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Abstract—Computer Vision in general presented several ad-
vances such as training optimizations, new architectures (pure
attention, efficient block, vision language models, generative mod-
els, among others). This have improved performance in several
tasks such as classification, and others. However, the majority of
these models focus on modifications that are taking distance from
realistic neuroscientific approaches related to the brain. In this
work, we adopt a more bio-inspired approach and present the
Yin Yang Convolutional Network, an architecture that extracts
visual manifold, its blocks are intended to separate analysis of
colors and forms at its initial layers, simulating occipital lobe’s
operations. Our results shows that our architecture provides State-
of-the-Art efficiency among low parameter architectures in the
CIFAR-10 dataset. Our first model reached 93.32% test accuracy,
0.8% more than the older SOTA in this category, while having
150k less parameters (726k in total). Our second model uses 52k
parameters, losing only 3.86% test accuracy. We also performed
an analysis on ImageNet, where we reached 66.49% validation
accuracy with 1.6M parameters. We make the code publicly
available at: https://github.com/NoSavedDATA/YinYang CNN.

Keywords—Convolutional Neural Networks; Bio-inspired Neu-
ral Networks.

I. INTRODUCTION

The field of Neural Computer Vision has presented a great
advancement, for instance, Convolutional Neural Networks
(CNN) were proposed as a way to reduce the computational
complexity of images in relation to densely connected neural
networks [1]. AlexNet [2] revolutionized Computer Vision
and Artificial Neural Networks (ANN) with an efficient GPU
implementation of convolution operations. Further, improved
neural network architectures were proposed.

Some of these architectures include: mobile model families
as MobileNet [3], EfficientNet V2 [4] and RegNet [5]; two-
branch neural networks for semantic segmentation, as BiSeNet
[6], Deep Dual-Resolution networks [7] and SeaFormer [8];
pure attention mechanisms applied into image classification,
such as ViT [9] and MaxViT [10]; image generative models like
Stable Diffusion [11] and DALL-E-2 [12]; and lastly, vision-

language models, as CLIP [13]. The majority of these architec-
tures focuses on increasing model efficiency by improving the
micro-architecture – there is, by making adjustments relative
to the inside of a network block, as in mobile model families.
Some of these architecture also leverage the potential of CNNs
and Transformers into high level computer vision tasks, as
image generation or vision-language models creation.

Although few of the famous modern architectures of Com-
puter Vision aim to reach a more realistic neuroscientific
approach to the brain, the bio-inspired approach of Spiking
Neural Networks implementation [14] demonstrated State-of-
the-Art (SOTA) restuls at object detection [15].

In this regard, we base our research on two neuroscientific
findings about function specialized occipital lobe areas, that
is, edge detection that happens on V1 area [16] and color
processing at V4 area [17]. Also, this form of specialization
is also observed in the human eye, in which rod components
are related to white and black processing [18], and cone
components to color processing [19]. Besides, we suppose that
color information may be irrelevant to the classification of
different objects (such as plane and boat) and relevant to the
classification of similar objects (such as cat and jaguar).

In this research, we present Yin Yang Convolutional Net
(YYNet), a neural network model which makes adjustments
relative to the global scale of the model. This is performed in
the macro-architecture by aggregating blocks (or single purpose
networks) that extracts visual manifolds by doing a separate
analysis of colors and forms from its input. We find that this
architecture provides State-of-the-Art (SOTA) efficiency among
low parameter architectures applied to the low data and image
resolution dataset, CIFAR-10, using less parameters and less
training epochs than existing models.

II. RELATED WORK

Vision neural network research has grown in quality at a very
fast pace. In this section, we present related architectures and
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their given tasks. Related work can be categorized into five ap-
proaches: mobile networks; two branch networks; transformers;
vision-language models; generative models.

Some of this approaches are usually divided in three parts:
stem, stage and head. The stem is usually single convolution
with stride 2, but may present optional extra convolutions.
The stage contains the main architecture of the model, that
can be divided into blocks with layers, in which each stage
block shares hyperparameters (number of channels and extra
hyperparameters) across all its layers. The head may or not
contain convolutions and then it is followed by average pooling,
an optional linear layer and the final classification linear layer
followed by a softmax. This is the case for Mobile Nets and
MaxViT.

A. Convolutional Neural Networks

AlexNet [2] achieved a revolution at the fields of Computer
Vision and ANN by implementing a GPU efficient convolu-
tional operation, dropout [20] and data augmentation. Follow-
ing this line, the ResNet [21] presented a residual connection
to improve the gradient flow into earlier layers of deep neural
networks. This is a simple design trick which is now almost
ubiquitous at neural networks

More recently, mobile networks were proposed. This ap-
proach focus on building efficient models with fewer parame-
ters. The authors of MobileNet V2 [22], shown in Figure 1, pro-
pose residual inverted bottleneck blocks, a micro-architecture
that became more efficient than the reference model ResNet.
The objective of this micro-architecture is to reduce data
dimensionality in a way that the manifold spans the entire
space of lower dimensional sub-spaces. They do so by inserting
inverted bottlenecks at each block, instead of keeping the
channels number constant at repeating blocks as in ResNet.
That is, they first expand the number of channels for a given
factor (e.g. 4), then they apply convolutions in this higher
dimension and finally go back into the original dimension,
similar to feed-forward networks in the transformer architecture
[23]. On their architecture, they first increase the channels
number with 1x1 kernels, then use 3x3 depth-wise kernels on
the higher dimension and, lastly, they reduce the dimension
back to what it was before with a 1x1 kernel. The reason to use
1x1 kernels followed by 3x3 is because the authors of Mobile
Net V1 [24] found it more efficient than directly expanding
using 3x3 kernels.

Further, on Mobile Net V3 [3], they improve Mobile Net
V2 efficiency by applying a Squeeze and Excitation [25]
mechanism after the 3x3 depth-wise convolution. We will refer
to the block of Mobile Net V3 as the MBConv.

Besides, in EfficientNet V2 [4], the authors have changed the
original architecture of MobileNet V3 into the Fused MBConv

(a) Mobile Net V2

(b) Mobile Net V3

Figure 1: Mobile Net Micro-Architectures [3]

and interpolated this new block with the original MBConv,
finding the best parameter configuration given their applied
model search. They have also proposed slight modifications
to the compound scaling method of EfficientNet [26], which
consists in adjusting model depth, channel number and image
size to find the best scale inside a family of models.

We harness the parameter efficiency of Mobile Net V3 at the
micro-architecture level of our proposed neural network.

B. Bio-inspired Networks

Recent advances of ANNs involving bio-inspiration are rep-
resented by the Spiking Neural Networks (SNN) [14]. They are
discrete and sparse networks with a mechanism that decides
wether a certain neuron should fire a spike at a given time
step [27]. [15] leveraged these characteristics to adapt existing
CNNs with an additional SNN module. With this, they achieved
SOTA results on object detection.

C. Vision Transformers

Vision Transformers apply transformer encoder blocks to
explore the attention paradigm into vision tasks. On ViT [9],
as shown in Figure 2, the authors do this by dividing the image
into multiple embedding patches of equal window size, in
which each patch embedding is cross-attended with attention to
all other patches. They also reserve a patch embedding for clas-
sification (usually referred as “cls” token in language models),
which does not come from the image, and so aggregates global
information about other patches. The advantage of using a pure
transformers architecture is that the multiple heads mechanism
turns it possible to apply tensor parallelism [28].
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Figure 2: ViT [9].

Then, MaxViT [10] enhances ViT with more efficient at-
tention mechanisms for the vision paradigm, the authors use
Axial Attention for local details and Grid Attention for global
interactions between pixels. They also append a MBConv at
the start of each block.

Transformer networks harness hardware parallelism to build
training-efficient networks, but they move away from bio-
inspired approaches

D. Two-branch Neural Networks

Two-branch based models allow the signal to travel along
two different paths, conventionally after a shared stem - except
for BiSeNet. This is done to extract manifold efficiently. An
example of different paths for signal propagation can be seen
in BiSeNet [6] and Deep Dual-Resolution Networks [7], these
architectures are built for the purpose of semantic segmentation,
in which one of the branches is shallow and wide, extracting
local details, and the other is deep and narrow, capturing high-
level semantics. For simplicity, we show only the Deep Dual-
Resolution Network at Figure 3.

Another example of two branch network is SeaFormer [8],
that increases the efficiency by using mobile transformers,
from which the embedding of the stem backbone is processed
and fused at multiple steps with mobile transformer blocks
embeddings, as can be seen at Figure 4.

This architecture achieved the best trade-off between accu-
racy and latency on ADE20K and Cityscapes semantic segmen-
tation datasets.

We adopt the two-branch design at the macro-architecture
level of our network, but we use no shared stem as we want
to analyze shapes and colors fully separate.

III. ARCHITECTURE

Yin-Yang Net uses a micro-architcture presented in Figure
5. In each repeating block, we start with a sub-block of ResNet

Figure 3: Deep Dual-Resolution Network [7].

Figure 4: SeaFormer [8].

and then use n sub-blocks of MBConv from Mobile Net V3.
We found this configuration has better accuracy when training
solely with MBConv given our hyperparameters, and it is more
efficient during training than using only ResNet blocks. At the
two branch layers, stride 2 is applied on the last or the first sub-
block according to the micro-architecture type, Yin or Yang,
respectively. The single branch layers use stride 2 on the ResNet
block.

Our work is inspired by two branch architectures. However,
our approach differs from classical two branch networks in 2
aspects. First, instead of building a shallow and a deep branch
for details and semantics extraction, YYNet uses the same
number of layers and channels at blocks on the same level,
but stride 2 at different parts of these layers. Second, in our
work, there is no common stem backbone to the branches, the
stem is the focus of this paper, where different manifolds are
analyzed.

The Yin branch has the purpose of form analysis. Yin blocks
can use the first channel of the input or the mean of all channels.
We found that both configurations perform well. For simplicity,
when the first channel approach is in use, the first block receives
the red channel in the network input layer. This way, as there is
no other color to extract, it is obliged to the task of extracting
the form manifold. Also, in order to focus on local/higher scale
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(a) Micro-arch (b) Yin

(c) Yang (d) Single Path

Figure 5: Micro-architecture

details, a strategy of later stride 2 is used, meaning that the last
MBConv of each block applies striding.

On the other hand, the Yang branch analyzes colors. With
that in mind, as colors in nearly pixel are generally the same,
we use an early stride 2 on this branch to remove color
redundancy and only care about different colors interactions.
That is, the first MBConv on each block applies striding. This
block resembles standard single branch architectures, as its
input is the three RGB channels and early stride 2 is applied.

Then, at the macro-architecture level, as shown in Figure 6,
we send the same input to both these micro-architectures. Their
final embeddings have the same shape, as they have the same
number of layers and channels, with the exception of the first
sub-block of each micro-architecture. We then apply a Fusion
Gate mechanism adapted for our embeddings.

We apply a Fusion Gate, similar to SeaFormer and Multi-
modal Chain-of-Thought [29]. For this, we use an embedding
fusion mechanism at outputs from Yin and Yang branches, each

Figure 6: Macro-architecture.

branch having a different embedding meaning. This is done to
unify both embeddings, or the manifold, as presented in (1).

SPX = AY + IY (1)

X represents the input of one network and Y represents
an output, A represents the Yang blocks, I represents the
Yin blocks, ⊙ represents a Hadamard product (elementwise
product). We have tested several combinations of A and I (as
described in Section IV). The operations presented in (1) are
those with best performance. On CIFAR-10, this gated fusion
yielded a slightly better accuracy than the concatenation – about
less than 0.5%, yet halving the channels number compared to
concatenation.

After this, we send the embedding into Single Path blocks,
that consists of a sub-block of ResNet with stride 2 on the first
convolution and then n sub-blocks of MBConv with no stride
2 (except for CIFAR-10, as described in Section IV). We use
GELU [30] as the activation function of any sub-block, since
it was used by the MaxViT. As the head of our model, we use
average pooling, flattening, a linear layer, GELU, dropout and
the final classification linear layer followed by a softmax.

IV. EXPERIMENTS AND RESULTS

A. Experiments

We tested multiple fusion approaches to combine Yin and
Yang outputs. We selected the approach presented in Equation
1. However, Table I presents other approaches tested in this
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work. We performed 3 runs with batch size 512 on CIFAR-10
for each approach and report the mean and standard deviation.

Table I: Fusion Approach

Formula Mean STD
A*(1-I) 87.61 0.09
A*I + A+I 87.63 0.08
A*(1-I) + A-I 87.81 0.19
A*I 87.87 0.23
A*(1-I) + A+I 87.98 0.22
A+I 88.21 0.46

We then reduced the batch size into 64 for the final model
on CIFAR-10. We do this because batch normalization seems
to work better in batch sizes on the range of 50 to 100 [1].
We use a smaller batch size in ImageNet due to computational
constraints.

We used a traditional gradient clip of 1 and mixed precision
for faster training/inference speed. We use the AdamW opti-
mizer [31] since it was chosen at recent SOTA reinforcement
learning models [32]. Also, one of the graphs at [31] shows that
there are specific values of weight decay that works better with
specific values of learning rate. We therefore use an adaptive
value for the weight decay. At the end of each epoch, we
set the weight decay to be equal to the learning rate*1.56 –
a value which was on the optimal area demonstrated at the
AdamW paper. The input resolution for CIFAR-10 is 32x32
and ImageNet is 224x224. Further hyperparameters and settings
are provided in Table II. Specific Hyperparameters adjustments
for CIFAR-10 and ImageNet are presented on Table III. We
designed 3 models for CIFAR-10 and one for ImageNet.

Table II: General Hyperparameters and Settings

Hyperparameter YYNet Small YYNet
Optimizer AdamW [31] AdamW
LR Scheduler One Cycle One Cycle
Max LR 1e-2 18e-4
Epochs 40 300
Batch Size 64 32
GPU RTX 2060 RTX 2080 TI
Dataset CIFAR-10 ImageNet

We choose values of 1e-2 as the learning rate for the CIFAR-
10 benchmark because the learning rate of [32] was a constant
1e-4, but the One Cycle schedule recommends using higher
values. We reduce the learning rate at ImageNet due to the
increased amount of steps.

Regarding CIFAR-10, we use a constant channel number
over all the sub-blocks, exploring 3 models variants. They
have 1 Yin Yang layer with 3 MBConvs and 1 single branch
layer with 2 MBConvs. We apply an extra stride 2 at the first
MBConv of the single branch layer on CIFAR-10 networks.

Table III: Dataset Specific Hyperparameters

Hyperparameter CIFAR-10 ImageNet
YY Starting Channels (16, 32, 64) 16
SP Starting Channels (16, 32, 64) 64
Channels added per MBConv 0 2
Extra SP stride 2 Yes No
YY Layers 1 1
SP Layers 1 4
YY MBConv per Layer 3 3
SP MBConv per Layer 2 2
Pre-Classification Linear Neurons 40 500

The linear layer before the classification layer on CIFAR-10
has 40 neurons.

Regarding ImagetNet, we start with 16 channels, then a
constant number of 2 channels is added at each MBConv on the
Yin and Yang branches. This is a simple heuristic adopted to
lightly grow the network parameters. After that, a fixed number
of channels 64 is provided for the first single branch sub-block.
We then continue adding channels after each block. We also
use a single layer and 3 MBConvs for the Yin Yang branches
and 2 MBConvs for the single branch sub-blocks. We use 4
layers of single-branch and no extra stride 2 is applied in this
dataset. The linear layer before the classification layer has 500
neurons.

B. Results

We conduct experiments with the small version of YYNet
on CIFAR-10, in which we reach State-of-the-Art (SOTA) at
model efficiency for models with few parameters. These results
are provided in Table IV.

Table IV: CIFAR-10

Model Test Accuracy Parameters
ExquisiteNetV2 [33] 92.52 890,000
YYNet Small 64 channels (ours) 93.32 726,274
kMobileNet 16ch [34] 89.81 240,000
YYNet Small 32 channels 91.91 191,330
YYNet Small 16 channels 89.46 52,882

We also test a model version on the ImageNet validation
dataset. We do not provide results on the test dataset, since
ImageNet team only send results on the test set when the
challenge is open. Comparison with similar size models are
provided in Table V. Our model uses 6% less parameters
than [8] reaching an validation accuracy only 1.2% smaller.
Regarding with MobileNet V3 [3], the authors do not provide
validation accuracy but we assume the validation accuracy is
similar to test accuracy. In this case, our model is considerable
smaller and presents similar efficiency.
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Table V: ImageNet

Model Validation Acc Test Acc Parameters
MobileNet V3 – Small [3] - 67.4 2.5M
SeaFormer – Tiny [8] 67.7 67.9 1.7M
YYNet (ours) 66.49 - 1.6M

V. CONCLUSION AND DISCUSSION

In this work, we took inspiration in neuroscience research to
model efficient neural networks. We developed a two branch
stem for CNNs intended to analyze colors and shapes of
images separately. Our model reached State-of-the-Art results
on CIFAR-10 considering models with few parameters. We
reached 93.32% test accuracy with 726k parameters, 0.8% more
than the older SOTA in this category, while having close to
150k less parameters. Our model with 52k parameters, 17 times
smaller than ExquisiteNet, lose only 3.86% test accuracy. We
reached 66.49% validation accuracy on ImageNet with 1.6M
parameters.

These results suggests that bio-inspiration – such as the
separate processing of shapes and colors – helps on the design
of efficient ANNs.

Future work includes parameter search for the Yin Yang
network at the ImageNet dataset. Yin branch would also benefit
from this parameter search, as it applies a stride 2 relatively
late in this branch, increasing processing cost.

We also plan to investigate if our architecture is useful
for other tasks beyond classification. One example is apply-
ing YYNets in generative AIs such as Stable Diffusion, by
changing the latent space currently generated by U-Nets [11].
Another possible use is combining YYNets shape and color
separation with architectures such as ViT, i.e, adding gray-scale
input patches or queries.
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