
A multi-stream dense network with different receptive fields
to assess visual quality

Luan A. Gonçalves1, Ronaldo F. Zampolo2 and Fabrício B. Barros1

1 Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal do Pará
{luan.goncalves@itec., fbarros@}ufpa.br

2 Faculdade de Engenharia da Computação e Telecomunicações, Universidade Federal do Pará
zampolo@ufpa.br

Abstract. The prediction of visual quality is crucial in image and video systems. Image quality metrics based on
the mean square error prevail in the field, due to their mathematical straightforwardness, even though they do not
correlate well with the visual human perception. Latest achievements in the area support that the use of convolutional
neural networks (CNN) to assess perceptual visual quality is a clear trend. Results in other applications, like blur
detection and de-raining, indicate the combination of different receptive fields (i.e., convolutional kernels with different
dimensions) improves a CNN performance. However, to the best of our knowledge, the role of different receptive fields in
visual quality characterization is still an open issue. Thus, in this paper, we investigate the influence of using different
receptive fields to predict image distortion. Specifically, we propose a multi-stream dense network that estimates a
spatially-varying quality metric parameter from either reference or distorted images. The performance of the proposed
method is compared with a competing state-of-the-art approach by using a public image database. Results show the
proposed strategy outperforms the competing technique when the quality metric parameter is estimated from degraded
images.

Categories and Subject Descriptors: I.2.6 [Artificial Intelligence]: Machine Learning Applications

Keywords: Convolution neural network, different receptive fields, differential mean opinion score, multi-stream dense
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1. INTRODUCTION

Prediction of visual quality is an essential feature in image and video systems. Psychophysics tests
remain the only approach to get actual visual quality data 1. Such a study, however, is cumbersome,
expensive, and unrealistic in many situations, which has driven a continual development of new
methods in image quality assessment.

According to the amount of available information about a reference signal, image quality metrics
(IQM) can be classified as full reference (the reference image is fully available), reduced reference
(just some characteristics of the reference image are known) and no-reference (the reference image
is completely unknown) [Wang 2006]. The straightforwardness of the mean square error (MSE) has
motivated its adoption (and of MSE-like derivatives) as a practical IQM in several situations, although
the MSE does not correlate well with the perceived visual quality [Girod 1993].

Advances in microelectronics and signal processing have favoured the development of affordable

1Methodology for the subjective assessment of the quality of television pictures: https://www.itu.int/dms_pubrec/
itu-r/rec/bt/R-REC-BT.500-11-200206-S!!PDF-E.pdf; Subjective video quality assessment methods for multimedia
applications: https://pdfs.semanticscholar.org/e312/b34ca7b71adced195131e11ca88158007843.pdf
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imaging and display devices. In parallel, complex video applications (mostly streaming services and
personal communications) have led to consider mathematical models that try to mimic, at least
partially, the human visual system. A short list of popular perceptual full reference IQMs, object of
our study, follows: SSIM [Wang et al. 2004], MS-SSIM [Wang et al. 2003], FSIM [Lin Zhang et al.
2011], and HaarPSI [Reisenhofer et al. 2018]. The SSIM theorises that the perception of visual quality
is linked to the similarity of structural information between reference and test images. In turn, MS-
SSIM extends the SSIM concept to the context of multiple scale, serving as the inspiration for other
IQMs, such as FSIM, SR-SIM and HaarPSI.

Though the remarkable achievements in the last two decades of research in image quality assess-
ment, reliable and practical models to represent subjective visual quality still challenges the research
community.

Recently, IQMs based on convolutional neural networks (CNNs) have gained a lot of attention.
Kang et al. [Kang et al. 2014] proposed a no-reference IQM, where they first split the test image into
non-overlapping patches and, then, assessed the quality of each patch by using a CNN. The authors
assumed the visual quality may vary over patches. At the end, the quality index of the whole picture
is estimated by pooling all patch quality scores. Bosse et al. [Bosse et al. 2016] designed a deep CNN
to assess image quality for both full reference and no-reference conditions. Their results outperformed
the state-of-the-art approaches at that time. In [Bosse et al. 2019], the authors used the same network
as in [Bosse et al. 2016] to estimate the shifting parameter of a function to map the peak signal-to-noise
ratio (PSNR) to subjective quality scores.

Recently, several works on CNNs [Yang et al. 2016; Zhang and Patel 2018; Huang et al. 2018;
Gillibert et al. 2018] suggest that to combine information from convolutional kernels of different sizes
(different receptive fields) provides a better representation of the input signal. Yang [Yang et al. 2016]
used different receptive fields, by varying the dilatation factor, to refine detection and extraction of
rain streaks. Again in de-raining, the authors in [Zhang and Patel 2018] assumed the rain density
impacts on the result, leading them to use three dense networks with variations in the receptive field
to classify rain density before streak elimination. Finally, results in [Huang et al. 2018] and [Gillibert
et al. 2018] suggested that information on different scales matters to blur detection.

Based on the mentioned papers, we investigate the influence of different receptive fields to assess
visual quality. Specifically, we propose a multi-stream dense network (MDN) with different receptive
fields that predicts the subjective quality of an image.

The performance of the proposed network is evaluated and compared with a state-of-the-art strategy,
by using the Laboratory for Image & Video Engineering (LIVE) dataset [Sheikh et al. 2006].

The contributions of this work follow: (a) we study the importance of using different receptive
fields in a CNN applied to the prediction of image quality scores; (b) we propose a multi-stream
dense network in conjunction with different receptive fields to represent visual quality without prior
knowledge of the distortion in a given image; and (c) we provide the source code to reproduce our
results in GitHub2 to those interested.

2. BACKGROUND

2.1 Mapping quality metric values to perceptual quality scores

The relationship between perceptual quality scores (Qp) and quality metric values (Qc) is not linear
in general. Figure 1 shows a typical example, where PSNR represents Qc and the differential mean
opinion score (DMOS) plays the role of Qp. Due to the saturation effect, the 4-parameter sigmoid

2https://github.com/LuanAGoncalves/DeepVisualQualityPrediction
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Fig. 1: PSNR vs. DMOS for the JPEG subset of LIVE database [Sheikh et al. 2006]. Coloured dashed curves indicate
PSNR-DMOS pairs for individual reference images. The thick black curve represents regressed DMOS values for the
ensemble.

function (1) is commonly used to map values from Qc to Qp:

Q̂p = a+
b− a

1 + e−c(Qc−d)
(1)

where Q̂p denotes a prediction of Qp; a and b are the upper and lower bounds of the perceptual quality
score, respectively; the parameter c controls the slope of the mapping curve; and d shifts the mapping
curve with respect to Qc.

The design of the psychophysical experiment, conceived to obtain visual quality data, defines pa-
rameters a and b. After data collection and the calculation of Qc for each test signal, an optimization
procedure estimates the remaining parameters c and d.

In this work, as in [Bosse et al. 2019] and without loss of generality, the DMOS and the PSNR
between reference and distorted images represents Qp and Qc, respectively. Conventional approaches
assume the parameters in Equation 1 are constant for the entire set of test images. Recent develop-
ments [Bosse et al. 2016; Bosse et al. 2019], however, consider the variability of model parameters not
only across different images of the test set, but also within a given image.

2.2 Adapted PSNR

The results in [Bosse et al. 2019] indicate the prediction of the visual quality scores is more sensitive
to the shifting parameter (d) than to the slope parameter (c). The relevance of d has motivated the
definition of an adapted version of PSNR that incorporates the shifting parameter:

paPSNR = 10 log10
C2

MSE − d

= 10 log10
C2

10
d
10MSE

= 10 log10
C2

paMSE

(2)

where paPSNR and paMSE denote the perceptual adapted versions of PSNR and MSE, respectively;
and C is the maximum (peak) sample value of a signal (255 in 8-bit grayscale images).
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In turn, the MSE is given by

MSE =
1

MN

M−1∑
x=0

N−1∑
y=0

[s(x, y)− ŝ(x, y)]2 (3)

where s(x, y) and ŝ(x, y) denote the reference and distorted images, respectively; and M and N are
the number of pixels in x and y directions, respectively.

Statistics of natural images are locally structured and highly non-stationary, so that perceived
quality varies not only globally across different images, but also spatially within a given image [Bell
and Sejnowski 1997; Ruderman 1994]. Considering the spatial variability of distortion perception, the
parameter d can take a different value at each pixel position (x, y), i.e., d(x, y) [Bosse et al. 2018;
Bosse et al. 2019], giving rise to a spatially variant version of paMSE:

paMSE =
1

MN

M−1∑
x=0

N−1∑
y=0

10
d(x,y)

10 [s(x, y)− ŝ(x, y)]2 (4)

This simple weighting scheme gives spatial context to the shifting parameter (d), leading to more
representative paPSNRs in terms of subjective quality. In practice, to reduce processing time, a
region-dependent d replaces d(x, y) by splitting images into non-overlapping patches, where all pixels
within share the same distortion sensitivity.

Although MSE is commonly used as loss function in regressions, the mean absolute error (MAE)
has proven less sensitive to outliers. The loss function adopted in [Bosse et al. 2018] and [Bosse et al.
2018] is an indirect regression of the shifting parameter (d) expressed in (5) and depicted in Fig. 2a.

1

I

I∑
i=1

|Q̂ip −Qip| (5)

where i is the i-th patch assessed; and I denots the total number of patches used to calculate the
MAE.

Expression (6) shows another loss function, which requires that every patch has its own d previously
calculated (see also Fig. 2b).

1

I

I∑
i=1

|d̂i − di| (6)

In our experiments, we tried both criteria (5) and (6). The simulations of this work consider only
the second criterion (6) because of its better performance.

3. PROPOSED TECHNIQUE

Based on the success of the method presented in section 2.2 our work extends the method presented
in [Bosse et al. 2019] (Fig. 3) to insert informations of different receptive fields. The reason to do
this is the improvements that this kind of information brought to some fields, like de-raining and blur
detection [Yang et al. 2016; Zhang and Patel 2018; Huang et al. 2018; Gillibert et al. 2018].

3.1 CNN architecture

Although the referred work takes into account several aspects that matters to the prediction of the
visual quality, it does not analyse the influence of different receptive fields. Inspired by the success of
methods that use information from different scales in de-raining [Yang et al. 2016; Zhang and Patel
2018] and blur detection [Huang et al. 2018; Gillibert et al. 2018], we propose a multi-stream dense

Symposium on Knowledge Discovery, Mining and Learning, KDMILE 2019 - Applications Track.



A multi-stream dense network with different receptive fields to assess visual quality · 5

Patch Regressor

SigmoidMAE

(a) Indirect regression of the parameter d.

Patch Regressor

MAE

(b) Direct regression of the parameter d.

Fig. 2: Criterions for training the regressor. The criterion (a) performs the regression of d by minimizing the MAE
between the perceptual quality and the predicted quality. The criterion (b) performs the regression of d by minimizing
the MAE between the d and its prediction.
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Fig. 3: An overview of the proposed method. The CNN estimates a shifting parameter (di) for every distorted patch
which will be used to insert a weighting scheme on MSE. From this we have paMSE which is used to compute an
adapted version of PSNR (paPSNR). Finally, paPSNR will be mapped to perceptual quality.

network (MDN) to predict visual quality scores (DMOS in our case) from an IQM (PSNR in this
work). Figure 4 depicts the complete architecture of the proposed MDN, which consists of three
dense structures with different receptive field dimensions [Zhang and Patel 2018], written as Dense
(3×3), Dense (5×5) and Dense (7×7), in blue, green and orange. Each dense structure generates
ten channels that are concatenated to compose the input of the regressor. The latter estimates the
shifting parameter for a given patch, being structured as follows: Conv(30,64,3)–Conv(64,24,3)–
FC(24576,512)–FC(512,1), where Conv(x,y,z) means a convolutional layer with ReLu (rectified
linear unit) activation function, whose input consists of x channels, output of y channels, and convo-
lutional kernel size of z × z. In turn, FC(m,n) denotes a fully connected layer with ReLu activation
function with m inputs and n outputs.

3.2 Experimental setup

All CNNs used in this study have been trained and tested with LIVE dataset [Sheikh et al. 2006],
which is composed of 779 annotated images, obtained from 29 reference images subject to 5 different
types of distortion (JP2K compression, JPEG compression, additive white Gaussian noise, Gaussian
blur and simulated fast fading Rayleigh channel) at different levels. To guarantee that reference images
used in testing and validation had not been seen by the networks during training stage, the LIVE
dataset has been split into 29 subsets according to the reference images, from which 6 subsets are
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Fig. 4: An overview of the proposed network. Image patches, with size 32×32, will be submitted to three dense structures
with different receptive fields (2×3, 5×5, 7×7). The outputs of these three dense structures will be concatenated and
will be used as input a regressor.

randomly chosen for testing, other 6 subsets for validation and the remaining 17 subsets for training.

The models were trained for 50 epochs with PyTorch framework [Paszke et al. 2017], after which the
CNN with the best performance was selected and tested. A training iteration consisted in assessing
MAE (expression 6 and Fig. 2b) for one batch, which in turn, comprised 32 grayscale patches of size
32×32, randomly selected from one single image. A validation step happened after every 30 training
iterations. The validation patches were chosen at random in the beginning of the training process
and remained fixed until the end of the 50 training epochs. In a single epoch, all images from the
17 training subsets were used to update network parameters. For every validation round, all images
from the 6 validation subsets were used. For testing, all patches of all test images were used to assess
the CNN performance. Our results were reported as the average over 30 random splits of the data set
into training, validation and test subsets. Every patch within an image inherited the DMOS of the
image so we could easily find the parameter d related to a given patch, i.e., di. In this work, the type
of degradation present in an image is considered unknown.

For performance assessment, two measures were used: Pearson Linear Correlation Coefficient (LCC)
and Spearman Rank Order Correlation Coefficient (SROCC). The LCC measures the linear depen-
dence between two variables, while the SROCC is a non parametric measure that evaluates the mono-
tonicity between two variables. LCC and SROCC are calculated between Qp (DMOS) and Q̂p (pre-
dicted DMOS, obtained from estimated di’s). For the logistic regression (1), the parameters a and
b were set to 0 and 100, respectively, as these values correspond to the lower and upper bounds of
the quality scale in the LIVE dataset. The parameter c was found by performing a logistic regression
with the whole training set and was kept fixed during the entire experiment. The learning rate for the
batch-wise optimisation was controlled adaptively, by using the ADAM algorithm with paramenters
β1 = 0.9, β2 = 0.999, ε = 10−8 and α = 10−4.

4. RESULTS

This section divides the results into two groups. The first group came from simulations in which the
shifting parameter was estimated by taking reference images as inputs of the CNNs. In the second
group, the CNNs inputs were distorted images.

For the hypothesis in which the parameter d is a feature of the reference image (first group), we have
successfully reproduced the results shown in [Bosse et al. 2019]. In addition, Table I suggests that
the features extracted by using different receptive fields (“Proposed” column) are equivalent to those
obtained by the competing approach (paPSNRγ=1 column), for the case when the shifting parameter
is estimated from reference images. We believe that two non-mutually exclusive factors may explain
this result: (a) the proposed MDN is useless or poorly designed; and (b) reference images do not have
much to offer in terms of visual quality information to be exploited. An indication that the latter
option could be true is found in [Kang et al. 2014; Bosse et al. 2016; Bosse et al. 2018; Bosse et al.
2019], where the authors argued that distorted images carry richer information than the reference
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image about perceptual features. Such an aspect motivated the next step, which was training both
networks to estimate the shifting parameter from distorted images (second group).

Table I: Comparison of the proposed strategy with the technique in [Bosse et al. 2019] (shifting parameter estimated
from reference images) in terms of LCC and SROCC, in which, for both metrics, the higher is the better. Reported
statistics consider only the test set and have been obtained by running 30 random train-test splits.

paPSNRγ=1 Proposed

LCC SROCC LCC SROCC

Mean 0.9056 0.9235 0.9087 0.9258

σ 0.0105 0.0079 0.0105 0.0137

For the hypothesis in which distorted images convey relevant information about visual quality
parameters, our results in Table II: (a) confirm that degraded images seem to carry more relevant
visual quality information than reference images, as previously stated in [Kang et al. 2014; Bosse et al.
2016; Bosse et al. 2018; Bosse et al. 2019]; and (b) suggest the use of different receptive fields improves
visual quality prediction. The reasons for (a) and (b) are not clear so far, but we speculate that CNNs
are exposed to larger regions of the Qc × Qp space during training phase when distorted images are
network inputs. Such an exposition would permit the CNN to learn more complex aspects of the
subjective quality surface than when using reference images as inputs. In this case, the diversity of
receptive fields in the proposed MDN seems to express the referred complexity better than the CNN
in [Bosse et al. 2019].

Table II: Comparison of the proposed strategy with the technique in [Bosse et al. 2019] (shifting parameter estimated
from degraded images) in terms of LCC and SROCC, in which, for both metrics, the higher is the better. Reported
statistics consider only the test set and have been obtained by running 30 random train-test splits

paPSNRdstγ=1 Proposed

LCC SROCC LCC SROCC

Mean 0.9253 0.9319 0.9357 0.9416

σ 0.0107 0.0110 0.0100 0.0107

5. CONCLUSION

In this paper, we have investigated the influence of different receptive fields in CNNs for the estimation
of the shifting parameter of a sigmoid-like visual quality mapping function. We first compared our
proposed MDN with the CNN in [Bosse et al. 2019] for the case where the shifting parameter is only
estimated from reference images. Our results are similar to the competing technique, suggesting the
diversity of receptive fields does not provide actual gain in this situation.

Then, we trained the networks to estimate the shifting parameter using distorted images as inputs.
The results show a slight, but consistent, improvement for the proposed technique in comparison with
the CNN in [Bosse et al. 2019]. Apparently, sets of distorted images, rated from poor to excellent
subjective quality, convey additional information of the shifting parameter that can be better exploited
by different receptive fields.

REFERENCES

Bell, A. J. and Sejnowski, T. J. The “independent components” of natural scenes are edge filters. Vision Re-
search 37 (23): 3327 – 3338, 1997.

Bosse, S., Becker, S., Fisches, Z. V., Samek, W., and Wiegand, T. Neural Network-Based Estimation of
Distortion Sensitivity for Image Quality Prediction. In 2018 25th IEEE International Conference on Image Processing
(ICIP). IEEE, Athens, Greece, pp. 629–633, 2018.

Symposium on Knowledge Discovery, Mining and Learning, KDMILE 2019 - Applications Track.



8 · Luan A. Gonçalves, Ronaldo F. Zampolo and Fabrício B. Barros

Bosse, S., Becker, S., Müller, K.-R., Samek, W., and Wiegand, T. Estimation of distortion sensitivity for visual
quality prediction using a convolutional neural network. Digital Signal Processing vol. 91, pp. 54–64, dec, 2019.

Bosse, S., Maniry, D., Müller, K.-R., Wiegand, T., and Samek, W. Deep Neural Networks for No-Reference
and Full-Reference Image Quality Assessment. IEEE Transactions on Image Processing vol. 17, pp. 2016–219, dec,
2016.

Gillibert, L., Chabardès, T., and Marcotegui, B. Local multiscale blur estimation based on toggle mapping for
sharp region extraction. IET Image Processing 12 (12): 2138–2146, dec, 2018.

Girod, B. Whatś Wrong with Mean-squared Error? In A. B. Wattson (Ed.), Digital Images and Human Visions.
MIT press, Cambridge,MA, pp. 207–220, 1993.

Huang, R., Feng, W., Fan, M., Wan, L., and Sun, J. Multiscale blur detection by learning discriminative deep
features. Neurocomputing vol. 285, pp. 154–166, apr, 2018.

Kang, L., Ye, P., Li, Y., and Doermann, D. Convolutional Neural Networks for No-Reference Image Quality
Assessment. In 2014 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, Columbus, OH, USA,
pp. 1733–1740, 2014.

Lin Zhang, Lei Zhang, Xuanqin Mou, and Zhang, D. FSIM: A Feature Similarity Index for Image Quality
Assessment. IEEE Transactions on Image Processing 20 (8): 2378–2386, aug, 2011.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L.,
and Lerer, A. Automatic differentiation in pytorch. In 31st Conference on Neural Information Processing Systems
(NIPS 2017). NIPS, Long Beach, CA, USA., 2017.

Reisenhofer, R., Bosse, S., Kutyniok, G., and Wiegand, T. A Haar wavelet-based perceptual similarity index
for image quality assessment. Signal Processing: Image Communication vol. 61, pp. 33–43, feb, 2018.

Ruderman, D. L. The statistics of natural images. Network: Computation in Neural Systems 5 (4): 517–548, 1994.
Sheikh, H. R., Sabir, M. F., and Bovik, A. C. A statistical evaluation of recent full reference image quality

assessment algorithms. Trans. Img. Proc. 15 (11): 3440–3451, Nov., 2006.
Wang, Z., B. A. S. H. S. E. Modern image quality assessment. Synthesis Lectures on Image, Video, and Multimedia

Processing 2 (1): 1–156, jan, 2006.
Wang, Z., Bovik, A., Sheikh, H., and Simoncelli, E. Image Quality Assessment: From Error Visibility to Structural

Similarity. IEEE Transactions on Image Processing 13 (4): 600–612, apr, 2004.
Wang, Z., Simoncelli, E., and Bovik, A. Multiscale structural similarity for image quality assessment. In The

Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003. IEEE, Pacific Grove, CA, USA, pp.
1398–1402, 2003.

Yang, W., Tan, R. T., Feng, J., Liu, J., Guo, Z., and Yan, S. Deep Joint Rain Detection and Removal from a
Single Image. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Honolulu,
USA, 2016.

Zhang, H. and Patel, V. M. Density-aware Single Image De-raining using a Multi-stream Dense Network. In 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, Salt Lake City, USA, 2018.

Symposium on Knowledge Discovery, Mining and Learning, KDMILE 2019 - Applications Track.


