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Abstract—Pneumonia is a serious respiratory infection that
presents significant diagnostic challenges due to the variability in
its symptoms and its overlap with other respiratory diseases. This
study investigates the potential of diagnostic uncertainty labels
to enhance CAD system’s pneumonia classification. Specifically,
it explores the feasibility of a ternary classification approach
(classifying X-rays as positive, negative, or uncertain), introducing
uncertainty as a distinct diagnostic category, aiming to provide
a more nuanced and cautious classification of pneumonia. Data
processing techniques, including undersampling to balance classes,
image resizing, and data augmentation, were applied. Transfer
learning with the CheXNet model was then employed in a Monte
Carlo cross-validation framework across 16 random data splits.
The ROC curves and the areas under the ROC curves for
the uncertainty class were analyzed, challenging the notion that
uncertainty cannot be effectively characterized. The results indi-
cated a degree of class separation, indicating that the uncertainty
carried enough information to be characterized and suggesting
the viability of the envisioned ternary model. Additionally, due
to the exclusive use of frontal view X-rays and application of
undersampling, results are expected to be further improved in
future research.

Keywords—Transfer Learning; CheXpert; CheXNet; Uncer-
tainty; Pneumonia Classification.

I. INTRODUTION

Pneumonia is a severe respiratory infection that causes mil-
lions of deaths every year [1], causing inflammation in the lungs
and impairing the exchange of essential gases for life. It can
range from mild to fatal, particularly among vulnerable groups
such as children, the elderly, and individuals with compromised
immune systems. Its diagnosis usually relies on radiological ex-
ams, such as thoracic X-rays, which are crucial for confirming
the presence of the infection [2]. Due to its varying nature, the
patterns that pneumonia can produce in radiographs are usually
similar or even overlap with patterns from other diseases,
adding a degree of uncertainty that can complicate its diagnosis
[3]. With the increasing adoption of artificial intelligence tech-
nologies in medicine, computer-aided diagnosis (CAD) models
have been widely used to assist in detecting abnormalities in

radiological images [4]. Traditionally, these models are binary,
classifying images as either positive or negative for a particular
disease. While useful, these models have significant limitations,
specially in cases where the distinction between one or more
diseases is unclear. In such situations, a binary diagnosis may
be inadequate, leading to sub-optimal clinical decisions that can
negatively impact patient treatment. In this study, the CheXpert
[5] database, known for its inclusion of uncertainty labels,
was utilized to focus specifically on pneumonia observations
of frontal X-rays. The aim was to assess the feasibility of a
ternary classification approach, categorizing thoracic X-rays as
positive, negative, or uncertain for pneumonia, so as to provide
a more cautious auxiliary diagnosis and prevent immediate
binarization of border cases. A transfer learning strategy was
implemented using the CheXNet [6] model within a Monte
Carlo cross-validation framework across 16 random data splits.
The primary evaluation metrics were the ROC curve and the
area under the ROC curve (AUC-ROC) for the uncertainty
class. To evaluate whether the model had discriminative power
over the uncertainty class, we analyzed the ROC and AUC-
ROC metrics for uncertainty over all the 16 splits.

II. CONVOLUTIONAL NEURAL NETWORKS (CNNS)

First introduced in 1989 by LeCun et al. [7], CNNs have
deeply affected numerous fields of research. Due to their ability
to automatically and adaptively learn features from multidimen-
sional data, they revealed themselves to be particularly effective
in visual data analysis tasks [8]. For this reason, they are widely
used in the medical field [9], specially in radiology [10], being
a fundamental part of many CAD systems.

A. CNNs Architecture

CNN models are usually composed of many different layers,
all sharing complex parameters with each other. Some of the
more noticeable ones are:
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1) Convolutional Layers: These layers use filters (or ker-
nels) to perform a mathematical operation called convolution
(hence the name) in input data. These filters are learnable
parameters, meaning they can be optimized to produce mean-
ingful feature maps that capture spatial hierarchies, such as
edges, textures and objects [11].

2) Pooling Layers: These layers are used to diminish the
spacial dimension of images and feature maps, reducing com-
putational complexity and preventing overfitting (when the
model fails to generalize to new data) [12].

3) Regularization Layers: Regularization layers in neural
networks are used to introduce constraints to the training
process. A common example is the dropout layer, a widely used
regularization technique where a random fraction of neurons are
ignored during each training iteration. This prevents the model
from relying too heavily on specific neurons, encouraging it
to learn more generalized features. Dropout is particularly
effective in reducing overfitting and improving the model’s
ability to perform well on unseen data [13].

4) Activation Layers: Non-linear activation functions, like
ReLU (Rectified Linear Unit), are applied after convolutional
and dense layers to introduce non-linearity into the model,
enabling it to learn more complex patterns.

5) Dense Layers: In dense layers, also know as fully con-
nected layers, each neuron is connected to every neuron in the
previous layer, which allows for the combination of features
learned by earlier layers [14]. Therefore, they are typically at
the end of CNN models, being used to map produced features
to classes, classifying the data.

III. TRANSFER LEARNING

Transfer learning (TFL) is a broad term that is used to refer
to model training techniques that leverage knowledge acquired
from solving one problem to address a different, but related,
problem [15]. By applying knowledge gained from previous
tasks, TFL reduces the need for extensive training on a new
problem, making it particularly valuable in situations where
data is scarce. A common TFL example is feature extraction,
where a previously trained model, called the base model, is
used to extract features to be used in a new task. An illustrative
example of transfer learning can be seen in Figure .

A. Fine-Tuning

The term fine-tuning refers to a specific subset of transfer
learning techniques in which previously learned weights from
a base model are slightly modified or “fine-tuned”, allowing
the base model to adapt to the characteristics of a new problem
[16]. Although the terms “transfer learning” and “fine-tuning”
are commonly used interchangeably in the literature, it’s im-
portant to note that they are not synonymous [17].

Fig. 1. Transfer learning example. See attributions section

1) Classifier Warmup and Joint Optimization: A very com-
mon problem faced by fine-tuning is what is referred to as
catastrophic forgetting: when the modification of the base
model’s weights leads to the loss of previously learned knowl-
edge [18]. To mitigate this issue, its considered best practice
to firstly do a “classifier warm-up” stage in the fine-tuning
pipeline. In this stage, the weights of the base model’s con-
volutional layers are frozen, allowing for newly introduced
dense layers to train by themselves. This step greatly reduces
the risk of catastrophic forgetting in traditional fine-tuning
methods [19] [17]. This stage is typically followed by a joint
optimization stage in which the base model’s convolutional
layers are unfrozen, allowing all the layers to train jointly at a
low learning rate.

IV. MODEL EVALUATION

A neural network model that cannot effectively learn from its
training data is of limited practical use, as it would result in a
high number of false positives and false negatives—commonly
referred to as underfitting. On the other hand, a model that
fails to generalize to new data is equally problematic, as it
cannot solve tasks outside of its training scope, a situation
known as overfitting. To mitigate these issues, the model
should be validated on unseen data during training, being
evaluated using relevant and informative metrics. Additionally,
performing cross-validation is considered a best practice. This
method involves analyzing the model’s performance across
different training and validation partitions, offering an unbiased
estimation of its generalization and overall performance. The
evaluation metrics and methods employed in this study are
typically defined for binary classification (positive and negative
predictions) but can be adapted for multi-class problems using

2



a one-vs-rest approach [20], as implemented by the authors. A
brief overview of these metrics and methods is provided below.

A. ROC Curve and AUC-ROC

1) ROC Curve: First used in signal analysis in the Second
World War to detect enemy objects in the battlefield [21], the
ROC curve presents itself as a useful metric to asses model
quality. It is truly multidisciplinary, being used in the fields
of meteorology, astronomy, medicine, computer science and
others. The ROC curve plots, as can be seen in , the false
positive rate (FPR) against the true positive rate (TPR) as the
decision threshold decreases. The TPR is the proportion of
correctly identified positive cases out of all positive samples,
while the FPR represents the proportion of false positives
among all negative samples. In ROC space, a perfect classifier
is represented by the point (0, 1), indicating 100% TPR and 0%
FPR at a specific decision threshold. In contrast, a classifier that
performs no better than random guessing is represented by the
diagonal identity line, reflecting no distinction between positive
and negative cases at all thresholds [22].

Fig. 2. ROC example. See attributions section.

2) AUC-ROC: Usually used in conjunction with the ROC
curve, the AUC-ROC score represents the area under the ROC
curve, providing a single value that summarizes the model’s
overall ability to distinguish between positive and negative
classes. A perfect model achieves an AUC-ROC of 1, indicating
flawless discrimination. In contrast, a random classifier has an
AUC-ROC of 0.5, reflecting no predictive power [22].

B. Cross-Validation

When evaluating the performance of a model or assessing
data quality, relying solely on static partitions for training
and validation can be misleading. Observed performance on a
specific partition might not accurately reflect how the model
will perform on other partitions or in real-world scenarios.

To address this, it is considered best practice to use cross-
validation, which provides a more reliable assessment of a
model’s performance.

Cross-validation is a robust evaluation technique designed to
test a model’s ability to generalize to unseen data. This method
involves dividing the dataset into multiple subsets, known
as “folds”. During the cross-validation process, the model is
trained and validated multiple times, with each fold serving
as both training data and a validation data at different stages.
By systematically rotating through these folds, cross-validation
ensures that the model is evaluated across a diverse range
of data scenarios. This comprehensive approach minimizes
biases and provides a more accurate measure of the model’s
performance.

In addition to cross-validation, a final evaluation on a sep-
arate test subset is optional but can be beneficial. This final
evaluation involves assessing the model’s performance on a
completely unseen subset of data that was not used during the
cross-validation process.

1) Monte Carlo Cross-Validation: The Monte Carlo cross-
validation (MCCV) method consists in training and validating
the model with random splits in a repeated fashion, with no
guarantee of non-overlapping samples between them. Because
of this, when compared to other cross-validation methods,
MCCV tends to reduce variability and computational complex-
ity at a cost of increased bias [23].

V. MATERIALS AND METHODS

This work was conducted on Fedora 38 in a Anaconda
[24] environment with Python 3.11.4 on a Ryzen 7 3800X
machine with 48GB of RAM and a P2200 Quadro graphics
card. Detailed descriptions of the used dataset, pre-processing
techniques, model training and evaluation are provided bellow.

A. Dataset

A particularly challenging aspect of training a model to
classify diagnostic uncertainty is the apparent lack of radio-
graph datasets with uncertainty labels. As a result, the choice
of dataset was primarily driven by the availability of these
annotations, leading to the selection of CheXpert. CheXpert
is a large public dataset for chest radiograph interpretation,
consisting of 224,316 high-quality frontal and lateral thoracic
X-rays from 65.240 patients.

B. Base Model

Given its extensive training for pneumonia classification, the
CheXNet convolutional network was adopted as the base model
for this experiment. The top layers of CheXNet, including the
dense layers responsible for classification, were removed and
replaced with new ones.
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C. Pre-Processing

The scikit-learn [25] and imblearn [26] libraries were used
in the pre-processing phase for their broad set of utility func-
tions. Since CheXNet was trained exclusively on frontal view
thoracic x-rays for pneumonia classification, this experiment
was similarly restricted to frontal views of the thoracic region,
focusing specifically on pneumonia cases. Consequently, the
effective size of the dataset was reduced significantly. The
resulting distribution of the cases can be visualized in Table
I.

TABLE I
CHEXPERT’S PNEUMONIA OBSERVATIONS

Pneumonia Label Num. of Cases

Positive 3738

Negative 170685

Uncertain 16604

Due to the highly skewed class distribution, which had
significantly impaired the model’s performance in previous ex-
periments, random undersampling was applied to achieve class
balance, resulting in 11,214 cases evenly distributed across all
classes. The remaining images were resized to 224x224 pixels
and augmented with horizontal flip transformations to enhance
data diversity. Due to the fact that CheXNet was itself based
on DenseNet121 [27], the images also had to be normalized
according to the ImageNet dataset [28] standards.

D. Model Architecture

In light of it’s ease of use and extensive documentation, the
keras [29] library was used for model construction, training and
evaluation. As said previously, this experiment used CheXNet
as a base model. The base model’s original classification
layers were removed. It was followed by a dropout layer for
regularization, two dense layers with ReLU activation and an
output layer with three neurons and softmax activation, as
illustrated in Figure 3.

E. Training and Evaluation

To ensure robust results, the training-evaluation pipeline
was conducted in a Monte Carlo cross-validation framework
(MCCV), repeating the process across 16 iterations on ran-
domly split data, as depicted in Figure 4. This cross-validation
method was selected due to its balance of ease of use and
memory efficiency. The Adam optimizer [30] and Categorical
Cross Entropy were used for optimization and loss calculation,
respectively.

Training proceeded in two stages: classifier warmup and joint
optimization. In the classifier warmup stage, the base model

Fig. 3. The Model’s Architecture

Fig. 4. MCCV Framework

was frozen, allowing only the newly added dense layers to be
trained independently. The training was set to run for 40 epochs
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with an initial learning rate of 10−3. Two callbacks were em-
ployed during this stage: EarlyStopping, which halted training
if the loss plateaued for 8 epochs, and ReduceLROnPlateau,
which reduced the learning rate by a factor of 10 if the loss
plateaued for 4 epochs.

In the joint optimization stage, the base model was unfrozen,
enabling simultaneous training of both the pre-trained and
dense layers. This stage was conducted over 4 epochs with
a fixed learning rate of 10−4.

Finally, the ROC curve and AUC-ROC for the uncertainty
class were calculated using the validation data. The results from
each iteration were then aggregated to provide a comprehen-
sive assessment of the model’s discriminative power for the
uncertainty class.

VI. RESULTS AND DISCUSSION

Figure 5 displays the mean ROC curve for the uncertainty
class computed across all splits. The individual ROC curves
were omitted in order to avoid clutter. Table II presents the
AUC-ROC values for each split. As can be seen, the mean
ROC curve rests above the chance level, reflecting an AUC-
ROC value of 61%. AUC-ROC values for each individual split
also surpass the chance level, indicating a notable degree of
class separation.

A. Potential Drawbacks

In radiology, the standard procedure for thoracic x-rays
involves obtaining two distinct views: a frontal (typically
posterior-anterior) view and a lateral view [31]. This dual-view
approach allows for a more thorough evaluation of the thoracic
cavity, as it provides different angles that can reveal potential
abnormalities that might not be visible from a single perspec-
tive. Similarly, in the field of computer vision, incorporating
multi-view images can enhance the accuracy of AI models,
being particularly beneficial in scenarios involving high inter-
class similarity [32], which the authors suspect characterizes
their data. They believe that neglecting the lateral views,
which are available in CheXpert, impacted its performance.
Another factor that may have affected performance is the use
of undersampling, which might have diminished data diversity.

VII. CONCLUSION

These results indicate that the model consistently performs
better than random guessing, suggesting that the uncertainty
class contains sufficient information to be effectively char-
acterized and supporting the viability of a ternary model.
Additionally, it is important to note that these results are
expected to improve, given that the study was limited to frontal
views and involved undersampling, which may have restricted
data diversity.

Fig. 5. Average Roc Curve with std. dev.

TABLE II
SPLITS’ AUC-ROC FOR UNCERTAINTY

Split AUC-ROC

1 0.6129

2 0.6141

3 0.6263

4 0.6407

5 0.6105

6 0.6195

7 0.6052

8 0.6211

9 0.6236

10 0.5899

11 0.5994

12 0.6101

13 0.6203

14 0.6095

15 0.6272

16 0.6076

VIII. FUTURE WORK

In future work, the authors pretend to incorporate CheXpert’s
available lateral view X-rays. Additionally, the authors aim to
identify an alternative solution to undersampling, in order to
mitigate the impact of class imbalance during the training and
validation stages.
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[32] M. Seeland and P. Mäder, “Multi-view classification with convolutional

neural networks,” PLOS ONE, vol. 16, no. 1, pp. 1–17, 01 2021.
[Online]. Available: https://doi.org/10.1371/journal.pone.0245230

6


