetórias alternativas de
tratamento e desfecho. Na estrutura causal Direct por exemplo, as variáveis contrafactuais são geradas
da seguinte forma:

T cf
t = ΦT · T cf

t−1 + εTt
+ δt (10)

Y cf
t =

{
Yt, se t < tint

ΦY · Y cf
t−1 + βTY · f(T cf

t ) + εYt
, se t ≥ tint

(11)

O desfecho contrafactual Y cf
t é idêntico ao desfecho factual até o ponto de intervenção, sendo

alterado apenas a partir de tint, quando o tratamento passa a ser modificado pela intervenção δt.

O gerador suporta diferentes tipos de intervenção, descritos a seguir:

Intervenção Pontual. A intervenção é aplicada apenas no instante tint:

δt =

{
α, se t = tint

0, se t ̸= tint
(12)

Intervenção Contínua. A intervenção é aplicada a partir de tint e persiste nos períodos seguintes:

δt =

{
0, se t < tint

α, se t ≥ tint
(13)

Intervenção Gradual. A intervenção é aplicada gradualmente a partir de tint:

δt =

{
0, se t < tint

α · t−tint

k , setint ≤ t
(14)

4.5 Geração de Dados

O processo de geração recebe como parâmetros: número de instâncias a serem geradas (n), compri-
mento das séries (t) e o tipo de estrutura causal (Direct, Chain ou Confounder). Os coeficientes Φ
(autorregressivos) e β (efeitos causais) podem ser definidos ou aleatoriamente gerados.

Como saída, o gerador produz n conjuntos de séries de tamanho t, contendo o Tratamento (T ) e o
Desfecho (Y ) para todas as estruturas, e a Covariável (X) quando aplicável (Chain e Confounder).

5. APLICAÇÃO: PROVA DE CONCEITO COM APRENDIZADO TEMPORAL CAUSAL

Este trabalho apresenta um experimento de prova de conceito baseado no aprendizado de estrutura
causal a partir de dados observacionais históricos e na geração de resultados potenciais a partir de
tratamentos futuros definidos.

Cada instância representa um indivíduo com as sequências temporais das variáveis de tratamento
(T ), covariável (X) e desfecho (Y ) ao longo de t = 20 períodos. As séries foram geradas utilizando
a estrutura causal Direta com relação Linear, coeficientes autorregressivos ϕT = 0,8 e ϕY = 0,7,
efeito causal β = 1,5, e ruídos amostrados de distribuições uniformes U(−0,1, 0,1). Uma intervenção
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Pontual foi aplicada no tratamento no período t = 10, com intensidade δT = 0,5, de modo que os
desfechos contrafactuais são gerados a partir do período 11. Para fins de avaliação, a sequência de
cada indivíduo foi dividida em duas partes: os 10 primeiros períodos compõem o histórico factual,
enquanto os 10 últimos períodos constituem o horizonte de previsão.

Foram utilizados modelos de Regressão Linear e variantes de redes neurais recorrentes para modelar
dependências temporais e causais em dados sequenciais. As redes utilizadas foram: RNN [Elman 1990],
LSTM [Hochreiter and Schmidhuber 1997] e GRU [Cho et al. 2014].

Todas as três redes neurais foram estruturadas na arquitetura Encoder-Decoder, conforme original-
mente proposta para redes LSTM [Sutskever et al. 2014], com o objetivo de capturar a dinâmica
temporal e as dependências causais presentes nas séries sintéticas geradas. Nesta arquitetura, o en-
coder recebe as sequências T , X e Y do histórico e gera uma representação latente da evolução
temporal e da estrutura causal. Essa representação é passada ao decoder, que utiliza as variáveis T e
X do horizonte de previsão para estimar, de forma autorregressiva, os próximos valores de Y .

Tanto o encoder quanto o decoder das redes foram implementados com 4 camadas e 32 unidades
ocultas em cada. Os treinos foram realizados com o otimizador Adam e taxa de aprendizado de 0,01.
Os tamanhos de lote foram de 250 para treinamento e 125 para validação e para testes.

A qualidade das previsões nos cenários factuais (sem intervenção no tratamento) foi avaliada utili-
zando o Root Mean Squared Error (RMSE) [Cheng et al. 2022], calculado entre os valores de referência
e os preditos de Y ao longo do horizonte de previsão. Os resultados dos testes factuais realizados po-
dem ser vistos na Tabela I.

Table I. RMSE da predição factual após 5 execuções para τ passos (valor médio ± desvio padrão).
Modelo τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6 τ = 7 τ = 8 τ = 9 τ = 10

Regressão Linear 0,548 0,683 0,727 0,832 0,915 1,023 1,117 1,199 1,244 1,274
RNN 0,136 ± 0,007 0,162 ± 0,011 0,168 ± 0,010 0,171 ± 0,010 0,152 ± 0,010 0,145 ± 0,008 0,147 ± 0,006 0,145 ± 0,000 0,139 ± 0,002 0,128 ± 0,003
LSTM 0,127 ± 0,004 0,142 ± 0,002 0,144 ± 0,002 0,152 ± 0,001 0,136 ± 0,001 0,132 ± 0,001 0,138 ± 0,001 0,144 ± 0,001 0,137 ± 0,001 0,125 ± 0,001
GRU 0,122 ± 0,002 0,140 ± 0,002 0,145 ± 0,002 0,152 ± 0,001 0,139 ± 0,001 0,135 ± 0,001 0,139 ± 0,001 0,146 ± 0,001 0,136 ± 0,001 0,126 ± 0,001

Para os cenários contrafactuais, utilizamos o Precision in Estimation of Heterogeneous Effect (PEHE)
[Cheng et al. 2022], que avalia o erro na estimativa do efeito do tratamento em nível individual, com-
parando a diferença entre os desfechos factual e contrafactual de referência com a diferença estimada
pelo modelo ao longo do horizonte de previsão. Formalmente, o PEHE é definido como:

ϵPEHE =
1

N

N∑

i=1

(
(Yi(1)− Yi(0))− (Ŷi(1)− Ŷi(0))

)2

(15)

onde Yi(1) - Yi(0) são os desfechos de referência do indivíduo i nos cenários com e sem tratamento,
respectivamente, enquanto Ŷi(1) e Ŷi(0) são as estimativas correspondentes preditas pelo modelo. Os
resultados das simulações contrafactuais utilizando essa métrica estão apresentados na Tabela II.

Table II. PEHE das predições factual e contrafactual após 5 execuções para τ passos (média ± desvio padrão).
Modelo τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6 τ = 7 τ = 8 τ = 9 τ = 10

Regressão Linear 1,048 1,257 1,339 1,314 1,224 1,102 0,968 0,835 0,710 0,598
RNN 0,023 ± 0,012 0,043 ± 0,025 0,049 ± 0,027 0,043 ± 0,024 0,032 ± 0,019 0,023 ± 0,013 0,017 ± 0,011 0,011 ± 0,007 0,008 ± 0,005 0,005 ± 0,004
LSTM 0,027 ± 0,015 0,018 ± 0,008 0,015 ± 0,004 0,012 ± 0,003 0,008 ± 0,002 0,006 ± 0,002 0,003 ± 0,001 0,001 ± 0,001 0,001 ± 0,001 0,001 ± 0,001
GRU 0,017 ± 0,003 0,021 ± 0,004 0,018 ± 0,004 0,014 ± 0,003 0,011 ± 0,002 0,009 ± 0,003 0,007 ± 0,003 0,004 ± 0,003 0,003 ± 0,002 0,003 ± 0,002

6. CONCLUSÃO E TRABALHOS FUTUROS

O método de geração de dados proposto neste trabalho permite a criação de séries temporais sintéticas
com estrutura causal controlada, sendo útil para avaliação de algoritmos de inferência causal em
diversos contextos. Entre as aplicações possíveis, destacam-se: aprendizado de estrutura causal,
estimativa de efeitos médios e individuais, e simulação de desfechos potenciais. O uso de covariáveis
também é versátil, permitindo simular cenários com variáveis observáveis, ocultas ou com papel causal
conhecido.
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Por limitação de espaço, a prova de conceito proposta foi apenas para a estrutura causal Direta com
relação linear e intervenção pontual. Avaliações com estruturas adicionais (Cadeia e Confundidor) e
funções não-lineares podem ser incluídas em extensões deste trabalho.

Outro avanço relevante seria permitir que o usuário informe uma estrutura causal personalizada por
meio de uma matriz de adjacência ou outra notação compatível. Essa abordagem tornaria o gerador
ainda mais flexível, possibilitando a simulação de cenários específicos com múltiplos caminhos causais,
tratamentos simultâneos ou estruturas híbridas, conforme as necessidades de diferentes experimentos.

Na geração de cenários contrafactuais também há oportunidades de melhorias, como a possibilidade
de geração de mais de um contrafactual para o mesmo paciente e uma maior flexibilização do tipo de
intervenção realizada no tratamento.

A criação de benchmarks específicos para diferentes domínios a partir do gerador, como classificação
de políticas, seleção de variáveis causais ou simulações com interferência entre unidades, também seria
uma ampliação de uso promissora.
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