
A Middleware Proposal Towards The Compliance of
Small Business Databases with the LGPD
Yasmin Maria Zerbielli∗, Vinicius Begnini Felicio∗, Cristian Solutchak∗, William Kunzler∗,

Gustavo Schwitzki Peretti∗, Glória de S. P. Ozório†, Walter Priesnitz Filho† and Heitor Scalco Neto∗
∗Instituto Federal Catarinense, Concórdia, Santa Catarina, Brazil

Corresponding e-mail: zyasminmaria@gmail.com
†Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil

Corresponding e-mail: walter@redes.ufsm.br

Abstract—This proposal introduces a middleware development
solution aimed at enhancing data security measures for small
databases, thereby improving data protection compliance with the
Brazilian General Data Protection Law (LGPD). The middleware
uses MySQL Proxy to intercept traffic between the application
and the database. From the data obtained with MySQL Proxy, the
middleware extracts the characteristics of the query and applies
AES encryption. This proposal aims to make this adjustment
process transparent to the user without needing changes in the
database or application. The obtained results validate the proposal
for applying symmetric cryptography for the data previously
stored in the database and new MySQL operations.

Keywords—Software Architecture; LGPD; Cryptography.

I. INTRODUCTION

From the application of the Brazilian General Law for the
Protection of Personal Data (LGPD1), it is observed that several
institutions face the challenge of adapting their systems to guar-
antee the confidentiality, availability, and integrity of data. In
this sense, the LGPD represents a substantial change in the way
companies and organizations handle their customers’ or users’
information, requiring the application of stricter measures to
prevent data leaks and protect the privacy of individuals [1].

However, many companies, especially small ones, need help
implementing effective data security measures to prevent data
leakage. Such difficulties occur due to budget constraints and
a need for specialized technical knowledge. In this context, it
is crucial to find accessible and practical solutions that allow
small companies to protect their users’ data, seeking to comply
with the LGPD.

Based on this context, together with a MySQL Proxy, a script
was developed in Lua2. The middleware uses the language Lua
due to its effectiveness in performance and agility in devel-
opment. Its portability allows adapting to different operating
systems with few code changes. Furthermore, it is crucial to

1In Portuguese: Lei Geral de Proteção de Dados Pessoais
2https://www.lua.org/about.html

highlight LuaJIT3, a just-in-time (JIT) implementation of the
language, widely recognized for its substantial performance
improvements in comparison with the default implementation
[2].

This work presents an approach that integrates a MySQL
Proxy, a script in Lua with a symmetric cryptography algorithm,
to create a middleware4. The proposed resource aims to provide
companies with the possibility of data protection via encryption
without the need to change or even replace the business
management system.

MySQL Proxy acts as an intermediary between the database
and the application, providing an additional layer of security
by protecting access to data. From this middleware, it is
possible to manipulate database queries/operations, maintaining
an encrypted database according to the sensitivity of the data
contained in each table.

Symmetric encryption algorithms change sensitive informa-
tion into an encrypted format for unauthorized users, thus
ensuring that the data remains scrambled even in the event
of leaks. This work presents a data protection solution aimed
at small companies/systems. The successful integration of
middleware, using MySQL Proxy with the script for handling
SQL commands developed in Lua, brought significant results
in terms of security.

This work is organized as follows: Sections II and III present
general concepts about LGPD, symmetric cryptography, and
the AES algorithm (Advanced Encryption Standard). Section
IV presents MySQL Proxy concepts. In Section V, the mate-
rials and methods used for the development of this work are
discussed. Finally, in Section VI, the conclusions reached so
far are presented, as well as the next steps and expected results
for the future.

3https://luajit.org/luajit.html
4Available at: http://github.com/labsep/privacy-shield-mysql-proxy

1

II. BRAZILIAN GENERAL DATA PROTECTION LAW - LGPD

Approved on August 14, 2018, the Brazilian General Law
for the Protection of Personal Data (LGPD) aims to regulate the
processing and collection of personal data, including through
digital means. Although the LGPD has been approved, specific
regulations and detailed guidelines from the National Data
Protection Authority (ANPD5) remain experimental. The law
aims to protect fundamental rights, such as freedom, privacy,
and free development of the natural or legal person, public
or private. Concerning companies, the LGPD aims at greater
reliability in data management, facilitating the analysis and
control of personal and business data to minimize the impacts
caused by data leaks. It is worth mentioning that the law applies
to data management for economic purposes. In the event of non-
compliance with the law, data processing agents are subject to
some administrative sanctions [3].

III. SYMMETRIC ENCRYPTION

Symmetric encryption algorithms use a single key for the
encryption and decryption process, meaning only the sender
or the recipient of a message can decrypt the encrypted
content [4]. Furthermore, due to the use of a single key in
the encryption process, symmetric algorithms provide greater
agility when compared to asymmetric algorithms, which re-
quire the use of two keys for communication. Examples of
symmetric encryption algorithms include the Data Encryption
Standard (DES), the Triple Data Encryption Standard (3DES),
the Blowfish, the Cast-128, the Advanced Encryption Standard
(AES), the Salsa20 and the RC2 [5]. As mentioned in [1],
through tests involving algorithms described previously, it was
concluded that the most effective symmetric algorithm is the
AES. The analysis of the function calls and the necessary time
to perform the encryption and decryption process revealed a
superior performance of this algorithm in both aspects, even
after the predefined values gradually increased. Therefore, the
algorithm chosen for the experiments in this work was AES.

A. Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES), works with 128-
bit data blocks and can use 128, 192 and 256-bit keys. To
execute the encryption, four stages are required: AddRoundKey,
SubBytes, ShiftRows and MixColumns [6]. The algorithm is
known for its resistance to cryptanalysis attacks, being used
in several applications. It is also notable for being selected by
the National Institute of Standards and Technology (NIST) as
a secure encryption standard. The AES used in the proposal is
already found natively integrated in MySQL, and can be used

5In Portuguese: Autoridade Nacional de Proteção de Dados

with the functions AES ENCRYPT and AES DECRYPT. The
default method used by MySQL is the AES-128-ECB [7].

IV. MYSQL PROXY

The MySQL Proxy is a tool that acts as an intermediary be-
tween the clients and the MySQL server. This communication
occurs through a MySQL network protocol. Its function is to
receive connection from clients and redirect them to the appro-
priate servers, helping to optimize the functioning of a database.
A feature of MySQL proxy is the ability of intercepting and
modifying Structured Query Language (SQL) commands sent
by the clients before they are sent to the MySQL server. This
allows the implementation of the additional logic, as caching,
power balancing, data partitioning, encryption and decryption,
among other possibilities [8].

V. DEVELOPMENT

Recognizing the problem of compliance with LGPD in small
companies, the proposed middleware intercepts the communi-
cation between the management system and the database to
execute the process of encryption with the data that the system
administrator deems necessary. In this section, the utilized
methodology will be discussed in detail.

Receive Package

Extract Data

Send Package

Package is a Query?

Encrypt/Decrypt Data

Rebuild Query SQL

No

Yes

JSON reading

Figure 1. Middleware Operation

The operation of the developed middleware is explained from
Figure 1. Initially, the system reads the encryption settings,
which are stored in a JavaScript Object Notation (JSON) file
automatically generated when the middleware is connected to

2

MySQL at first time, offering the administrator the options
to choose which columns will be considered necessary to be
encrypted, from an interface. An example of this file can be
seen in Figure 2.

local DATABASE_CONFIGURATION = {
 name = "labsep",
 tables = {
 {
 name = "users",
 columns = {
 {
 name = "name",
 type = "VARCHAR(255)",
 encrypt = true
 },
 {
 name = "cpf",
 type = "CHAR(11)",
 encrypt = true
 },
 }
 }
 }
}

Figure 2. Example of generated JSON file

When the middleware is initialized, the JSON file is read
and stored in a Lua table6. Then, packets that may include
a string containing diverse data are captured. These data can
range from a query to a notification informing that a database
switch occurred. When a packet is captured, a verification is
performed to determine if the captured packet is a query; if
not, the packet is redirected directly to the server. However, if
the packet is a query, another verification will be performed to
certify the existance of a connection with the database.

Posteriorly, the step of selecting database encryption con-
figuration begins. It is performed by comparing the database
name described in the JSON file with the database name being
used by the client. After that, the SQL query is extracted by
string manipulation techniques, resulting in a new Lua table.
Then, the middleware verifies if the query type is processable.
If the result of this verification is positive, a second verification
is performed to identify the specific query type, presenting the
possibility of it being a write or read query. Depending on this
result, different paths will be followed.

If a read query is identified, the middleware extracts the data
from the table and selects the appropriate encryption configu-
ration. Then the columns are decrypted and normally converted

6Map-like data structure, known in other programming languages.

back to their original type. An example of a correspondent SQL
code to this operation is presented below:

SELECT
CAST(AES_DECRYPT(CPF, ’EncryptionKey’) AS CHAR(11)),
CAST(AES_DECRYPT(AGE, ’EncryptionKey’) AS INT))
FROM patients
WHERE
CAST(AES_DECRYPT(AGE, ’EncryptionKey’) AS INT) >= 18

It can be observed that, since the query is a read query, the
command will decrypt the requested data to display it to the
requester.

If the identified query is a write query, the processes executed
are different from the ones executed with read queries. Initially,
the middleware extracts the data from the string received and
selects the encryption configuration to the table in question.
Due to the fact that the middleware only encrypts data cat-
egorized as CHAR, the next step consists of converting the
encrypted values to this specific data type. After that, the
data are encrypted. As an example of an INSERT command
processed after encryption, a code example can be seen below:

INSERT INTO patients (CPF, AGE) VALUES (
AES_ENCRYPT(’101.202.303-90’, ’EncryptionKey’),
AES_ENCRYPT(CAST(17 as CHAR), ’EncryptionKey’)

);

The approach for other write commands (DELETE and
UPDATE) follows the same pattern as the code above.

It is worth noting that, regardless of the type of the identified
query, the process converges to a single path. After the specific
operations of each type of query are concluded, the middleware
checks if the query contains a condition (WHERE clause). If
the query does not include any condition, it is redirected to the
compilation process. Otherwise, the data related to the condi-
tion are extracted, the columns are decrypted and converted to
their original type. Posteriorly, the query is compiled and the
old query is replaced by the new one. Finally, the packet is
sent to the application.

With the process completed, the times measured in the end of
operations were observed. A Dell Inspiron 7599 notebook was
used, containing an Intel(R) Core(TM) i5-7300HQ processor,
with a CPU @2.50GHz, with 8GB of RAM memory. The
time differences between native MySQL and MySQL Proxy,
with and without encryption, can be seen in Figure 3. The
graphic illustrates the time execution, in milliseconds, of dif-
ferent operations performed in a MySQL database system.
The native version of MySQL is established as a baseline for
each of these operations, being considered a benchmark in
terms of performance. The main objective of the graphic is
to demonstrate the comparison of the perfomance of the native
version, with and without encryption, against the performance

3

MySQL Native MySQL/Encrypted MySQL Proxy MySQL
Proxy/Encrypted

0

2

4

Ti
m

e
(m

ill
is

ec
on

ds
)

Insert Select Delete Update

Figure 3. Comparisons between execution times

of MySQL Proxy, also with and without encryption. It should
be noted that the values presented in Figure 3 come from the
arithmetic averages of time obtained by repeating the tests 10
times.

After analyzing Figure 3, it was possible to observe notable
time disparities between the native version of MySQL and the
MySQL Proxy, especially in UPDATE, DELETE and INSERT
commands. The SELECT command in MySQL Proxy, despite
obtaining higher times compared to native MySQL, was the one
that came closest to the reference times, both with encryption
and just with MySQL Proxy. The commands that presented
higher discrepancy with the reference time were UPDATE and
DELETE in MySQL Proxy without the implementation of
an encryption. It is believed that the high time taken by the
operations of these commands occurs due to the methods of
string processing implemented in the script developed in Lua.
However, it is important to notice that this is an effective and
cost-free solution to institutions that do not have specialized
technical professionals able to adapt their systems to LGPD.

VI. CONCLUSIONS

Given what has been shown, it is possible to identify that
compliance with LGPD has been a significant challenge to
small businesses. The proposal presented in this article aims
to assist in this process of control and processing of sen-
sitive personal data, with the objective of intermediating a
management system and one or more databases, providing the
definition of which data will be encrypted, based on the choice
from the administrator. However, it is possible to identify
that this feature helps the company adapt to legislation, and
consequently increases the privacy and necessary protection
of sensitive data entered into the management system, without
requiring manual modifications to the system and database. It is
worth noting that to comply with the LGPD, compliance with
many other actions is necessary in addition to the proposed
middleware.

As a performance discrepancy between native MySQL and
MySQL Proxy was observed, as it is shown in Figure 3,
improvements are needed in this regard. Therefore, as proposals
for future works, it is intended to utilize other programming
languages, as C, C++, Go and Python, also comparing the
execution times obtained in the usage of each one. As in
Lua, Python also contains tools to improve its performance,
as PyPy7. In addition to conducting performance tests in larger
databases, another need for future work is the implementation
of a function capable of changing the database’s encryption key
in the event of a supposed key leak.

REFERENCES

[1] Y. Maria Zerbielli, I. Karine Maziero Marchese, M. Amélia
Mafessoni Herpich, W. Priesnitz Filho, and H. Scalco Neto,
“Protection of personal data in health using symmetric encryption:
a comparative study between different algorithms,” Concilium,
vol. 23, no. 5, p. 199–214, mar. 2023. [Online]. Available:
https://clium.org/index.php/edicoes/article/view/1064

[2] Lua, “Luajit,” 2023. [Online]. Available: https://luajit.org/luajit.html
[3] Brasil, “Lei nº 13.709, de 14 de agosto de 2018. dispõe sobre o tratamento

de dados pessoais [...].” Brasil, Brası́lia, DF, 2018. [Online]. Available:
http://www.planalto.gov.br/ccivil 03/ ato2015-2018/2018/lei/l13709.htm

[4] W. Stallings, “Criptografia e segurança de redes princı́pios e práticas, ch.
6,” 2006.

[5] M. Al-Shabi, “A survey on symmetric and asymmetric cryptography
algorithms in information security,” International Journal of Scientific and
Research Publications (IJSRP), vol. 9, no. 3, pp. 576–589, 2019.

[6] M. J. Dworkin, E. B. Barker, J. R. Nechvatal, J. Foti, L. E. Bassham,
E. Roback, and J. F. Dray Jr, “Advanced encryption standard (aes),” 2001.

[7] MySQL, “Mysql documentation,” 2021. [Online]. Available: https:
//dev.mysql.com/doc/

[8] ——, “Mysql proxy documentation,” 2021. [Online]. Available: https:
//downloads.mysql.com/docs/mysql-proxy-en.pdf

7https://www.pypy.org/

4

