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Abstract—Free and Open Source Software (FOSS) is attractive
for various reasons, calling the attention of developers of systems
applied on the field of primary health systems, specially in third
world countries. Considering the recent COVID-19 pandemic,
FOSS approach has an important role to play on the development
of systems on epidemiological surveillance and triage of cases
according to the level of priority and taking in account the
uncertainty in diagnosis. This paper formulated a model using
Support Vector Machine and Rough Sets that demonstrates a
proficiency in discerning between COVID, Uncertain, and Normal
cases for the triage of cases based on chest X-rays. The results
depicts an accuracy of 91.82%.

Keywords—FOSS; Rough Sets; Support Vector Machine; Ma-
chine Learning; COVID-19; Uncertainty.

I. INTRODUCTION

According to Verbeke at al. [1], Free and Open Source
Software (FOSS) is attractive for various reasons: open source
software is cheaper than proprietary software due to the absence
of license fees; besides, the FOSS style of development is
more adaptable to regional demands in terms of culture, or-
ganizational or language related needs and FOSS permits local
developers to freely experiment with open source software to
develop local technology skills at marginal cost (for free in
fact).

This FOSS attractiveness calls the attention of developing
countries particularly on the field of primary health systems. In
reference [2] is described the impact of FOSS in Information
and Communication Technologies (FOSS-ICT) and access to
information in primary health care in rural areas of developing
countries. The FOSS-ICT adoption improved many aspects of
primary health systems in rural areas of developing countries.
These impacts are listed bellow:

i. Improvement of epidemiological surveillance system;
ii. Increased diagnostic and treatment capacity in the most

isolated health posts, allowing for a quick and costless
consultation with a proper doctor and better coordination
of essential medicinal stocks;

iii. Reduced need for trips by patients and medical personnel
and thereby reduced costs (river travels are expensive) that
offset the costs of deploying the infrastructure;

iv. Reduced average time for the emergency transfer of pa-
tients in cases where the transfer is necessary.

It must be noticed that the majority of the above listed items
(ii to iv) are related to triage of cases.

Works such as the ones found in references [3] and [2]
demonstrate the potential of FOSS on the field of medicine
and health, specially in countries of so called third world and
particularly and on the field of epidemiological surveillance and
triage of cases.

Considering the recent COVID-19 pandemic, it is straight-
forward to notice that FOSS approach has an important role
to play on the development of systems on primary health care.
Even today, there are cases of COVID-19 and there isn’t still a
cure available for the corona virus disease. These aspects make
room for FOSS systems on health care on COVID-19.

The COVID-19 pandemic, which began to sweep across
the globe in late 2019, presented healthcare systems with
challenges of an unprecedented magnitude. As hospitals and
clinics faced an overwhelming deluge of patients, the essential
role of an efficient triage system became evident. This system,
which determines treatment priority based on the severity of
a patient’s condition, was crucial for judiciously managing
strained resources.

Given the dynamic nature of the pandemic, characterized
by its myriad symptoms, unpredictable patient responses, and
the sheer volume of cases, traditional triage methods seemed
inadequate. In this context, FOSS emerged as a promising
avenue to craft adaptive and transparent triage systems, capable
of responding to the ever-changing demands of the pandemic.

In this article, we propose a pipeline using Machine Learning
(ML) to categorize X-ray examinations into three distinct
categories: COVID-19, normal, and uncertain. Here in this
paper:
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1) Uncertainty cases are defiant cases and causes doubt
about diagnosis;

2) Supposing Ci and Cj two similar cases in terms of
respective X-Ray examination, they are part of the same
”uncertain” category if they present different diagnosis.

ML is a branch of artificial intelligence (AI) focused on the
use of data and algorithms to mimic the way that humans learn
[4]. Hence, data is crucial for building practical solutions based
on ML methods in real world.

In terms of database, the paper proposes to explore freely
available RX datasets with COVID cases in order to identify
uncertainty cases, is the data mining process (the first phase of
a typical ML pipeline where data gathering and preparation is
put in practice). During this phase, the system extracts features
from the images and converts them into a numerical vector.

Subsequently, the presence of uncertainty is assessed using
Rough Set Theory (RS), allowing for the segregation of cases
into the three aforementioned classes (COVID-19, normal, and
uncertain). Following this process, we employ a Support Vector
Machine (SVM) to classify new instances. Figure 1 shows the
pipeline proposed.

Fig. 1. General pipeline

Missing values, widely called as sparsity in literature, is a
common characteristic of many real-world datasets. This aspect
is very critical in regarding to uncertainty cases in the context
of this paper. In fact, during the mining defiant cases are no so
frequently presented in the available datasets, for validate the
proposal presented in this paper (i.e. a ML system modeling
the uncertainty for triage), it was necessary to create a database
containing uncertainty cases from real ones and to apply the
pipeline depicted in Figure 1.

The remainder of this paper is arranged as follows: in Section
II is presented a discussion about related work, followed by
a general view to the concept of FOSS in Section 3. The
Scikit-Learn and Support Vector Machine (SVM) package is
presented in Section IV. The feature descriptor Local Binary
Pattern (LBP) is described in Section V and the foundations
of the Rough Sets (RS) theory is presented in Section VI.

In Section VII material and Methods of the experiments are
given to illustrate the validity of the pipeline proposed and
results/discussion follows in Section VIII.

II. RELATED WORK

The realm of medical imaging, particularly in the context of
pandemic response, has seen a surge in research and develop-
ment efforts. The need for efficient and accurate diagnostic
tools has led to the exploration of various computational
methods and techniques. Studies directly applying Rough Sets
to address uncertainty in X-ray examinations have not been
identified. However, Rough Sets have been utilized to predict
diagnoses based on symptoms, as highlighted by Bhapkar
in 2021 [5]. Additionally, there is existing research on the
application of Fuzzy sets in X-rays, as evidenced by Tsai in
2004 [6] and Khan in 2015 [7]. It’s important to emphasize
that Fuzzy sets theory bears resemblances to Rough Sets in
its approach. Local Binary Patterns (LBP) have emerged as a
powerful descriptor for texture analysis. A significant contri-
bution to the field is Sabri’s work titled ”COVID-19 Detection
for Chest X-Ray Images using Local Binary Pattern,” [8] which
emphasizes the potential of LBP in detecting COVID-19 from
chest X-ray images. Support Vector Machines (SVM) have been
a cornerstone in the field of machine learning for classification
and regression tasks. A notable application of SVM in the
realm of medical imaging is the work titled ”Medical Image
Classification via SVM using LBP Features from Saliency-
Based Folded Data.” [9] This research underscores the potential
of SVMs when combined with Local Binary Patterns (LBP) for
enhanced medical image classification.

III. FREE AND OPEN SOURCE SOFTWARE

Free and Open Source Software (FOSS) [10] [11] represents
a paradigm shift in the world of software development and
distribution. At its core, FOSS is about providing users with
the freedom to run, study, modify, and distribute software
without any restrictions. This ethos stands in stark contrast to
proprietary software, which typically restricts users’ ability to
modify or redistribute the software. The FOSS movement traces
its roots back to the 1980s when Richard Stallman, frustrated
by proprietary software practices, initiated the GNU Project
and later founded the Free Software Foundation (FSF). His
goal was to create a universe of software that respects users’
freedoms. The term ”free” in this context does not necessarily
mean ”without cost,” but rather ”freedom to use, modify, and
distribute.” FOSS is underpinned by four key freedoms:

1) The freedom to run the program for any purpose;
2) The freedom to study how the program works and modify

it;
3) The freedom to redistribute copies;
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4) The freedom to distribute modified versions.
These freedoms aim to promote collaboration, transparency,
and community-driven innovation. Over time, the term ”open
source” was introduced by the Open Source Initiative (OSI) to
emphasize the practical benefits of this approach, such as better
quality, higher reliability, and more flexibility, rather than the
ideological aspects emphasized by the free software movement.

IV. SCIKIT-LEARN

SciKit-learn [12] is a Machine Learning library originated
from the Google Summer of Code project by David Cournapeau
in 2007. Since its inception, it has grown substantially both in
terms of features and its user community. It is built on the
foundations of two essential Python libraries, namely NumPy
and SciPy, which provide the mathematical underpinnings
required for complex computations. SciKit-learn’s development
is a testament to the power of open-source collaboration.
With contributions from hundreds of developers worldwide,
it continues to evolve, addressing the changing landscape of
machine learning challenges. The library is complemented by
extensive documentation, tutorials, and an active community,
making it accessible to beginners while still being powerful
enough for expert practitioners.

A. Support Vector Machine (SVM)

The Support Vector Machine (SVM) is a supervised machine
learning algorithm widely recognized for its efficacy in both
classification and regression tasks. Emerging from the field
of statistical learning theory in the 1990s [13], SVMs were
designed to address the core challenge of finding the optimal
hyperplane that best separates data into distinct classes. This is
achieved by maximizing the margin between the nearest data
points of the two classes, which are aptly termed ”support
vectors”.

V. SCIKIT-IMAGE

The skimage library, commonly known as the ”Scikit-Image”
[14] library, is an open-source image processing toolkit for the
Python programming language. Just like Scikit-Learn, it builds
upon the foundational capabilities of NumPy and SciPy, two of
the most prominent libraries for numerical and scientific com-
puting in Python. skimage offers a comprehensive collection of
algorithms for image processing, ranging from basic tasks such
as image filtering and morphology, to more advanced operations
like segmentation, feature extraction, and registration. Given its
versatility and integration with the broader Scikit ecosystem,
skimage has become an indispensable tool for researchers,
engineers, and developers in various fields, including computer
vision, biomedical imaging, and remote sensing, to name a
few. Its commitment to open-source principles and its active

community ensure that the library remains up-to-date with the
latest advancements in image processing methodologies.

A. Local Binary Pattern (LBP)

Local Binary Patterns (LBP) is a powerful texture descriptor
that has gained significant attention in the field of image
analysis and computer vision. Originally introduced as a tool
for texture classification, LBP operates by examining the local
neighborhood of each pixel in an image and encoding its
structure into a binary pattern. This pattern captures the spatial
structure of local image textures, making it particularly effective
for tasks that require discerning fine-grained details in images.
The simplicity and efficiency of the LBP method allow for
real-time processing, which has led to its adoption in various
applications, from face recognition to medical imaging. Given
its ability to capture intricate texture details and its computa-
tional efficiency, LBP has become a foundational technique for
many image analysis tasks [8].

VI. ROUGH SETS

Introduced by Zdzisław Pawlak in the early 1980s, Rough Set
Theory (RS) [15] [16] has emerged as a robust mathematical
framework for handling imprecise, uncertain, and vague infor-
mation within datasets. Rooted in the discipline of data analysis
and knowledge representation, Rough Sets have provided a
theoretical foundation for various applications in the realm
of artificial intelligence, decision support systems, and data
mining, among others. The fundamental concept underpinning
the theory is the approximation of vague or uncertain concepts
using two distinct sets: the lower and upper approximations.
These approximations are grounded on the indiscernibility
relation, which classifies objects based on the information
available.

• Upper Approximation: a set of elements that are partially
contained in the target set;

• Lower Approximation: a set of elements that are fully
contained in the target set;

• Boundary Region: difference between Upper and Lower
approximations, this is the region where the containment
of the element is ambiguous between sets.

The mathematical rigor and adaptability of RS provides an
efficient tool for grappling with uncertainty in data. As datasets
continue to grow in complexity and size, the relevance and
application of Rough Set Theory in modern computational
systems are expected to expand.

In the context of the proposal presented in this paper, RS
plays the role of a data miner looking for uncertainty cases.
In fact, in terms of RS theory, the set of uncertainty cases are
contained in the Boundary Region.
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Considering a dataset containing cases diagnosed only as
COVID cases or normal (healthy) cases, meaning that the
cases can be labeled as COVID or normal. If this dataset
contains uncertainty cases (uncertainty as defined in this paper
in section I), an analysis based on RS will detect a not empty
Boundary Region allowing the segregation of cases in three
classes instead of just two aforementioned (COVID or normal).
This three classes will be labeled as COVID, normal, and
uncertain and the amount of cases of the same dataset will be
distributed through this three classes of cases (COVID, normal,
and uncertain).

So that, each set of cases segregated by RS would constitute
a new version of the same dataset, but by the fact that this new
one contains the uncertainty cases appropriately identified. This
new dataset can be used for training a ML algorithm modeling
this uncertainty. In this paper a Support Vector Machine (SVM)
was chosen for this sake.

Once trained, the ML can be used for classification of new
cases and applied in triage of cases. Since the knowledge of
the ML also takes in account the uncertainty cases, it can be
very helpful on the triage of defiant cases (situations willing to
cause uncertainty) and avoid delays in treatment. The Figure 1
shows the pipeline proposed.

Two free and well documented Rough Sets libraries were
selected and applied, as follows: TWD [17], as it has already
been used in scientific research [18], and Roughsets-base [19]
[20], due to its superior performance and therefore being the
main one used.

VII. MATERIALS & METHODS

The implementation of the pipeline may be found on github
[21].

A. Datasets

A research was conducted to find COVID-19 chest X-Ray
datasets that is stored in open formats with reliable labels and
documentation. The datasets found were Covid-19 Radiography
Dataset (CRD) [22] [23] and the BIMCV-COVID-19+ database
(BIMCV) [24]. In the BIMCV database, a wide variety of
images were observed. Through visual inspection, a baseline
case was identified with illumination and coloration character-
istics similar to those in the CRD dataset. Subsequently, images
resembling this baseline were selected using the Structural
Similarity Index (SSIM) with a threshold greater than 0.04.
This process was continued until a total of 10,000 COVID
cases were accumulated. Given that the CRD dataset already
contains 10,000 images of normal lungs, no augmentation was
performed for this particular class.

B. Data Pre-processing and Boundary Cases Identification

One of the most important steps in the whole process is
the preparation of the data for the rough sets analysis, and the
analysis for identification of boundary regions with uncertainty
within the dataset.

We followed the methodology proposed by Ribeiro and Yao
[18]. In their work with LBP descriptors of segmented corn
grain images, they applied a pre-processing step in which
they normalized the descriptors column wise by their mean,
and then used a function f(δ) that considered this mean for
data binning. That is, for every descriptor in the dataset, the
following formula was applied column wise:

δ =
x− µ

σ
100 (1)

Where δ is the value of the descriptor normalized by the
mean µ and the standard deviation σ of the i-th column of the
descriptor .This step resulted in a intermediate δ-table, with
δ ∈ (−100, 100), and the function f(δ) was applied for each
value such as

f(δ) =



0, if δ < −100

1, if − 100 < δ ≤ −80

2, if − 80 < δ ≤ −60
...

16, if 60 < δ ≤ 80

17, if 80 < δ ≤ 100

18, if δ > 100

(2)

This resulted in what Ribeiro and Yao [18] called a decision
table instance, which was used by the rough sets analysis
tool they developed to separate the boundary region from
the remaining cases. The interval of 20 between each δ was
determined empirically through testing of different values.
With this decision table, it was possible to perform a rough
set analysis in the now discredited dataset, and separate the
uncertain cases from the COVID-19 and healthy cases, and
then train a model to identify the cases.

C. Training & Model Evaluation

Upon loading and initial analysis of the dataset composed
by 15,905 cases distributed in three labels (Covid, Normal and
Uncertainty), the data undergoes several stages of preprocessing
and modeling. Initially, the dataset is partitioned into training
and test subsets, with 80% designated for training and the
remaining 20% for validation. To ensure that the features across
the dataset are on a similar scale, they are standardized using
the StandardScaler (Scikit Learn package), which normalizes
each feature by subtracting its mean and dividing by its standard
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deviation. This is essential for algorithms like SVM which are
sensitive to feature scales. Subsequently, an SVM classifier,
specifically configured with a radial basis function (RBF)
kernel, is trained on the processed training data. Post-training,
the model’s performance is evaluated and its performance
is assessed by some qualitative and quantitative metrics, as
follows.

To offer a more granular insight into the model’s classifi-
cation capabilities, a confusion matrix (CM) is computed and
visualized, illustrating the true versus predicted classifications
for each class in the dataset. As it is seen in Figure 2, the CM
presents high values in the main diagonal, which means that
the SVM provided an accurate classification.

Confusion matrix provides a qualitative assessment about
results. It is usual to extract quantitative metrics from CM,
such as accuracy, Precision, Recall and F1-Score, the formulas
are depicted below, considering:

1) There are three labels for classification:
i =∈ {covid, normal, uncertainty};

2) truei: total of true positive cases for label i;
3) FPi: total of false positive cases for the label i;
4) FNi: total of false negative cases for the label i.

accuracy =
Number of correct cases
Total number of cases

(3)

precision =
∑
i

truei/(truei + FPi) (4)

recall =
∑
i

truei/(truei + FNi) (5)

F1Score = 2 ∗ Precision ∗Recall

Precision+Recall
(6)

VIII. RESULTS & DISCUSSION

The developed pipeline exhibited promising results in clas-
sifying X-ray examinations. The performance of the model
can be visualized in the confusion matrix in Figure 2, the
quantitative metrics (accuracy, Precision, Recall and F1 score)
are presented in Table I. The SVM model is capable to clas-
sify using the three labels representing the uncertainty cases,
Normal cases and COVID cases.

The results achieved by our pipeline are commendable,
especially given the complexity and nuances associated with
medical imaging. An accuracy of 91.82% suggests a high level
of reliability in the model. The Precision and Recall are near
the unit, meaning that False Negatives and False Positives
cases happened in very low number of occurrences, which is
emphasised by the F1-score value also near the unity (F1 scores
balances precision and recall) indicating that the model has a

harmonious balance in correctly identifying true positives while
minimizing the risk of false negatives and false positives.

The recall of 91.90% is particularly significant as it under-
scores the model’s capability to capture most of the positive
samples, which is crucial in a medical setting to ensure no
cases are overlooked.

However, the confusion matrix does highlight areas of poten-
tial improvement. While the misclassification in the ’uncertain’
category is minimal, there are notable discrepancies in the
’covid’ and ’normal’ classifications. The 112 instances of
’covid’ being misclassified as ’normal’ could have serious
implications in a real-world setting, leading to potential spread
and improper patient management. This highlights the need
for further refinement and possibly the integration of additional
features or more training data to improve the model’s precision
in these critical categories.

The results proves the concept and the potential of the
proposal on the triage of cases is demonstrated, improvements
must be done in future works.

Fig. 2. Confusion Matrix.

TABLE I
RESULTS.

Metric Value

Accuracy 91.82%

Precision 91.81%

Recall 91.90%

F1 Score 91.80%
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