
A scalable distributed system based on
microservices for collecting pod logs from a

Kubernetes cluster
Flávio Gomes da Silva Lisboa

Universidade Tecnológica Federal do
Paraná

Curitiba, Brasil
https://orcid.org/0000-0002-9396-7944

Abstract—This article presents the architecture of a
distributed log collection system for Kubernetes clusters.
Initially, we present the motivation for creating the system.
Then, we present an overview of the system, consisting of
several microservices. Next, we approach the implementation
of each of the microservices. All system components are free
and open software. This article is an example of how a
distributed system with microservices can be heterogeneous in
relation to the programming languages used.

Keywords—container; kubernetes; microservice; log.

I. INTRODUCTION

Kubernetes is an open source container orchestration
system created by Google. It allows a complex software
system to be distributed in units called Pods, which are sets
of containers with shared storage and network resources.
Kubernetes has an abstraction called Deployment, which
allows you to define a desired state for a Pod. This includes
maintaining Pod replicas to ensure that the microservice it
contains is always available. From liveness tests, a
Deployment can restart a Pod, without the need for human
intervention.

When a Pod is created, it is assigned an IP address. When
it restarts, this address changes. Kubernetes can restart a Pod
as many times as necessary, which is convenient to spare
full-time technicians from monitoring applications that
should be available 24 by 7. It is not desirable, however, for
a Pod to be constantly restarted, as this suggests that there is
a frequent fault condition.

Eventually, this failure condition can go unnoticed for a
long time due to the automatic Pod restart performed by
Deployment. Over time, a change combined with this fault
condition can generate a state where the Pod is constantly
restarted, as the liveness rule is never satisfied. The problem
we want to solve here is the increasing complexity of a
failure in a distributed system, characteristic of systems
hosted on Kubernetes clusters.

To avoid this kind of situation, we can monitor the pod
logs to check the frequency of changing IP addresses. In this
article we present a scalable and distributed open source
system for collecting logs from Kubernetes pods, filtering
only the events involving IP change.

II. ARCHITECTURE OF THE SYSTEM

The system described here is called podips. It consists of
the following components, all of them implemented with
free and open source softwares:

• The functional core, formed by microservices
podips-reader, podips-queue and podips-writer;

• The monitoring panel, which is the microservice
podips-monitor;

• The continuity guarantor, which is the
microservice podips-cronjob.

A Golang program (podips-reader), continuously reads
the pod modification events of a Kubernetes cluster. At each
reading, it sends these events to a queue implemented in
ActiveMQ (podips-queue). A Python program (podips-
writer) watches the queue and sends the read data to a
Fluentd server, a data collector that aggregates pod logs with
other logs in a non-SQL database for auditing. The reading
and writing programs were originally written in Python. The
reason the podips-reader was rewritten in Go is because the
Kubernetes client in Python had failures in reading the
cluster, which were not resolved. The podips-writer was
kept in Python because trying to write to Fluentd with the
driver in Go failed.

To ensure system availability, the podips-reader and
podips-writer program deployments have liveness probes
configured, to verify that queue writing and reading are
taking place. Verification is based on changing status files at
an interval of 5 minutes. That is, if the status files are not
updated in at least 5 minutes, the deployments will be
automatically restarted by Kubernetes.

To ensure that there is no loss of messages on the
producer side (podips-reader), a PostgreSQL database is
used, which stores messages that cannot be sent to the queue.
This bank is continually read to check for messages and re-
attempted to send them. This ensures that messages will not
be lost until the queue is available again. Messages are stored
in a table messages of a database queue. This table must have
the fields id (serial) and message (text with up to 1000
characters). It is possible to manage the database through a
PostgreSQL web client installed in the environment, via the
URL /phppgadmin.

It's important to say that if podips-writer can't send the
message to Fluentd, it sends the message back to the queue.

To help observe system availability, podips-monitor
provides a web interface, which allows you to check the
status of Kubernetes read, queue write and read, and send
data to Fluentd. The podips-reader and podips-monitor
programs send HTTP messages to podips-monitor, which
updates internal status files with the date and time of the
operation. The podips system operates on two Kubernetes
clusters. So there are two URLs for podips-monitor.

To ensure that there is always at least one pod changing
within the 5 minute interval, there is the program in Node.JS
podips-cronjob which is registered as cronjob, running
every 5 minutes. The reason podips-cronjob is written in
Node.JS is because the policy on Kubernetes clusters where
podips is installed restricts the programming languages that
can be used in cronjobs.

The Figure 1 illustrates the relationship among the
microservices of podips, focusing the flow of messages.
Every microservice os podips is deployed in the same cluster
Kubernetes they are reading.

Fig. 1. Architecture of podips focusing the data flow

Next, we will detail each of the system's microservices.

III. READER OF LOGS FROM KUBERNETES

The microservice podips-reader is a Go program
composed by one only source code file in Go language
(podips-reader.go) and a configuration file (dbconfig.ini). It
is licensed under LGPL-2.1 and is available at
https://github.com/fgsl/podips-reader. This program can be

executed inside or outside a Kubernetes cluster, but it is
recommended to run it inside the cluster to take advantage of
the automatic restart functionality.

The program configuration can be done by environment
variables or by configuration files. Environment variables
take precedence over configuration files. In this way, the
environment determines the behavior of the program, and it
is not necessary to package configuration files when
publishing the program as a microservice.

The main function of this program consists of a repeat
loop that reads the status of the pods every ten seconds. If the
reading is successful, another loop is executed, to go through
the collection of events occurred with the pods, and send to a
queue the events that refer to the IP change.

When events are read successfully, an HTTP message is
sent to a success monitoring endpoint and a local status file is
created. If there is a failure, another message is sent to a
failure monitoring endpoint and the local status file is
destroyed. This allows Kubernetes to restart the program pod
if the status file does not exist. Of course, this check has to
be done in a time frame within which we tolerate read
failures.

The podips-reader program defines a structure called
PodInfo to encapsulate the data that must be sent to the
queue. This structure prevents the various functions in the
program from having multiple arguments and makes the
program more readable.

The program is modularized into several functions for
ease of understanding and maintenance. Within the repeat
loop that processes the events of read pods, an object of type
PodInfo is populated by the getPodStateTerminatedAndKind
and getPodStatusAndSendLog functions. The first checks if
the pod has finished while the second checks if the event
should be sent to the log. It is the second function that sets
the sendLog attribute of the PodInfo object and thus
determines whether the program will try to send the log to
the queue.

If the program fails to send a message to the queue, the
saveMessageToDatabase function is invoked to persist the
message to a relational database. The main loop in the main
function calls the readMessagesFromDatabase function
every iteration to check for persisted messages and tries to
send them again. The order in which the messages are sent is
not important, as the date and time of the event is part of the
content. Thus, the logs viewer tool can sort the messages
correctly.

IV. WRITER OF LOGS INTO FLUENTD

The microservice podips-writer is a Python program
composed by one only source code file, licensed under
LGPL-2.1 and available at https://github.com/fgsl/podips-
writer. It is an event-oriented program. It defines a
LoggerListener class that is a listener for the message
queue's on_message and on_error events. A repeat loop
keeps the program running, waiting for the queue to notify
you of the receipt of messages. When a message is received
by the queue, the program tries to read it and send it to
Fluentd.

The LoggerListener class tries to send logs to Fluentd
when it takes them off the queue. On success, it sends a

success message to the monitoring endpoint. In case of
failure, it sends a failure message to the monitoring endpoint
and puts the message back on the queue.

V. MONITOR OF READING AND WRITING

A web application called podips-monitor serves as a
monitoring tool for podips-reader and podips-writer
programs. These two programs write various messages to the
system log, which allows you to follow in real time what
they are doing, but podips-monitor presents a synthetic view
indicating whether the read and write operations are
successfully occurring at any given time.

The podips-monitor application is a microservice
written in PHP with the Mezzio framework. This framework
works with the concept of middlewares, defined in the PSR-
15 specification [1]. Mezzio lets you connect URLs with
classes designed to process HTTP requests in a pipelined
structure. Mezzio works with the whitelist concept at the
HTTP method level, so that permission to send an HTTP
message must be explicitly granted for each method (GET,
POST, PUT, DELETE...). This implies that a Mezzio
application only admits requests to an endpoint that are
configured with the specified HTTP methods.

The podips-monitor application uses a semaphore-based
color system to indicate the states of the main operations of
the podips system. Figure 2 shows an example of the podips-
monitor homepage, which displays four frames: Kubernetes
read, queue write, queue read, and Fluentd write. If podips
receives a 500 status message it displays in red, showing that
there was a failure. Messages are stored until another is sent,
and podips-monitor always displays the stored message. If
the difference between the message recording time and the
current time is greater than the minimum accepted interval
time, the message is displayed in yellow. Otherwise it is
displayed in green.

Fig. 2. Homepage of podips-monitor

Queue reading failure, as seen in Figure 2, can be a
momentary problem, regularized in the next interaction with
the queue. What cannot happen is the persistence of the
failure. It is expected, in normal execution, that the red state
will eventually occur, but that it will immediately be
replaced by the green state.

VI. THE MINIMUM INTERVAL GUARANTOR

In order to be able to configure a minimum message
sending interval for the podips-monitor, it is necessary to
ensure that there is IP change in at least one pod in regular
periods of time. That's why the system maintains a program
in Node.JS that is invoked by a cronjob every 5 minutes.
This program only makes an HTTP request to podips-
monitor, to an endpoint that returns a JSON object with a
summary of the status readings. I mean, it pretends to be a
user accessing podips-monitor. Execution is quite fast, so the
pod is destroyed as soon as the HTTP response is received. A
new pod is then created every 5 minutes, which allows you
to determine that the minimum tolerated interval for sending
events by Kubernetes is 5 minutes.

VII. MOCKING FOR TESTING THE QUEUE

To deploy podips, you need at least one Kubernetes
cluster as the main data source and one Flutend server as the
destination data source. Additionally, you need a relational
database to ensure that messages are not lost if they cannot
be immediately written to the queue. In the environment
where podips is deployed PostgreSQL is used, but you can
use any SQL database.

However, you can simulate the podips process using
double components. In fact, you can create an environment
that simulates the production and reading of messages, to
understand what travels along the podips. The only real
component you need is the queue system. We use
ActiveMQ, but you can actually use another system that uses
the Stomp protocol [2].

If you have an installed queuing system that supports
Stomp, such as ActiveMQ, you can use the mock-producer
and mock-consumer programs to simulate, respectively, the
production of events by Kubernetes and the sending of
messages to Fluentd.

The double mock-producer is a program Go licensed
under LGPL-2.1 and is available at
https://github.com/fgsl/mock-producer. The double mock-
consumer is a program Python composed by one only
source code file, licensed under LGPL-2.1 and available at
https://github.com/fgsl/mock-consumer. These two
programs, together with the queue, allow you to simulate
how podip works on a Linux workstation. For the simulation,
all can be run directly, without the need to be in containers.

VIII. THE PRODUCTION ENVIRONMENT

The production environment is composed of two
Kubernetes clusters, one containing 68 distributed systems
and the other containing 535 distributed systems. Not all
have microservices architecture, but they are modularized
into at least three pods. Each cluster has an instance of
podips, which collects an average of 1000 messages per
hour. All messages are aggregated by Fluentd into a single
Elasticsearch database, whose content is viewed by support
technicians via Graylog.

IX. THE POSSIBILITIES OF PODIPS

Although it was built to collect events that occurred with
Kubernetes pods, the podips architecture can be repurposed
for systems that need to collect logs in situations where there
are multiple points of failure and where there must be a
guarantee that no log messages are lost. As it is a free and

open source system, the reading and writing components can
be rewritten to adapt to similar situations.

X. FUTURE WORKS

Although the components of podips are open source, for
it to be easily reused it is desirable to have an installer, which
deploys all components in a production environment in an
automated way. Individual deployment is convenient in a
microservices architecture, where system maintenance
should be done so as not to make the entire system
unavailable, but in order to see it up and running quickly, a
user-friendly installer is really desirable.

There is a question about the podips evolution guidelines.
It's a pretty stable system. The last publication was running
for seven months, until the conclusion of this article, without
the need for maintenance. The question is whether podips
could not be integrated with one of the external systems it is
related to, Kubernetes and Fluentd. But there is currently no
idea how this integration could be implemented.

XI. CONCLUSION

We can observe that the system is composed of
heterogeneous microservices in relation to the programming
languages used. The system has programs written in Go,
Java, Javascript, PHP and Python. It is an example that it is
possible to build a distributed system based on microservices
using different programming languages. This allows
exploring the best of each language and not compromising
the architecture in the face of specific language problems.

REFERENCES

[1] PSR-15: HTTP Server Request Handlers. https://www.php-

fig.org/psr/psr-15/

[2] Stomp: The Simple Text Oriented Messaging Protocol.

https://stomp.github.io/

.

	I. Introduction
	II. Architecture of the system
	Next, we will detail each of the system's microservices.

	III. reader of logs from kubernetes
	IV. Writer of logs into fluentd
	V. Monitor of reading and writing
	VI. the minimum interval guarantor
	VII. mocking for testing the queue
	VIII. the production environment
	IX. the possibilities of podips
	X. Future works
	XI. Conclusion
	References

