
VoXED: an online XED file extractor
Amadeo Tato Cota Neto, Bruno Cardoso Dantas, Joao Marcelo Xavier Natario Teixeira, Veronica Teichrieb

Universidade Federal de Pernambuco
Recife, Brazil

atcn@cin.ufpe.br, bcd@cin.ufpe.br, jmxnt@cin.ufpe.br, vt@cin.ufpe.br

Abstract—Kinect devices are used up to this day for image
capturing and video recording in many activities. These devices
make it possible to capture color and depth data, crucial to
many research works. Despite that, these data are stored in a
xed file, in the case of the Kinect V1, that cannot be opened
directly. Existing tools to extract data from these files include
the Kinect Studio application and the xed extractor developed by
Daniel Jackson. Although valuable tools, they require a higher
computational knowledge from the user since they require either
the compilation of a source code or to develop an application that
uses the stored data like it was received from a Kinect device while
a Kinect device is physically connected to the user’s computer. In
this paper, we propose a web service that allows users to retrieve
color data from xed files in an easier way than the existing tools,
by retrieving a compressed file with the images stored on xed
files. The obtained results show that we successfully retrieved the
images stored on these files, making it possible to reuse old xed files
containing important information such as body posture datasets.

Keywords—Kinect studio; xed file extraction; body pose infor-
mation.

I. INTRODUCTION

Capturing pose and depth of people is a challenge in com-
puter vision that has relevance in areas such as gesture recog-
nition, augmented reality, robotics, and security. Its application
requires precision in obtaining the positions of the joints and
estimating the distance between the camera and the objects.
To this end, it is essential to create datasets with pose and
depth capture sensors to train computer vision and machine
learning algorithms to perform tasks such as gesture recognition
and human movement analysis. An example of such efforts is
Kinder-Gator [1], a dataset that comprises 58 movements of
children and adults.

Kinect is a sensor developed by Microsoft, and its first
version was considered a disruptive innovation that has trans-
formed a number of applications, exploiting its benefits in
motion capture and gesture recognition. Although it has with-
drawn from the market, several areas took advantage of its
technology, benefiting from using its sensors to this day. Among
the application sectors identified are Education and Research
[2], Augmented Reality [3], Industry and Manufacturing [4]
and Medical Rehabilitation [5] [6], the latter being the most
emphasized in the scientific literature.

Although Kinect sensors are now obsolete, it is still possible
to use datasets based on their technology. The challenge,
however, lies in extracting the information from the originally
recorded .xed files. Based on the original project from Daniel
Jackson1, this work aims to create a free web tool to allow
data extraction from this file type. We have carried out tests
and hope that this tool will help the scientific community in
carrying out research with this type of data.

The remainder of this paper is organized as follows. Section
II provides more details regarding how body pose information
can be extracted from RGBD sensors and what hardware and
software tools may be employed for this purpose. Section III
describes the implementation of the proposed solution and its
main differences from the original project. Section IV shows
the results obtained and the validation of the proposed tool. At
last, section V concludes the work, providing a few directions
for future work to improve the solution.

II. BODY POSE FROM RGBD CAMERAS

Body pose estimation from RGBD cameras involves captur-
ing and analyzing depth and color information to determine
the position and orientation of a person’s body in a three-
dimensional space. Several hardware options and associated
APIs have emerged to facilitate this task. Devices like the
ASUS Xtion2, Intel RealSense3, and Microsoft Kinect4 have
gained prominence in this domain. The ASUS Xtion and Intel
RealSense cameras offer compact and affordable solutions with
depth-sensing capabilities, making them suitable for various
applications. On the other hand, Microsoft Kinect has been
a pioneer in this field, providing robust hardware and a well-
documented API that allows developers to extract detailed in-
formation about the body’s pose. In the subsequent paragraphs,
we will further describe the capabilities and features of the
Microsoft Kinect, shedding light on its extensive potential for
body pose estimation and its impact on various industries.

1https://github.com/danielgjackson/xed
2http://xtionprolive.com/asus-3d-depth-camera
3https://www.intelrealsense.com/
4https://learn.microsoft.com/pt-br/windows/apps/design/devices/kinect-for-

windows

1



A. Microsoft Kinect

Launched by Microsoft in 2010, Kinect emerged as a motion
sensor for the Xbox 360 console that allowed the movement
of the human body tracking without the need for physical
controllers. This device contains RGB and infrared cameras, as
well as microphones, enabling body tracking and voice recog-
nition [7]. Its technology aroused the interest of developers
who, with the version for Windows released later by Microsoft,
were able to create non-gaming applications for Kinect [8]. In
2013, it received an updated version (Kinect 2.0), but in 2017,
Microsoft announced the end of its production. In addition
to being used by gamers to control characters using gestures
and voice commands, the Kinect, as already mentioned, can
be used for various applications, such as medicine, education,
augmented reality and research and development, which means
that the device continues to be used in various applications
today [7] [8].

B. Kinect Studio

Various RGBD cameras have enabled information extraction
from users’ joints, such as Asus Xtion, Intel Realsense, and
Microsoft Kinect [9]. Using these devices, APIs have emerged
for different types of applications, such as Registered Relief
Depth (RRD) [10], NITCAD [11], and Eldo-care [6].

The Kinect Studio was a valuable tool that came bundled
with the Kinect SDK, designed for recording the data captured
by the Kinect sensor. This tool was instrumental in enabling
developers to record and later analyze depth, color, and skeletal
tracking data for various applications. However, it did have
some limitations that impacted its usability. One notable limita-
tion was that the Kinect Studio didn’t allow for the direct export
of recorded data from a .xed file, which made sharing and using
the recorded data in other applications more challenging.

To utilize the data captured with Kinect Studio, developers
needed to create a custom application that could access and
play back the recorded data as if it were coming directly from a
physical Kinect sensor. This added an extra layer of complexity
to the development process, especially for those who wanted
to work with the captured data in different environments or
scenarios.

Another significant limitation was that the physical Kinect
sensor needed to be connected to the computer when using
Kinect Studio. This requirement restricted the portability of
recorded sessions and limited the flexibility of developers who
wanted to work with the data independently of the physical
device.

Despite these limitations, the Kinect Studio remained a
valuable resource for researchers and developers in fields such
as computer vision, robotics, and game development, providing

essential tools for capturing and analyzing motion and depth
data from the Kinect sensor.

III. THE PROPOSED SOLUTION

The proposed solution is an image extractor that retrieves
color images from the video’s frames stored on xed files by
Kinect V1 devices. We based our work on the xed file extractor
developed by Daniel Jackson in 20135. The code, written in the
C language, allows the extraction of images stored in xed files.

Jackson’s code is publicly available on the GitHub platform
under the BSD 2-Clause, a permissive license that allows
modifications and distribution of the source code as well as
its personal or commercial usage. The only imposed limitation
is the preservation of the license content in the redistributions
of the source code and its binaries, regardless the code was
modified or not.

A. Original Xed Extractor

Xed files have a basic structure that is exploited by the code
to realize the image extraction. The file can be divided into
sections as described in Jackson’s code. The file sections, in
this order, are the header, a set of event packets, closing stream
indexes, and the end of the file information.

When running the code, the file’s metadata are read to
obtain useful data for the image extraction process. Firstly, the
extractor reads the file’s header, obtaining information about
the number of streams and the position of the end of the file
information. After that, the code reads, from the end of the file
information section, metadata of the packets’ indexes and of
the frames, such as the width and height of the frames and its
payload lengths.

Using the obtained metadata, the code iterates through the
packets to start the image extraction. The frame’s images are
either stored in RGB or Bayer GRBG color models. The code
can distinguish in which color model the image is stored by
the length of the frame’s payload and by the number of pixels
in that frame, calculated by multiplying the frame’s width by
its height. If the frame’s payload length is twice the number
of pixels in that frame, the image is in the RGB color model.
Otherwise, if the frame’s payload length is the same as the
number of pixels of the frame, then the image is in the GRBG
color model. The obtained images are stored in their respective
color model in a BMP file.

GRBG images are codified in a way that each pixel contains
information about only one color of that pixel from the color
image. Due to that, these images are presented in grayscale.
Despite that, a color image can be obtained from the GRBG
one after additional processing.

5https://github.com/danielgjackson/xed

2



B. VoXED: Extractor Script and Web Service

Since the original extractor code was written in C, it needs to
be compiled so an executable file can be generated. However,
at the time of writing, an executable file was not distributed to
download. This fact makes the extractor usage difficult since it
makes necessary the download of both the source code and the
tools to compile it to use the extractor. Another factor that may
affect the extractor usage is the need to use command line to
execute it. These factors combined make the tool not friendly to
be used by individuals with limited computing knowledge who
need to extract images from xed files to use it on researches or
for other purposes.

Our solution, named “VoXED”, addresses these difficulties
by providing an easy-to-use web service that extracts images
from xed files. To develop it, we translated the original extractor
code to the Python language and used the Azure Functions to
publish the developed code as a web service. To make use of
the web service, users may either make an HTTP request to the
service6 using the POST method with the xed file in its body,
with the “file” key, or make use of the developed web interface7

(Figure 1), that simplifies the extraction process to users with
low computing knowledge allowing xed files to be submitted
to the service through a web form. The max body size of the
requisition was set to roughly 500 MB due to Azure limitations.
The extractor script, the web interface and the web service
source codes are available at GitHub8 under MIT license.

Figure 1. VoXED’s web site interface. Users may use the service by providing
a xed file to the form field and receive a zip with the extracted images.

When the service receives an HTTP POST request to the
“XedDecode” endpoint with a valid xed file, the Azure function

6https://voxed.azurewebsites.net/api/xeddecode
7https://voxedteam.github.io/voxed/
8https://github.com/VoxedTeam/voxed

temporarily stores it with a random name. The process of image
extraction is then executed, being the extracted images stored
temporarily. The next step is to compress the extracted images
into a zip file that will be sent as a response to the requisition.
All the temporarily stored files are removed before the zip
content is sent as a response to the requisition.

C. Differences from Proposed and Original Extractors

Due to the inherent differences between the C and Python
languages, some modifications were conducted in the transla-
tion process. Below we list what we consider to be the most
notable changes:

• The number of code files was reduced from three C code
files and two header ones (Figure 2) to a single Python
script;

Figure 2. Code and header files used by the original xed extractor to extract
the images. All these files were translated to a single python script on our
solution.

• External Python libraries were used to generate the image
files whereas dedicated code was written to generate these
files in the original work. A comparison of the original and
translated code is presented in Figure 3;

• Functions used to assign values to fields of structures were
moved to the classes’ constructors in the Python code. An
example of this is shown in Figure 4;

• Pointer variables and low-level memory management are
available to be used in C code but not in Python code. We
used lists and references to achieve the same results as in
the original extractor as shown in Figure 5.

A key difference between the proposed solution and the
original extractor is that the original code stores the extracted
GRBG images as they are. Our solution, on the other hand,
realizes the conversion of the image from GRBG to RGB,
returning to the user a color image.

3



Figure 3. Comparison of the code used to store the BMP images on the original C code (above) and the translated Python code (bellow). Only a piece of the
original BMP generator code code is shown in the figure. It is worth to mention that the shown lines of the Python code are also reading the image from its
bytes.

IV. RESULTS AND VALIDATION

We tested our solution using three different xed files with
GRBG images stored in them. The disk size of the files ranged
from 273 MB to 293 MB, approximately. We conduced three
tests to each file: a script test, a local test, and a service test.

In the script test, only the extractor was evaluated. Our
objective in this test was to obtain the same images as the ones
extracted by the original code, but colored as result of our post-
processing. In the local test, we evaluated both the script and the
web service, but the service was executed locally. Our objective
then was to check if the service returns the zip file with the
extracted images. Finally, in the web service we evaluated
both the script and the web service after being published on

Azure platform, using the interface to make requests to the
service. Our objective was to check if the code was executing
as expected on the Azure platform.

We were successful in all the script and local tests, obtaining
the expected images as shown in Figure 6 in the script tests
and obtaining these images in a zip file in the local tests. In the
service tests, in the other hand, the function returned the zip
file just as in the local tests but sometimes an unhandled server
error was sent as response to the requisitions. We discovered
that the error was due to the high memory consumption of
the developed function. Due to that, the service may raise
an “OutOfMemory” exception sometimes. We believe that the
chances of this error occur are higher when two or more

4



Figure 4. Comparison between the code related to assign values to the C structures’ fields on the original extractor (above) and to the Python classes on the
translated code (bellow).

Figure 5. Pointers and memory management present from the original extractor were replaced by references and lists.

requisitions are made in a close time interval (or at the same
time) to the service.

We also collected metrics regarding the time consumption.
We sent the xed files via our web interface and measured the
files’ upload time and server processing time. These metrics
are present in Table I.

We also measured the execution time of our extractor at
Azure platform to evaluate the extractor script time perfor-

Table I
VOXED WEB SERIVE TIME METRICS

File Size (MB) Upload (s) Server Processing (s)

1 293 49.244 38.417

2 288 48.162 36.219

3 273 55.194 35.416

5



mance. The results are present in Table II.

Table II
IMAGES EXTRACTION TIME

File Size (MB) Extraction (s)

1 293 1.492

2 288 1.652

3 273 0.754

Analyzing the results of Table I and II, we noticed that
the extractor script produces an almost irrelevant impact on
the overall processing time of the server. The most time-
consuming operations are probably internal Azure operations
and the creation and read of the zip file.

Xed files that store RGB images were not available for us
during the conducing of this research. Thus, tests were not
conduced with files of that type.

V. CONCLUSION

In this paper, we proposed an easy-to-use web service
capable of extracting images from xed files. This tool improves
the previous ones by facilitating the usage by individuals with
low expertise in programming. We hope that the developed tool
helps future research that uses data previously captured from
the Kinect V1 device, making it easier to extract them.

Although the web service hosted on Azure fails in retrieving
the images due to memory limitations sometimes, it still
responds with the extracted images in other cases. Furthermore,
the developed extractor in the Python language can be used
locally or be integrated with other applications to extract the
images from xed files regardless of the web service.

Future works include fixing the memory errors of the web
service and expanding the tool with a local application that
can be executed locally without command line. The extractor
can also be further improved by the addition of the capability
to extract depth information and by adding support to xef
files, generated by Kinect V2 devices using Kinect Studio 2.0
version.

ACKNOWLEDGMENTS

The authors would like to thank Daniel Jackson, for develop-
ing the original version of the extractor in the C programming
language.

REFERENCES

[1] A. Aloba, G. Flores, J. Woodward, A. Shaw, A. Castonguay, I. Cuba,
Y. Dong, E. Jain, and L. Anthony, “Kinder-gator: The uf kinect database
of child and adult motion.” in Eurographics (Short Papers), 2018, pp.
13–16.

[2] Y. Zhou, Y. Zhe, X.-d. Xu, J.-s. Zhai, and W. He, “Practice research of
classroom teaching system based on kinect,” in 2020 15th International
Conference on Computer Science & Education (ICCSE). IEEE, 2020,
pp. 572–576.

[3] Y. Tokuyama, R. J. Rajapakse, S. Yamabe, K. Konno, and Y.-P. Hung, “A
kinect-based augmented reality game for lower limb exercise,” in 2019
International Conference on Cyberworlds (CW). IEEE, 2019, pp. 399–
402.

[4] Y. Luo, T. Wang, A. Zhu, Z. Wang, G. Shan, and H. Snoussi, “Unmanned
trolley control based on kinect,” in 2018 Chinese Automation Congress
(CAC). IEEE, 2018, pp. 2218–2222.

[5] R. Hong, Z. Wu, T. Zhang, Z. Zhang, A. Lin, X. Su, Y. Jin, Y. Gao,
K. Peng, L. Li et al., “Preliminary verification of a kinect-based system
for evaluating postural abnormalities in patients with parkinson’s disease,”
Parkinsonism & Related Disorders, vol. 113, 2023.

[6] S. Das, A. Adhikary, A. A. Laghari, and S. Mitra, “Eldo-care: Eeg
with kinect sensor based telehealthcare for the disabled and the elderly,”
Neuroscience Informatics, p. 100130, 2023.

[7] J. C. Chow and D. D. Lichti, “Photogrammetric bundle adjustment
with self-calibration of the primesense 3d camera technology: Microsoft
kinect,” IEEE Access, vol. 1, pp. 465–474, 2013.

[8] M. J. Landau, B. Y. Choo, and P. A. Beling, “Simulating kinect infrared
and depth images,” IEEE transactions on cybernetics, vol. 46, no. 12, pp.
3018–3031, 2015.

[9] T. N. Syed, L. Jizhan, Z. Xin, Z. Shengyi, Y. Yan, S. H. A. Mohamed,
and I. A. Lakhiar, “Seedling-lump integrated non-destructive monitoring
for automatic transplanting with intel realsense depth camera,” Artificial
Intelligence in Agriculture, vol. 3, pp. 18–32, 2019.

[10] A. Z. K. Frisky, A. Harjoko, L. Awaludin, A. Dharmawan, N. G.
Augoestien, I. Candradewi, R. M. Hujja, A. Putranto, T. Hartono,
Y. Suhartono et al., “Registered relief depth (rrd) borobudur dataset for
single-frame depth prediction on one-side artifacts,” Data in Brief, vol. 35,
p. 106853, 2021.

[11] N. G. S. S. Srinath, A. Z. Joseph, S. Umamaheswaran, C. L. Priyanka,
M. Nair, and P. Sankaran, “Nitcad-developing an object detection, clas-
sification and stereo vision dataset for autonomous navigation in indian
roads,” Procedia Computer Science, vol. 171, pp. 207–216, 2020.

6



Figure 6. Sample images extracted from the tested xed files. The results from the original code we based on are shown in the left. In the right are presented
the images extracted by our solution.

7


