
Demoiselle Signer: an Analysis from Fogel FLOSS
Community Framework

Flávio Gomes da Silva Lisboa
UTPFR

Curitiba, Brazil
https://orcid.org/0000-0002-9396-7944

Abstract—This paper aimed to make an analysis of
community maturity for Demoiselle Signer, a FLOSS produced
by Serviço Federal de Processamento de Dados (Serpro). This
research was motivated by criticisms to FLOSS production by
Brazilian government entities after a period of support policies.
The challenge of this paper was to make a community maturity
analysis without an appropriated tool to do it. Then, it was
necessary to define a community maturity framework for
FLOSS project based on Fogel’s guidelines to create a
successful FLOSS project. From what we have named as
Fogel’s Framework and with the aid of software called
RepoSense, we have analyzed the community maturity of
Demoiselle Signer. As it is possible to notice along the paper,
the analysis of members is the initial and essential part for
investigating the community maturity. From a scale ranging
from 0 (zero) to 10, we have determined that Demoiselle Signer
has a community maturity equals to 4. This value indicates that
Demoiselle Signer is an active community and have some items
pointed out by Fogel as desirable features of a FLOSS
community infrastructure.
Keywords—capability maturity model; collaborative

software; digital signatures; open source software.

INTRODUCTION

FLOSS stands for Free\Libre and Open Source Software.
The theme of this paper is the FLOSS community maturity
(FCM) and the question of this paper is about the FCM of an
specific FLOSS project, the Demoiselle Signer, a brazilian
software for generating and validating digital signatures.
Demoiselle Signer is one of few FLOSS produced by
Serviço Federal de Processamento de Dados (Serpro), the
biggest brazilian information technology state-owned
company [1].

Oram [2] criticizes the results of more one than decade of
FLOSS Brazilian support from government. He said that
“results are disappointing”. Really, considering the FLOSS
production by Brazilian government, few software were
produced and for this little production seems there are
community around them. This assumption, about lack of
community activity, needs to be verified. In this paper, we
investigate the community around Demoiselle Signer.

First we introduce the FCM subject and next we talk
about Demoiselle Signer.

A. FLOSS Community Maturity
Taurion [3] states that “not every free software project

will be successful. Many do not attract community interest
and tend to disappear” (our translation). There are some free

and open source software projects maintained by only one
person and another ones maintained by groups – or
communities. For the first case, it is easier to finish the
project, because the decision depends only on the creator.
For the second case, it is harder to finish the project, because,
according to Fogel [4], “as long as there are people
somewhere — anywhere — interested in continuing it, it can
never be unilaterally shut down”. In fact, Fogel considers
that even the project maintained by one only developer can
survive because if it is FLOSS, its source code must be
available and anybody interested to continue the project can
do it.

Fogel [4] presents a guide to what he calls a “successful
open source project” (he considers open source and free
softwares as synonyms). His guide is based on observations
and in his own personal experience with several FLOSS
projects, mainly for Subversion, to which Fogel was fully
dedicated along seven years. “Success” for Fogel is not an
indicator that a FLOSS project has won a battle against other
project. Indeed, Fogel states that “In the long run, every
successful project contributes to the well-being of the
overall, worldwide body of free software”. Maybe we can
consider that a successfull FLOSS project in the fogelian
concept is a project that keeps being useful for their users
and contributors.

Fig. 1. Fogel FLOSS Community Framework [4].

The Fogel’s guide seems to be a FLOSS Community
Framework (FCM). We understand FCM as an instrument to

measure the maturity of a FLOSS project. Figure 1 shows the
three main aspects of a FLOSS community, according to
Fogel: the members, the social and political infrastructure
and the technical infrastructure. All of this is reunited around
the source code, the commons for users and developers.

Fogel’s Framework can be used to check a FLOSS
project has a matured community. We can understand a
matured FLOSS community as an active community around
their project source code. The proposal of using Fogel’s
guide as a FLOSS framework is justified by the absence of
such a framework. We should not confuse a community
maturity model with a process maturity model related to
FLOSS. This last type is already dealed, for example, by
Pinho [5], who approaches the process of a company to
absorbe FLOSS tools for its development lifecycle. Oram [6]
also approaches the internalization of FLOSS skills by
companies. We also can observe that huge information
technology companies, like Amazon, Facebook, Google,
Microsoft and Oracle, have internalized FLOSS products and
processes, but they keep being companies, not communities.

In August 2022, we have searched for this specific term
“FLOSS Community Framework” in some journal databases.
We searched in ACM Digital Library, Scielo and CAPES
journal database. None of these databases presented results
for articles with the searched term in paper title or in the
publication title. Of course, these databases there are many
research papers with the terms “open source” or “free
software”, but the search was done for “FLOSS”,
understanding that both of communities must be considered.

There are also the term “FOSS” (Free and Open Source
Software), but Stallman [7] criticizes this acronym because it
does not explain that free is about freedom and it emphasizes
the term “open source”. FLOSS is a clearer acronym for
making reference to software projects built by communities
organized both around Free Software Foundation concepts
and Open Source Initiave concepts. We don’t want to discuss
the differences between them here.

As we are proposing a framework to measure the
maturity of a FLOSS project – or better, the maturity of a
community round a FLOSS project, we need a measurement
scale. There is no community without members, so this item
is required. It doesn’t matter how many members are users or
developers. It is more important to check the releases of
software. If there are recent releases, there are activity. There
are people developing and delivering something for someone
else to use. As one of the Agile Manifesto principles states:
“Working software is the primary measure of progress” [8].
Then we considered the date of releases as a component of
our measurement scale. We are building the scale and we
don’t have previous references, so we are defining a simple
criterious which can be reviewed in future works. An active
community, for the purpose of analysis, is one that have a
release of its software in the current year.

Activity will have as value only zero or one. There is
recent activity or not. We can stablish that each one of the
items of technical infrastructure can have as value zero or

one too. The two items of social and political infrastructure
could be dealed as a single item, because it is use having a
decision system if the rules are not documented for all
community to know. So, we have ten items (Figure 1)
worthing zero or one.

From these definitions, we can propose a measurement
scale ranging from zero to ten, expressed for CM, as follows:

CM=a∗∑
i=0

9

ti , a , i∈ℤ , a=0∨a=1

Where a is the community activity and ti is each one of
the infrastructure items. An inactive community has zero
maturity. An active community has maturity from one to ten.

This is a simple measure, which allows comparisons
among different projects regarding to recent activity and the
social, political and technical infrastructure items available.
The precision of this comparison can be evolved, with a
study about each one of this items and its weight in the
community maintenance. But for now, it is enough for
starting an evaluation, in absence of other frameworks as
references.

B. Demoiselle Signer
Before talking about Demoiselle Signer, we need to talk

briefly about Demoiselle Framework [9]. Demoiselle
Frameworks is presented as an “integrator framework” in its
homepage (www.frameworkdemoiselle.gov.br). In fact,
Demoiselle Framework is a reusable components collection
for building Java Enterprise Edition (JEE) applications. JEE
[10] is focused on building Java applications for network
environments. Demoiselle Framework homepage brings not
only information about framework, but other two products:
Demoiselle Signer and Demoiselle Behave. The first is
presented as a digital certification component for ICP-
BRASIL (Brazilian Public Key Infrastructure). The second is
presented as a tool for automated functional tests.

The specific page of Demoiselle Signer (Figure 2)
presents its features:

 Generation of digital signatures (CAdES and PadES
patterns);

 Validation of digital signatures;

 Assembly and validation of ICP-BRASIL chains;

 Time stamp;

 Cryptography.

The page already brings links to documentation, issue
tracker and source code. The documentation is signed by ten
contributors and it is very detailed. Github hosts the source
code repository and provides the issue tracker for Demoiselle
Signer. Demoiselle Signer, as well as Demoiselle
Framework, is implemented in Java language.

Fig. 2. Demoiselle Signer page top.

Demoiselle Signer is used by Assinador Serpro [11], a
Java desktop application for signing documents with digital
certificate or validating digital signed documents. Assinador
Serpro uses Demoiselle Signer, but it is not a FLOSS. There
are available free binaries for Assinador Serpro in Serpro
website, however the source code is not open.

This was a general view about Demoiselle Signer. In
August 2022, we have searched for term “Demoiselle
Signer” in the same journal databases where we have
searched for FCM: ACM Digital Library, Scielo and CAPES
journal database. None of these databases presented results
for articles with “Demoiselle Signer” in paper title or in the
publication title. So, it seems that a scientific analysis about
Demoiselle Signer seems unprecedented until now.

Next we will present the methodology used to analyze
the community maturity of Demoiselle Signer.

METHODOLOGY

It is important to remember that we are analyzing the
community maturity of Demoiselle Signer. We don’t want to
discuss the software architecture or the used algorithms. We
used Fogel’s Framework (FF), presented in introduction, as
reference guide to investigate the source code repository and
issue tracker of Demoiselle Signer. We made a checklist of
FF items and did a descriptive analysis of each item.

We got information from two tools: Insights, available
for any project in Github, and RepoSense, a report generator
written in Java for viewing activities in git repositories.

Demoiselle Signer Insights page is available in
https://github.com/demoiselle/signer/pulse. This tool has
information about contributors, community standards,
commits, code frequency, software dependencies, branches
and forks development. The problem with this page is that it
brings data from up a month ago only.

Github provides an API for handling repositories through
applications, but it requires implementation or the use of an
application which already accesses Github API. For our
research, we used a tool named RepoSense. RepoSense is a
Java application which analyzes git repositories and generate
reports. RepoSense is a FLOSS, distributed under the MIT

license. RepoSense documentation is available at
https://reposense.org.

We wanted to analyze the activity of Demoiselle Signer
since the development start. In Github Insights page, the
Contributors item brings an initial date, but it is the creation
of repository. We wanted to know when the developers
started to push code to repository. For this, we needed to
discover the first commit date. First, we recovered the first
commit hash with the following command:

git rev-list --max-parents=0 HEAD

With the hash, we ran other command to get the commit
date:

git log –stat [commit hash]

So, we found that first Demoiselle Signer commit was
made on 8th November, 2016. From this information, we ran
RepoSense from this date until August 30th 2022. The
command executed was this:

java -jar RepoSense.jar --repos
https://github.com/demoiselle/signer.git --since 8/11/2016 --
until 30/08/2022

RepoSense has several optional parameters, detailed in its
documentation. The parameters --since and --until allow,
respectively, to set the initial and final date to be analyzed.
The default behavior is to create a report inside a folder
named reposense-report, but it is possible to change the
output folder with parameter –output.

RepoSense generates a HTML page which can be opened
in any web browser. Next, we will discuss the results
obtained from this report. We have divided the result
presentation in two sections, the first about members and the
second about the infrastructures.

MEMBER RESULTS

Before presenting the results about members, it is
appropriate to talk about the concept of member for the
FLOSS context. Members of a FLOSS comunity can be
users or developers. One person can be user and developer of
a software at the same time. In a FLOSS project, a developer
could be named as a contributor, because the work, for
someone interested in the software, is volunteer, not
required. Of course, if the software was created by a
company, such software should there be full time developers
working on it and their work should be required.

Users can install and use freely a FLOSS, but they can’t
require changes except under the condition of customers.
Users can ask for changes, but the developers are not
required to make them. Community users need to convince
developers that a change is important for them work on it. In
most cases, bugs and vulnerabilities reports are quickly
executed. New features, however, need be negotiated. If a
user wants that a change be made quickly, it is better to hire
a developer or company to make it.

It is difficult to identify users of a FLOSS. One essential
point of a FLOSS is the freedom of user. There is no control
about the use of instances of a FLOSS, as there is for
proprietary software, whose companies control numbers of
copies for their customers. A way to estimate the number of
users is the number of downloads of the software. Github
API provides this information, but only for the software
owners. It seems that this information is not important for
Demoiselle Signer owners, because it doesn’t appear in the
project website or Github repository page. We requested this
information by opening an issue, but nobody answered.

Assinador Serpro seems to be a very useful software for
Brazilian users interested to sign documents digitally. It
could be used for estimating the use of Demoiselle Signer.
However, its page also doesn’t present any download amount
information. There are clues of Assinador Serpro use from
search engines. From a search by Google, we found
references about Assinador Serpro by Administration
Secretary of Bahia State government, Espírito Santo State
Court of Justice and Santa Catarina State Court of Justice.
But it's accidental information, from mentions on support
pages.

Although it is hard to know exactly how many users
Demoiselle Signer community has, we can know some of
them, excluding the developers from the list of issue authors.
Then, we need first to discover the Demoiselle Signer
developers. Github informs that there are 13 contributors.
Table I shows the commit amount of each contributor and
the proportion to total number of commits. We named the
contributors as core developers and we will explain the
reason next. But it is important to notice that more than half
of commits were made by only two developers: esaito and
juliancesar.

TABLE I
COMMITS BY CORE DEVELOPER IN MASTER BRANCH

Core Developer Commits % master
esaito 360 47.43

juliancesar 119 15.68
joserenecampa 17 2.24

kyriosdata 13 1.71
FabianoK 10 1.32
laubstein 5 0.66
botelhojp 5 0.66

dependabot [bot] 3 0.40
crivano 3 0.40

denisfalqueto 3 0.40
renatodantas 1 0.13
monticelli91 1 0.13
IgorMartinez 1 0.13

Total 541 71.28

It is important to clarify that there is bot (dependabot)
counted as a core developer. This bot updates the Demoiselle
Signer dependencies based on the POM file, a configuration
file of Maven, a Java dependency manager.

By proximity of names, we can identify that 6 of 10
documentation authors are core developers.

It is interesting to observe a divergence between total of
commits from core developers and the total number of
commits (for branch master) in August 30th 2022. The first
number is 541 and the second is 759. Where are the
developers of the other 218 commits?

One answer possible is that the other developers are
authors of pull requests. When we search for pull requests,
we discover that there is code from other people, beyond
these 13 people who Github calls contributors. For example,
in 24th June, 2022 there is a commit by pramimpo user who
is not a project contributor. Actually, what Github calls
contributor is a core developer, someone who can integrate
changes to repository. For a FLOSS community, everyone
who contributes to software with an artifact is a developer,
but for Github the word contributor is restricted to core
developer.

However, we couldn’t find all the non-core developers.
From the pull requests list we got to find three developers
(Table II).

TABLE II
COMMITS BY NOT CORE DEVELOPERS IN MASTER BRANCH

Pull Requester
(Non-core Developer)

Commits % master

pramimpo 1 0.13
tuliomoreira77 3 0.40

seuerick 1 0.13
Total 4 0.66

When we analyze the commits, we can find sometimes
commits from users who don’t have accounts in Github.
Maybe these users have removed their accounts. So, we
don’t have information about all the Demoiselle Signer
developers, including the past developers.

The number of commits indicate how many times a
developer has changed a software. But it does not provide
the amplitude of changes. RepoSense reports provided this
information. So we got the numbers of changed lines of
Table III. We kept the core developers in the same order of
Table II to show that lines of code are an independent
variable of the number of commits. RepoSense also showed
some developers that Github Insight doesn´t show. They
were added to end of the table. So, we have 16 people who
worked as developers for Demoiselle Signer (we are
excluding the bot).

TABLE III
LINES OF CODE BY DEVELOPER IN MASTER BRANCH

Developer Lines of Code % master
esaito 48452 79.09

juliancesar 5589 9.12
joserenecampa 250 0.41

kyriosdata 4495 7.34
FabianoK 980 1.60
laubstein 181 0.30
botelhojp 19 0.03

dependabot [bot] 2 0.00
crivano 258 0.42

denisfalqueto 288 0.47
renatodantas 1 0.00
monticelli91 1 0.00
IgorMartinez 1 0.00
80621732915 720 1.18

assinador 7 0.01
erick 14 0.02

Fábio Nogueira de
Lucena

3 0.00

Total 61260 100.00

You can notice that proportion of changes by esaito in
comparison with the second bigger contributor is greater than
proportion of commits. The esaito developer is responsible
for almost 80% of changed lines. The kyriosdata developer,
who is the fourth is number of commits, is the third in
changed lines. On other hand, the joserenecampa user, who
is the third in number of commits is the eighth in changed
lines.

By proximity of names, we can identify that 2 of the
additional developers (4 in total) are documentation authors
(erick and Fábio Nogueira de Lucena). So, we have 8
documentation authors who are developers too and 2
documentation authors who didn’t contribute with code. But,
according to Pressman and Maxim [12], documentation is
also software. So, we can consider that we have 18 software
developers in Demoiselle Signer community (16 source code
developers and 2 documenters).

Since we know the developers, we can analyze the
Github issue tracker and select issue authors who are not
developers. Doing this, we found 46 users who submitted 54
issues from 327. 84% of the issues were opened by
developers. From 54 issues by users, 40 were closed until
August 30th 2022.

Most of the users opened only one issue. The most active
users in issue submission, with more than one submitted
issue, are showed in Table IV.

TABLE IV
MOST ACTIVE USERS IN ISSUE TRACKER

User Open
issues

Closed
Issues

Total

bcfreitas 3 3
estevaocm 3 3
fbtlopes 2 2

HelloWar75 3 3
lferreirad1 2 2

So we have discovered that Demoiselle Signer has 18
developers, of whom 12 are active (they appear in Github
homepage), and at least 46 users. Since we have concluded
the presentation of member data, next we will present the
results about the infrastructures of Demoiselle Signer.

INFRASTRUCTURES RESULTS

A. Social and Political Infrastructure

This item is composed by decision system and written
rules. The Demoiselle Signer page in Demoiselle Framework
website has information about the use of component, about
how to report a bug and how to contribute with code. But
there is no information about how the decisions are made. It
is not explicit if Demoiselle Signer governance is made by a
benevolent dictator or through consensus-based democracy
[4].

However, it is possible to notice that esaito developer has
protagonism in opening issues and commiting changes. The
esaito’s behavior suggests that this person is a benevolent
dictator. But it lacks a documentation that let it clear.

B. Technical Infrastructure
Demoiselle Signer has a website, or better, has a page

inside a website. This page has a link for user documentation
and basic guidelines for contributors.

We have not found references about a mailing list in
Demoiselle Signer page or in the Github source code
repository.

We have not found references about forums in
Demoiselle Signer page or in the Github source code
repository.

Github provides git as version control system for
Demoiselle Signer.

Github provides an issue tracker for Demoiselle Signer.
About that, it is important to say that Demoiselle Signer issue
tracker has a specific tag for discussion. It shows that
Demoiselle Signer issue tracker doesn’t work only a place to
request changes, but to talk about the project. Until August
30th 2022, there were 25 discussion issues. 7 were opened
and 18 were closed.

We have not found references about chats in Demoiselle
Signer page or in the Github source code repository.

We found a wikipage in Demoiselle Signer Github
source code repository. This wikipage documents the several
types of digital signature handled by component.

Demoiselle Signer website and documentation are
available only in Portuguese. It is comprehensible that there
are no expectations for contributions outside of Brazil
because the component validates digital certificates based on
a Brazilian public key infrastructure.

We have not found references about social media in
Demoiselle Signer page or in the Github source code
repository. We also have not found social media accounts
with the name “Demoiselle Signer” using search engines.
However, we discovered some posts of esaito developer in
Facebook, Twitter and StackOverflow about Demoiselle
Signer.

CONCLUSION

Remember we have proposed an expression to measure
the community maturity considering the Fogel’s Framework
items.

CM=a∗∑
i=0

9

ti

As we have defined, a represents the community activity.
An active community, as we have defined it, is a community
with a release of its software in the current year. Demoiselle
Signer had 37 releases until August 30th 2022. The last
release was published on May 4th 2022, therefore a is equal
to 1. Table V shows the values for each one of analyzed
items of social, political and technical infrastructures.

TABLE V
SOCIAL, POLITICAL AND TECHNCIAL ITEMS

Item Value
Decision System and Written Rules 0

Website 1
Mailing List 0

Message Forums 0
Version Control System 1

Bug Tracker 1
Real-Time Chat Systems 0

Wikis 1
Translations 0

Social Medias 0
Sum 4

So, for Demoiselle Signer, CM = 1 * 4 = 4. As we have
said in the introduction, this number, alone, only indicates if
a community is active or not. We don’t have enough
elements to say if a maturity value greater than zero is
“good” or “bad”. Of course, a CM = 10 probably indicates a

community that meets the expectations of Fogel, but our
current expression for CM doesn’t indicate the maturity of
each item. At this moment, we have an instrument for
comparison. Using this approach for other communities, we
can say if a community is more or less mature than
Demoiselle Signer community.

We can observe that Demoiselle Signer community has
the minimal infrastructure of communication. The discussion
occurs inside the issues, when it occurs. We are not sure
about it, but it seems that community is governed by a
benevolent dictator, the esaito developer. He is responsible
for the most of issues, commits and changed lines. In
addition, there is no documentation about governance rules.

As we have said in the introduction, few software were
produced by Brazilian government and it seemed that there
were no communities around them. In this paper, we have
investigated Demoiselle Signer and we have verified that
there is an active community around it, although this
community is not complete according to Fogel’s Framework.

FUTURE WORKS

We recognize that this investigation is an initial step for
the building of a robust maturity community framework.
Fogel’s Framework is a starting point and it already has
contributed to think about the aspects which should be
considered for analyzing a FLOSS community. We think that
next research steps could be:

 To apply this paper’s methodology for other FLOSS
projects produced by Brazilian government, for
comparison and exploration of Brazilian FLOSS
production by government entities;

 To apply this paper’s methodology for other FLOSS
projects produced by Brazilian non-government
entities to compare the maturity among Brazilian
FLOSS projects in general.

 Compare maturity of FLOSS projects produced by
government entities with FLOSS projects produced
by non-government entities;

 From the comparisons, to make refinements to
analyzed items of Fogel’s Framework, like
definition of weights, and to discover indicators.

Possibly, it will be necessary to make deeper
sociotechnical analysis for Demoiselle Signer and other
FLOSS projects for discovering additional elements to be
analyzed from community interaction study cases.

REFERENCES

[1] LISBOA, Flávio Gomes da Silva. BEATRIZ,
Marilene Zazula. Use and Production of FLOSS in
Brazilian Government: an Wide Survey.
https://sol.sbc.org.br/index.php/latinoware/article/vie
w/19899. Accessed on 30 aug. 2022.

[2] ORAM, Andy. Getting Started with InnerSource.
Sebastopol: O'Reilly Media 2015.

[3] TAURION, Cezar. Software Livre: Potencialides e
Modelos de Negócio. Rio de Janeiro: Brasport, 2004.

[4] FOGEL, Karl. Producing Open Source Software:
How to Run a Successful Free Software Project.
Sebastopol: O'Reilly Media, 2005.

[5] PINHO, Viviane Dias Malheiros de. “Uma
contribuição para a melhoria colaborativa e
distribuída de processos de software”.
http://repositorio.icmc.usp.br//handle/RIICMC/4803.
Accessed on 26 aug. 2022.

[6] ORAM, Andy. Getting Started with InnerSource.
Sebastopol: O'Reilly Media 2015.

[7] STALLMAN, Richard. FLOSS and FOSS.
https://www.gnu.org/philosophy/floss-and-
foss.htmlAccessed on 26 aug. 2022.

[8] BECK, Kent. et al. Manifesto for Agile Software
Development. https://www.gnu.org/philosophy/floss-
and-foss.html. Accessed on 26 aug. 2022.

[9] LISBOA, Flávio Gomes da Silva. Framework
Demoiselle: Controvérsias de uma Comunidade
Fabricada para um Software Livre e Público.
https://www.cos.ufrj.br/shialc/content/docs/books/M
emorias_VSHIALC_2018.pdfAccessed on 26 aug.
2022.

[10] ORACLE. Java EE at a Glance.
https://www.oracle.com/br/java/technologies/java-ee-
glance.html. Accessed on 30 aug. 2022.

[11] SERVIÇO FEDERAL DE PROCESSAMENTO DE
DADOS. Assinador Serpro.
https://www.serpro.gov.br/links-fixos-superiores/assi
nador-digital/assinador-serpro. Accessed on 30 aug.
2022.

[12] PRESSMAN, Roger S. MAXIM, Bruce R.. Software
Software Engineering: a Practitioner’s Approach.
9.ed. New York: McGraw-Hill, 2020.

	Introduction
	A. FLOSS Community Maturity
	B. Demoiselle Signer

	Methodology
	Member Results
	It is important to clarify that there is bot (dependabot) counted as a core developer. This bot updates the Demoiselle Signer dependencies based on the POM file, a configuration file of Maven, a Java dependency manager.
	By proximity of names, we can identify that 6 of 10 documentation authors are core developers.
	It is interesting to observe a divergence between total of commits from core developers and the total number of commits (for branch master) in August 30th 2022. The first number is 541 and the second is 759. Where are the developers of the other 218 commits?
	One answer possible is that the other developers are authors of pull requests. When we search for pull requests, we discover that there is code from other people, beyond these 13 people who Github calls contributors. For example, in 24th June, 2022 there is a commit by pramimpo user who is not a project contributor. Actually, what Github calls contributor is a core developer, someone who can integrate changes to repository. For a FLOSS community, everyone who contributes to software with an artifact is a developer, but for Github the word contributor is restricted to core developer.
	However, we couldn’t find all the non-core developers. From the pull requests list we got to find three developers (Table II).
	When we analyze the commits, we can find sometimes commits from users who don’t have accounts in Github. Maybe these users have removed their accounts. So, we don’t have information about all the Demoiselle Signer developers, including the past developers.
	The number of commits indicate how many times a developer has changed a software. But it does not provide the amplitude of changes. RepoSense reports provided this information. So we got the numbers of changed lines of Table III. We kept the core developers in the same order of Table II to show that lines of code are an independent variable of the number of commits. RepoSense also showed some developers that Github Insight doesn´t show. They were added to end of the table. So, we have 16 people who worked as developers for Demoiselle Signer (we are excluding the bot).
	By proximity of names, we can identify that 2 of the additional developers (4 in total) are documentation authors (erick and Fábio Nogueira de Lucena). So, we have 8 documentation authors who are developers too and 2 documentation authors who didn’t contribute with code. But, according to Pressman and Maxim [12], documentation is also software. So, we can consider that we have 18 software developers in Demoiselle Signer community (16 source code developers and 2 documenters).
	Infrastructures Results
	A. Social and Political Infrastructure
	B. Technical Infrastructure

	Conclusion
	Future Works
	References

