
Pixels Beyond Colors: Exploring Attributes and
Representations of Text-Art Images

João Sebastião de Oliveira Bueno
Independent Researcher

Campinas, Brasil
jsobueno@gmail.com

Abstract—Due to historical factors and hardware limitation,
printed characters have been around to represent images in digital
computers for longer than pixel-based raster images exist. With
modern hardware and an enrichment of available characters
the expressiveness of possible forms of image representation
with characters should’ve grown as an art form. However, the
modern use of character-based images as a digital art-form is
comparatively small. This work revisits the history of graphic
displays, and points to the absence of a widely accepted way to
create, store and transmit character-based images using several
text-based image capabilities as one of the factors that may
be delimiting this expression. It then moves towards proposing
techniques and terminology to make these more widespread.

Keywords—image processing; ASCII Art; Unicode; Pixels;

I. INTRODUCTION

Digital images nowadays are pervasive, and usually separated
in two big categories: vector based and raster based images.
The former can exist in a variety of formats and languages,
and have all kinds of different characteristics, even to the point
of being able to embed, or being composed of, turing-complete
computer programs, such as SVG and Postscript files. We are
here concerned with the later - “raster” images, which denote
an image in which all elements are explicitly given a value
with a predefined size in the output medium. Raster images
represented as a rectangular array of square Pixels (Picture
Elements). This has even become the de facto standard for
keeping photographs in society, since the use of film-based
photography fell into disuse. Not only still frames, but also
all existing video formats are devised so that each frame is
ultimately rendered to a rectangular grid of pixels, each pixel
holding a single color value.

Also, most devices created for displaying images, including
computer displays, televisions, printers, most augmented reality
headsets do render a grid-array of pixels. Even vector images,
otherwise free from pixel representation when being created,
stored or in transit, are usually displayed in a device that will
convert it to a rectangular array of pixels.

On the other hand, there is a computer application category
in which another rectangular grid with information in each po-

sition is used daily by millions of people: a computer terminal
- these days, more commonly, a computer-terminal emulator
in which system developers and computer operators type in
commands, monitor the health of running systems, trigger
the build of complex software and several other activities. In
computer terminals, each position in the grid, usually termed
as a “character cell”, can hold not only a foreground color,
like in images, but a glyph representing a character - and
this glyph can have a foreground color and a background
color. Moreover, most terminal emulators allow for extra text-
attributes indicating the character displayed can, for example,
be in bold, underlined or blinking.

Though we usually don’t think of what is displayed in
a terminal emulator as an image, it is so. While it can’t
represent a photography with the same real-to-life likeness that
a program that will use the device-pixels, much smaller than a
character block, for each element, it is an image that have an
intrinsic aesthetics, allowing not one, but various art categories
to exist - as well as being a medium more than appropriate
to render graphical information about any numeric chart like
we would use to view and compare measurement values in
spreadsheets or scientific applications. Moreover, in the 1980
decade, competing computer architectures without so called
“high resolution” graphics capabilities, and text-only modes,
implemented custom character glyphs in the 128-255 range,
not used by the 7-bit ASCII standard ([1]), to enable a finer
representation of images, subdividing the character blocks in
geometric areas. Character sets with all the combinations of
quadrants of a character block and sextants of a character block
were in use, and are now part of the Unicode specification. That
means one can mimic images in a text rectangular grid with a
resolution up to 6 times greater than the character resolution,
using these blocks to draw up to six pixels per character cell.
Even eight pixels per cell are possible if the braille unicode
characters are used for the same purposes, although such use
is font-dependent, and not recommended by Unicode itself.

This article is organized in the following way: this Intro-

1

duction presented the current uses for Digital Images, the
main categories in existence and the need to formalize images
represented with more attributes than a single color per picture-
element.Section II will bring an historic overview of how
images evolved in digital form, and how we got to the current
state. In Section III we have an analysis of the parameters
needed for fully representing a text-based image’s picture
elements and existing and possible models of Text Art. Section
IV explores possible file-formats and structures for archiving
and exchanging text-pixel based images, and Section V brings
a conclusion.

II. HISTORY AND THE CURRENT STATE OF DIGITAL IMAGES

In a typical raster digital image currently we have pixel
information conveyed as what got popularly called “true color”:
meaning each pixel carries its own color information, with
components for 3 primary colors (red, green and blue) with 8 bit
of information per component: a value ranging from 0 to 255
representing the intensity of that component. Although other
pixel formats exist, each having different ways of representing
human-perceived colors as an array of numeric components,
and different depths than 8 bit, what we care about in this article
is that the pixel color is the only information in each pixel.
Some image formats and applications allow for transparency,
and that is encoded as a 4th channel called “alpha”. Its precision
can vary, but is usually the same used for the color components
- so we have the color and transparency (or opacity) information
for each pixel.

While raster images are represented by pixels for over 6
decades now, few things have changed in recent decades -
among which the following features are built upon the original
concept of one numerically represented color per pixel. We list
the development and capabilities of pixel based images in order
to contrast them to “text based images” later on.

1) Square Pixels: Most raster images have standardized
to a square pixel (1:1 ratio). Up to the 1980s, as computer
graphics in 8 bit personal computers were limited by hardware
resources including memory and video signal generation, it was
not uncommon to have screen resolutions that featured non-
square pixels, and a distortion that would have to be taken in
account when reproducing a given digital image in a different
device. Nowadays basically, image pixels are decoupled from
device pixels, and the later anyway, just present an API were
pixels are square to any relevant drawing software. (e.g. DSLR
cameras will use non-square pixels in their “raw” format which
directly maps sensor data information, but will usually encode
the image into a jpeg file with square pixels). Early pixel
based image files were rather a dump of the video-memory
representation of an image, and since some of the early raster
pixel based display systems would not feature a 1:1 aspect

ratio, that ratio was carried on the image. One such non-square
system example is what is possible in the IBM CGA ([2]).

2) Transparency: It is now common to have transparent
pixels, allowing pixels to be more or less transparent, up to
fully invisible. The so-called “alpha channel” is commonplace
as a 4th channel along with one channel for each of Red, Green
and Blue colors, and contains independent opacity information.
Of course, that only makes sense if the image is to be overlaid
on a surface with another background - such images are
typically used as textures inside computer applications so that
the image with transparent pixels merge seamlessly into a
larger, “container” image. [3]

3) Colors: over the years pixels went from simply indicating
“set” or not “set”, known in literature as “bitmap” graphics,
to selecting a color from a predefined palette, to use “full
color”, in which each pixel carries independent color infor-
mation to deeper bit depths for representing each color. Again,
this evolution follows the increased computational capability,
mainly available memory, for representing images, as images
that are able to display an independent color value for each
pixel component. The GIF image format, created in the late
1980s deliberately used a 256 color palette allowing the infor-
mation for each pixel to fit in a single byte, thus getting to a
compromise of memory usage vs quality.

4) HDR: - “High Dynamic Range” in which pixels can
depict color values in non-linear ways, allowing scenes as
perceived from the “real world” to be represented with more
realism: since human eye color perception is not linear, trying to
linearize the intensity of colors with a flat number will usually
make for less colors than perceivable. A set of techniques to
display non linear color values, being able to add detail both
to shadow and to high-lighted areas is now used when passing
digital images around, usually with information associated in
the image meta-data, explaining how the numeric values in the
pixels are to be mapped to light or ink in the final output device.

5) Color Profiles: Images have a “color profile” information
associated and usually attached to their file, which informs
about standard transformation all colors in the image go
through compared to a standard, allowing color reproducibility,
and thus similar perception, across a wide variety of display
or printing devices. These are also used to describe the curve
mapping from pixel values to real-world light or color intensity,
enabling HDR.

6) Image Metadata: Not strictly associated with Pixels,
rather with image files, metadata associating data not directly
mapped to the pixels, rather describing information about the
image as a whole (like color profile, above), had been in com-
mon use. These include authorship and copyright information,
geolocation and many other ends not related to the present
work.

2

A. Text-Based Displays and Image Representation

It should be noted that text-based images are nothing new.
Actually in the early days of digital computers, the first human
readable output was printed text, in line printers adapted from
the accounting industry ([4]). While it is not easy to trace the
first uses of digital computers to represent imagery, drawing
with characters, it is almost a natural development. For one,
the breakthrough work in mathematics that first provided a
visualization of the Mandelbrot Set was published as late as
1978, and would display both a Julia set and a Mandelbrot set
for maye the first time, presented both as textual images ([5])

Later on, one of the longer standing terms to refer to text
based images was established as “ASCII Art” - referring to
drawings made with characters in monospaced text environ-
ments. Such images can be simply copy and pasted around,
even across the Web and social media. However contemporary
text-media on the web and messaging apps will usually be
rendered with varying width fonts (as opposed to monospaced
fonts) - and most “traditional” ASCII art representations,
specially multi-line drawings, created by the thousands in
applications that used text with monospaced fonts in the 1990s
and prior years won’t be displayed correctly.

The “ROFL Copter” (fig. 1), although crude, is a good
example of copy-and-pastable ASCII art that was used as
today’s “memes” in the 1990’s internet.

Fig. 1. ROFL-Copter - a famous ASCII Art work distributed as a meme in
the 90’s

It is interesting to note that the “file type” needed to convey
such ASCII Art images is a plain text file. The only special
thing about it being the new-line character representation that
could change across computer systems - otherwise the same
file could be displayed with no special coding across different
systems and output devices by simply printing it as text lines.
That is in contrast with pixel based images which need at
a minimum a predefined protocol of how the image-data is
to be arranged as pixels, either hard-coded in a program, or,
as became common later on, as metadata prefixed as header
information on various image file formats, including PNM,
TIFF, GIF, JPEG and PNG among several others.

As mentioned, even before it was usual for computers to
feature an interactive screen, representing images through a

character grid was a common place. One of the early human-
readable output devices for computers being text-line character
only printers, which, in contrast with more modern dot-matrix
printers, could only print preset characters and had no way
to print arbitrary graphics. If one would resort to use the “.”
(period) character for pixels, it could only be placed aligned
with a character cell, with a lot of surrounding empty space:
that would result in a low contrast image, and would be
characterized as a text image anyway. So, drawing with text
characters that was once the only way to create images by
using a digital computer: up to the late 1970s there was no way
to create raster-arbitrary pixel graphics on computers, even on
expensive setups - although the IBM 2250 display, from 1964,
could do vector graphics by connecting line-segments in a grid
of 1024×1024 coordinates (at a cost of USD 280,000.00) [6], it
still would not do pixel based images as we know them today:
it would take a list of vectors to draw on that grid, even if
a vector would be only drawing from one grid position to a
neighbor one, it would still be a line segment, not a single dot
as we understand a pixel today. And it would draw text using
several such line segments for each glyph, that being the origin
of a distinct look and feel for what are instantly recognized as
“vintage computer fonts”, like 3270font (fig. 2).

Fig. 2. 2370 font: a modern font targeted at code developers resembling the
look of fonts in vector based CRT terminals of the 1970´s ([7])

In the early 1970s graphic displays using raster lines in
CRT monitors became somewhat common [4], and by 1975,
the Sphere I, the first Personal Computer that could generate
a raster video signal with text was launched (soon to be
followed by the Apple Computer I). The Sphere I would feature
characters in a 32× 16 matrix, each cell able to represent 1 of
64 characters from an early ASCII set. [8] pp. 38.

The reason computers at this time could generate text and not
pixel-based raster graphics was simply memory, an expensive
resource: a 512 byte buffer was able to display a 32 × 16
character matrix, with the use of auxiliary character generator
hardware and a 2KB ROM containing a rasterized font. A single
byte representing the character would be placed in a pre-defined
memory cell, which would then be rendered to a full character
([8]) . A 256 × 192 B&W pixel based display, needed for a
32 × 24 text display of 8 × 8 pixel characters would require

3

6KB of RAM ([9] page 3.) - as used by the 1982 model ZX-
Spectrum.

From 1975 to the early 1990s, tens of 8 and 16 bit micro-
computer architectures were made available - each of them with
a unique display configuration able to generate an interactive
display with text, with later models able to generate raster-
graphics. Several of these models would define their own
custom character set for codes 128-255, as the ASCII table
would just define characters up to code 127. While some
computer families would use the proprietary charset to define
regional characters, like cyrillic or Hebrew, others would focus
on enabling a richer graphics experience, defining glyphs like
combinations of 1/4 block filled characters cells, characters for
drawing frames and double-frames of text, with corners and
joints, and figures like hearts, spades, clubs and diamonds and
others that have later evolved to today’s emojis. Several of
these custom characters were later incorporated into Unicode
([10]) and are today generally available in the web and other
computing environments.

Some of these text display architectures would feature,
besides the text itself, character attributes - like reverse text,
or underline, and even blinking text. With the popularization
of color displays, the possibility of having a foreground and
a background color per character cell also became available.
One of the most popular text screen formats that allowed such
a per-character color representation was the IBM PC - Color
Graphics Adapter (CGA) video mode 2, featuring a 80 column
x 25 lines text capability, with 2 bytes per cell: one for storing
the character code, and another full byte for the color, “bright”
and “flash” attributes for each character. This text mode was
kept standard for the PC even for later graphic adapters like
the EGA and VGA. [2].

As far as storing and retrieving a “full screen art” for this text
mode one could simply dump the first 4000 bytes (80×25×2)
of memory contents at the text area (hardcoded at the 0xb8000
memory address for CGA) to disk, and restore these same bytes
to that memory location for re-display. Each “text pixel” in this
format will take 2 bytes.

Other architectures would use the highest order character bit,
always 0 for the ASCII range, for the “highlighted” or “reversed
text” attribute.

Meanwhile, a little before, and in parallel to microcomput-
ers displays, mainframes text-terminals also evolved in their
capabilities - the Digital Equipment Corporation iconic VT-
100 terminal, from 1978, was one of the first to support what
are now called ANSI Escape Sequences - a standard published
to support in line control codes to select text attributes and
control the text flow. This means advanced text formatting
capabilities could be used by a program writing only sequential
data to its “stdout” stream, with no direct access to video-

memory or need for Operating System calls for scrolling text,
positioning the cursor or clearing the screen, as was needed
in micro-computers. These ANSI Sequences were designed to
be vendor neutral, and after their popular use in hardware
terminals for mainframes in the early 80s, were kept alive
in modern day Unixes - including Linux and MacOS, whose
text-console applications are known as “terminal emulators”, as
they mimetize the capabilities of those hardware based ones.
Microsoft OSes could make use of ANSI control codes through
special configurations in their terminal programs, and even in
2023 that is still not the default for Windows systems. The
direct impact for that is that rich text applications which run in
the terminal have to take special provisions, often providing
their own ANSI code to text flow and attribute managing
emulation layer, in order to work in Windows, even 4 and a
half decades after the introduction of the VT100. ([11])

The “ANSI character codes” themselves were not published
all at once, rather, relying on a series of documents built upon
the original ASCII (formally specified in the ASA X3.4-1963
document), by the American National Standards Association,
culminating in the ANSI X3.64 [12] specification.

III. TEXT-BASED IMAGES

As stated in the introduction, once we get to a textual
rectangular grid of characters, we can represent images with
completely different information than simply a color per image
element. One of our proposals is to keep calling such elements
“pixels”, although a better name can be found for them. For
the record of similar words, digital information describing
volumetric objects in a given 3D rectangular grid already used
the term “Voxel”.

A. Application Types

As far as talking about full-images for text terminals may
sound out of the conventional usage, and reserved just for niche
art-related applications, the truth is that more than one class of
applications can make use of text-based images, and not all
art-related.

1) CLI Applications: Developer and operator tools like
compilers and scripts have evolved using mostly a single serial
output stream for all their results - although a lot of modern
tools will use seamless cursor-movement commands and emoji
to mix things like progress bars and “passed” ticks into the
streamed result. CLI stands for “Command Line Interface”

2) Informational Applications: Long time informational ap-
plications will use screen refreshing to display a table of values
continually updated - one classic such application being the
posix “top” command.

4

3) TUI Applications: Classic business application environ-
ments will use a rich screen layout to display fields of infor-
mation which can be updated in place, and navigated through
keys like “tab” or arrow keys. Mainframe COBOL Applications
would use this approach from as early as the 1970s. The 80s
saw tools like Dbase III and Clipper which would allow for
the development of useful and practical businness applications
in a matter of minutes. In modern days, there is the Textual
[13] framework by Will McGugan that uses unicode characters
in innovative ways to draw borders and relief buttons, and
popularized the term Text User Interface (TUI) in contrast with
Graphical User Interface.

4) Artistic and Entertainment Applications: Although not
widespread, there are hundreds of video games, and tens of
applications for “painting” in the terminal which make use
of text as graphics. One such app is terminedia-paint by João
Bueno [14], which among other features, will allow one to paint
with arrow keys or even a mouse, type text in any of up, down
left or right directions and draw textual subpixels by setting
smaller squares inside each character cell, using 1/4 blocks,
1/6 (sextant) and braille unicode characters to effectively create
finer images than would be thought imaginable in a terminal.

Terminedia-paint is based on the Terminedia framework [15],
a Python project, which although not aimed at non-programmer
artists, do pack powerful tools for creating text-art, including a
simple drawing API able to do lines, rectangles, bezier curves,
the capability of rendering “big text” by using rasterized fonts
using 8x8 pixels per character in a 6 pixels per character cell
subpixel mode, using unicode Sextant characters, outputting
text in arbitrary directions with a programmable flow, instead of
just left-to-right, newline rewinds to one line down, left margin,
mixing in emoji characters and unicode-translations to emulate
character effects. (fig. 3)

Fig. 3. Text art demonstrating some of Terminedia’s capabilities by issuing
Python statements in an interactive session

B. Text-based image types

A text-based image will vary how it looks like depending
a lot not only on the authors intention, but on the capability
of the tool used for its creation and also, the tool or media
intended for its exhibition.

1) Classic ASCII Art: Early ASCII Art examples would
be hand-crafted in a 2 Dimensional ext editor, of the same
kind suitable for writing computer programs, and use “type-
able” only characters - mainly the subset “\ / + _ |” to
draw horizontal, vertical and diagonal lines, and a couple other
characters for filling up regions, or draw “eyes”.

In this category, we may possibly add “emoticons” - which
would usually fit in a single text line, and could be used inline
in text messages, such as smiley faces “ :-) ” or a crying feature
“ :’-(. These became so widespread that they eventually found
their way as standalone characters as specified by Unicode, in
what is now known as the Emoji character category. (fig. 1)

2) “Realistic” ASCII Art: A separate category can be given
by images that will emulate light and shadow areas of a real-
world photography or portrait by using a set of characters that
have a different weight of “ink” due to their visual density.
A scale of contrasting characters such as “ .,-OG*” can be
used to simply replace pixel-vales from light to dark creating
a visually compelling example, which, given a large enough
character grid, can be immediately identified as the original
image. (fig. 4)

3) EMOJI Loaded text: Some of the needs of integrating
graphics into text messages evolved naturally from ASCII art
emoticons into special characters that ended up receiving a
separate category in Unicode: the Emojis. The most obvious
case being the porting of the smiley drawn with “:-)” to
Unicode’s “WHITE SMILING FACE” (code=0x263A, “”).
Emoticons are special enough that they can be drawn as multi-
color graphics even in most setups where all other glyphs must
be monochromatic. The use of Emoji is nowadays widespread
in communication apps and social media, but the lack of
specialized tooling combined with the dominance of variable
width fonts in these media, restrict their use to a linear fashion,
with no possible way for one to draw a more complex shape
combining several emoji or other special characters.

4) Colored Character Blocks: An option used by several
tools is to take advantage of color capability in terminals and
use the Unicode “Full Block” (\u2588) character to represent
pixels. This approach emulates pixel-based raster images and
doesn’t use any of the special characteristics of text art. (fig.
5).

5) Unicode special shapes: Although Unicode had defined
several characters usable for drawing complex forms such as
character sub-blocks in all combinations, checkered patterns,

5

Fig. 4. ASCII Art for the Monalisa painting. Credits: the Author using the
Terminedia Python framework

triangle parts, specialized corners and frame-drawing charac-
ters, the lack of proper tools to draw (and type) these characters
make art using these characters, a lot of which introduced in
Unicode in 2019 [10], virtually non-existent.

6) Special character effects: Beyond colors, text terminal
emulators will usually add upon capabilities present in the VT-
100 terminals - which means special character effects such as
reversed text, underline, strike-through and even blinking text
are a possibility in several terminal emulator programs - but
none of these exist as part of a text art corpus, again for lacking
of a convention to replicate such effects.

7) Colored Text combining Words and Images: Digital artists
can sometimes go the extra mile and work on their own
toolchain to be able to create art featuring letters combined in
words, colors, making up shapes, enabling a unique authorial
style. One such artist goes by the artistic name 1mpo$ter on
social media, creating not only text-based stills, but looping
animations that, although rendered to rasterized videos, display
character-cell based images. (fig. 6). It is interesting to note
that one of the World’s most recognized text art, the character
cascades used to represent entering into the “cyberworld” in the
Matrix ([16]) movie series, falls in this category,although that
art is slightly enhanced at the pixel level, after the characters

Fig. 5. Monalisa painting rendered on color terminal with Full Block
characters. Credits: the Author using the Terminedia Python framework

rasterized, with each character featuring a palette of similar
shades instead of being monochromatic to mimic a vintage
phosphor display. This implies that the movie effect cannot
be fully replicated with text only graphics.

IV. STORING AND TRANSMITTING TEXT ART

As mentioned above, one way to store and transmit text
based images is to simply write a plain-text file. An universal
text-encoding, such as UTF-8 can even allow for any Unicode
defined character to be part of the result.

Moreover as raster lines are defined by the newline indicator
(in posix systems a \x0a, ASCII newline character), no meta-
data except the text encoding is needed to allow the file to be
interpreted and re-rendered.

However text files will hold only character information, and
no color, positioning or special effects - except that, as the
ANSI Codes [12] were designed for inband use, if one just
store the corresponding code for each character attributes in
the file, it will just work: one can create a “plain” .txt file
with ANSI sequences to reposition the cursor, if needed, and
change the printing foreground and background color for each
text-pixel.

In fact, the Terminedia [15] framework for text art uses that
output format. (it can’t at the time of this writing, read and
interpret embedded ANSI codes, though). The figure (fig. 5)
above, for example, can be encoded in a single file with the

6

Fig. 6. Still frame from the animation “Self Awareness” by 1mpo$ter on
twitter ([17])

Fig. 7. Detail of frame from the film Matrix [16] showing shaded characters
in the iconic cascade.

“terminedia-image” script that comes along with the frame-
work, and can be redisplayed in any terminal with the common

posix “cat” program. The same framework, however, uses
internally a 4-tuple for each character cell, in order to have all
possible characteristics for a text image: character, foreground
and background colors, and character effect, to which it adds
some unicode character translations (like subscript) to the well
known terminal effects of reverse text or blinking.

The major disadvantage here is the potential verbosity of
such a file - a singe color in ANSI Code is represented by a
sequence like “<ESC>[38;2;255;255;255m” that is, up
to 17 bytes for one color, and then 17 other bytes for the
background color - if we add effects, that is aout 40 bytes
per character, except that characters that will continuously be
set to the same attributes in the same row (like what is common
for written text, but not for text representing a picture), some
space can be saved as the same attributes are re-used.

1) Needed Resources for a Binary-Text-File: In contrast, if
an application would save text art in a binary format derived
from the idea used y the original IBM CGA [2], this would take
4 bytes for the character (using UTF-32 encoding), 3 bytes for
each color, and 1 byte for text effects, if there are less than
8 possible effects, for a total of 11 bytes per character cell.
The resource usage for this is actually negligible for today’s
memory and CPU capabilities, even for text terminals of a
rather large size. A terminal using full screen on a 4k device
(3840 × 2160px) would allow for a 480 column × 270 lines
of text with an 8× 8 character glyph grid - and that would use
1,425,600 bytes: less memory than needed to hold a 1024×768
full color image (2.3MB), a typical “one megapixel” image
from around the year 2003.

Also, it is important to note that any rich-text file format can
be used to convey most information available at text terminals.
Usually we don’t think of them like that because all default to
use a variable-length font, though a monospaced font can be
explicitly selected. These files include, but are not restricted
to: HTML Files with embedded styling information, Open
Document text files .ODT Microsoft Office Open file format
for text (DOCX), and Rich Text Format - but these files can
only be rendered back to display formatted text inside the
respective supporting WYSIWYG style applications (including
a Web browser in the HTML case). There is currently a lack
of tools able to render a subset of some of these files into a
text terminal environment. As for the size, these files require a
lot of extra metadata on one hand, but support compression on
the other, and generally are stored in a compressed form (but
for HTML). Also, for all of these formats the default “way
of writing”, even if configurable by adjusting the styles, is
with a variable width font, and automatic line wrapping at the
document width, with an explicit line break introducing a new
paragraph, instead of just proceeding to next physical line on
column 0: not sensible settings for creating drawings with text.

7

And least, but not least, any application could render text-art
with all the attributes we are considering into a conventional
pixel-based raster file, like a .PNG file - just by picking a
font and rendering it. We actually even use this strategy in
this article for the example images, and the visual impact is
preserved. Even the “blinking” effect could be represented in
an animated raster file like what is possible using the .GIF
format.

Wrapping up, while there are several alternatives for con-
veying text art, including colors, only a txt file with embedded
ANSI codes is currently supported due to inexisting tooling,
and there is an unknown demand for a format that could
allow for easy-to-edit text art. But that would not be carried
straightforward to a printer, for example: one would have to
render the art in a terminal program, take a pixel based screen
snapshot, and print that instead.

V. CONCLUSION

In this brief overview on the state of computer graphics and
the possibilities for text-art, we could say the main take out is
that there are many possibilities in using text for digital images
with artistic purposes. In particular when one takes into account
that each picture element will include not only a color attribute,
but a foreground color, a background one, a character and a
possible character effect, and may, as well represent any of the
tens of characters available in the Unicode set.

However, there is a current lack of tools that would enable
the full use of those capabilities, combined with special shaped
characters that exist since the 1980’s. Also, it is not trivial to
select a file format to store, transmit and replay such works of
art.

There could be a significant repressed demand for such tools,
and making then available, or more known, could possibly
“make ASCII Art great again”, along with other digital midia.

ACKNOWLEDGMENTS

Special thanks to Marcos Siriaco Martins for so many years
making Latinoware taking place and to Christiane Borges
Santos for been always ready to help me put this in written
form.

REFERENCES

[1] ITI, “2007 five-year maintenance review of incits/l2 standards: Incits
4 :1986 [r2002] information processing - coded character sets -
- unicode,” 2007. [Online]. Available: http://unicode.org/L2/L2006/
06388-review-incits4.pdf

[2] IBM , IBM Color/Graphics Monitor Adapter. [Online].
Available: https://minuszerodegrees.net/oa/OA%20-%20IBM%20Color%
20Graphics%20Monitor%20Adapter%20(CGA).pdf

[3] Compositing digital images. SIGGRAPH, January 1984. [Online].
Available: https://doi.org/10.1145/800031.808606

[4] A. F. Mayadas, R. C. Durbeck, W. D. Hinsberg, and J. M.
McCrossin, “The evolution of printers and displays,” IBM Systems
Journal, vol. 25, no. 3.4, pp. 399–416, 1986. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/5387686

[5] R. Brooks and P. Matelski, “The dynamics of 2-generator subgroups of
PSL(2, c),” in Riemann Surfaces and Related Topics: Proceedings
of the 1978 Stony Brook Conference, I. Kra, Ed., 1978.
[Online]. Available: https://abel.math.harvard.edu/archive/118r spring
05/docs/brooksmatelski.pdf

[6] Keydata Corp., “Computer display review,” pp. V.1980–V.1964, March
1970. [Online]. Available: http://bitsavers.informatik.uni-stuttgart.de/
topic/graphics/ComputerDisplayReview Mar70.pdf

[7] R. Bánffy, “3270font,” 2018. [Online]. Available: https://github.com/
rbanffy/3270font

[8] Sphere 300 Corporation, Operator and Reference Manual,
North Salt Lake, UTAH, USA, October 1976. [Online].
Available: http://bitsavers.trailing-edge.com/pdf/sphere/300-76-0001-1
Sphere Operator and Reference Manual Oct76.pdf

[9] S. Collins, “Computer graphics during the 8-bit computer game era,”
Jupiter, vol. 80, no. 3K, p. 8K, 1998. [Online]. Available: https:
//publications.scss.tcd.ie/tech-reports/reports.98/TCD-CS-1998-15.pdf

[10] Terminals Working Group and Doug Ewell and Rebecca Bettencourt
and Ricardo Bánffy and Michael Everson and Eduardo Marı́n
Silva and Elias Mårtenson and Mark Shoulson and Shawn Steele
and Rebecca Turner, “Proposal to add characters from legacy
computers and teletext to the ucs,” International Organization for
Standardization, Working Group Document, January 2019, proposal to
add characters from legacy computers and teletext to the UCS. For
consideration by JTC1/SC2/WG2 and UTC. [Online]. Available: https:
//www.unicode.org/L2/L2019/19025-terminals-prop-no-attachments.pdf

[11] J. Hartley, “Colorama,” 2023. [Online]. Available: https://pypi.org/
project/colorama/

[12] American National Standards Institute, “X3.64 additional controls
for use with american national standard code for information
interchange,” 1979. [Online]. Available: https://www.govinfo.gov/
content/pkg/GOVPUB-C13-3316fefd2127df2830d92e7a7411541c/pdf/
GOVPUB-C13-3316fefd2127df2830d92e7a7411541c.pdf

[13] W. McGugan, “Textual: A rapid application development framework for
python,” 2023. [Online]. Available: https://github.com/Textualize/textual

[14] J. S. O. Bueno, “terminedia-paint: Interactive app to create ascii-art and
unicode art in an interactive way directly from the terminal,” 2021.
[Online]. Available: https://github.com/jsbueno/terminedia-paint

[15] ——, “terminedia: Python3 library for multimedia functions at the
command terminal,” 2023. [Online]. Available: https://github.com/
jsbueno/terminedia

[16] L. Wachowski and L. Wachowski, “The matrix,” 1999.
[17] Imposter, 2023. [Online]. Available: https://twitter.com/ 1mposter/status/

1701964733295841479

8

