
Automation of Energy Management Analysis in
Automotive Engineering with Python

Larissa Pestana
UFPE

Recife, Pernambuco
0009-0009-3163-2450

Thais Cohen Costa
UFRPE

Recife, Pernambuco
0000-0003-4212-1719

Rayan Carvalho
UPE

Recife, Pernambuco
0009-0006-6872-8454

Abstract—This paper presents the development and
implementation of an automated application for the analysis of
Energy Management tests in the automotive industry, using
Python as the primary tool. The application automates the
processing of data acquired from various test types, including
Coast Down, Parasitic Losses, Full Load, Acceleration Metrics,
and Fuel Consumption. By transforming data into dataframes
and utilizing Python functions, the application achieves a
significant reduction in the time required for data analysis,
surpassing traditional methods reliant on Excel spreadsheets.
The automation improves efficiency and enhances the precision
of engineering calculations, making the process more dynamic
and less prone to human errors. The results demonstrate a
reduction of over 70% in data analysis time, with the potential
for further improvements as all engineering calculations are
fully transitioned to Python. This approach offers a
competitive advantage for automotive companies, optimizing
their processes and accelerating product development.

Keywords—Automotive Engineering, Data Analysis
Automation, Test Automation.

I. INTRODUCTION
The automation of processes in automotive engineering

analysis is the key for optimizing time and reducing costs.
Manual analysis can be time-consuming and prone to
human error, leading to project delays and increased
expenses. In a competitive industry, any delay can hinder
the introduction of new products to the market and result in
wasted resources.

One solution to the high cost of vehicle testing is the
adoption of virtual tests. Virtual simulations provide
accurate and efficient analysis, allowing engineers to test a
wide variety of performance scenarios without incurring
significant costs or delays. While virtual simulations can
substantially reduce time and costs, it is essential to validate
the virtually obtained results with physical vehicle tests after
defining the engineering objectives. This ensures that
different components and systems work together efficiently
in the real-world context of the vehicle.

The synergy between physical and virtual tests has been
a key topic of discussion at automotive testing and
validation events. Regardless of the direction of these
discussions, it is crucial to make physical tests more agile to
accelerate vehicle development and reduce costs while
ensuring the quality of the final models. To this end, we
have developed technologies, automations, and software to
facilitate the process. The development of this application

addresses this problem within product engineering, focusing
on energy management. Its proposal aligns with some
previously developed and published software, which served
as references in its conceptualization.

For instance, "A Python Package for Real-time CAN
Data Logging, Analysis, and Visualization to Work with
USB-CAN Interface" [1] and "A Customized Python
Interface for Windows OS for a Low Budget
USB-to-CAN-Adapter" [2] present similar proposals for
developing a framework for CAN (Controller Area
Network) data analysis, reception, and processing integrated
with proprietary hardware structures. However, it should be
noted that the application developed in this article aims at
data acquisition in track tests for energy management
studies. Therefore, external sensors are added to the CAN
data, and known hardware solutions are utilized as cited in
the Test Data Acquisition topic.

Another relevant software is the "Development of an
Automotive Data Acquisition Platform for Analysis of
Driving Behavior" [3]. Unlike the previous examples that
focus solely on received data, this one uses the data for
product development in various subareas. This reinforces
the need for the explanation of engineering calculations that
will be highlighted throughout the article. The main
technology adopted for the development of this application
is Python. The extensive set of data science libraries such as
NumPy and Pandas enables efficient management of large
datasets.

This work is organized as follows: Section II presents
the technical Background in Automotive Energy
Management. Following Section III, it starts the platform
development details, in Test Data Acquisition. Section IV
approaches Engineering Calculations. Section V exhibits the
Interface Application. Section VI presents the Results,
Section VII proposes the Discussion. Section VIII grants
Artifact Availability with code availability in GitHub
website. Following Section IX with Proposals for Future
Research. And Section X, the Conclusion, who concludes
the work, highlighting the main contributions.

II. Background in Automotive Energy Management
Energy management is a central area in automotive

development, as it involves a detailed assessment of vehicle
energy efficiency and performance critical aspects for
meeting regulatory requirements and achieving
sustainability goals. Key Energy Management tests

contributing to these evaluations include: Coast Down,
which measures the vehicle's rolling resistance and
aerodynamic drag; Parasitic Losses, which identifies the
contribution of the transmission and brakes to rolling
resistance; Full Load, which evaluates vehicle performance
under full load conditions; and Acceleration Metrics, which
examines vehicle dynamics across various acceleration
scenarios.

In an environment where resource optimization and
meeting fuel consumption targets are crucial, automating
these tests not only accelerates the validation process but
also reduces the risk of human error, ensuring more accurate
and reliable results. Given the complexity and importance of
these tests, the use of advanced technologies and automated
solutions is essential for maximizing development process
efficiency. In this context, this work presents a practical
application of automation in the analysis of Energy
Management tests, aiming to enhance the efficiency and
precision of evaluations while significantly reducing the
time required to obtain engineering results.

III. Test Data Acquisition
In the case study of data acquisition for track and

laboratory tests, tested in real vehicles, we used three
different solutions for CAN network and sensor data
acquisition: National Instruments, exporting data in TDMS
(Technical Data Management Streaming) format [4]; ETAS
INCA, exporting data in DAT format [5]; Hottinger Baldwin
Messtechnik Catman, exporting data in BIN format [6]

A. Conventional data processing
For this data to be processed by the engineering team, it

must be converted into formats compatible with
conventional analysis platforms, such as MATLAB and
Excel. This type of analysis involves complex calculations
and data manipulation.

Excel has long been a practical choice for engineering,
particularly due to its lower licensing costs. However, the
Excel program has limitations to handle large volumes of
data which can lead to performance issues. Also the
difficulty in guarantee reproducibility and version format
control of analyses can compromise the efficiency and
reliability of results, especially in large-scale projects or
those with advanced data analysis requirements.

B. Data process by application
We developed code to handle data according to its

specific format. In some tests, such as Full Load and
Acceleration Metrics, acquisitions vary based on factors like
accelerator pedal position, gear changes, fuel variation, and
other relevant parameters. To expedite the process in our
graphical user interface (GUI) platform, we implemented a
strategy of selecting the directory where the acquisitions are
stored. The application then lists and converts all
acquisitions present in any subfolder of the directory in a
single execution, simplifying and accelerating the analysis
process. After conversion, these converted files should go to

their destination subdirectories, which will reorganize these
acquisitions depending on the type of test.

To further ensure the accuracy and consistency of the
analyses, it is essential to account for variations in the time
frequencies of the received data, whether from CAN signals
or external sources. To maintain the reliability of the results,
a unique time reference is necessary to avoid the omission
of any experimental value. When data is missing at specific
time points, we use linear interpolation to fill these gaps.
The tests studied in this article operate with a time precision
of two decimal places, which is sufficient to ensure reliable
results, though the engineering team can adjust the precision
as needed.

Continuing the optimization of the data analysis process,
we also developed specific scripts to automate the reading
and conversion of the three types of acquired data
mentioned earlier. Previously, converting these acquisitions
to formats like Excel involved using native tools that took,
on average, 3 to 5 minutes per acquisition. With the new
scripts, this conversion can now be performed in batches,
depending on the type of acquisition, reducing the time to
approximately 10 seconds per acquisition. These scripts
were designed to deliver test results in both dataframe
format and Excel files. This approach was intended to
support engineers in transitioning to the new application,
offering flexibility and efficiency in data processing and
analysis.

1) TDMS format: The NpTDMS library, designed for
reading and writing TDMS files, created and published by
Adam Reeve [7], was used.
2) DAT format: The mdfreader library was used.

Developed by Aymeric Rateau [8], it is a tool for
manipulating MDF (Measured Data Format) files [9].
3) BIN format: CApread (Catman AP Reader) is a

proprietary library for working with Catman data, created
and published by Leon Bohmann [10]. The received
messages are treated as channels by time frequency.

The library has internal functions that convert your data
directly to various desired formats: CSV, XLSX, Pandas,
MATLAB, NetCDF, HDF5 or Parquet. To ensure uniformity
in data analysis processes and better integration with other
parts of the project, we use the Pandas library.

IV. Engineering Calculations
Engineering calculations are tailored to each area and

project, based on specific literature in domains such as
aerodynamics, energy management, and losses, among
others. Traditionally, this data has been handled in Excel
spreadsheets, often manually. While the use of macros has
streamlined parts of the process, this approach faces
significant limitations, such as difficulties in handling large
data volumes, a lack of reproducibility in analyses, and the
complexity of maintaining and updating macros.

With the assistance of this application and the data
acquisitions mentioned in the previous section organized in
dataframes, calculations can be performed more quickly and

adaptively, utilizing complex mathematical equations, native
functions, and efficient manipulation of data series. The
application allows for precise and rapid adjustments, easily
adapting to the specific needs of each project, surpassing the
limitations of traditional spreadsheets and offering greater
dynamism and efficiency.

V. Interface Application
To provide a good user experience, particularly for the

test engineer, we developed interfaces that avoid direct
interaction with the code, using JavaScript, HTML, and CSS
instead of graphical tools like tkinter, which, although
available in Python, has quality limitations. Figure 1 shows
the interface model used in the application. The application
was made available as desktop software using Flask [11],
following the approach described by Bonney et al. [12] in
the Data-Centric Engineering journal. Flask allows for the
definition of routes to handle application pages, returning
HTML files or executing operations such as data processing.
The application was packaged as an executable using
'pyinstaller'.

Fig. 1. Example Interface based on Application

VI. Results
To evaluate the application's efficiency, we conducted a

time comparison between analyses performed with the new
application and those using the traditional method. The
performance analysis was divided by test type: Coast Down,
Parasitic Losses, Full Load, Acceleration Metrics, and Fuel
Consumption. All data processing, as outlined in the Data
Process by Application section, was executed using the new
application. To align with the engineering team's existing
workflow, engineering calculations were integrated with
Excel Macros for all tests, except for Fuel Consumption,
where the analysis was fully handled by the application.
This demonstrated the application's potential for even
greater efficiency when fully integrated with engineering
calculations across all tests.

The application produced the same engineering results
as the traditional method, with identical values for CAN
signals and other sensors, confirming its accuracy and
reliability. The key difference between the two methods was
the time required to generate the results. The application
significantly reduced the time needed, making the process
over 70% faster. All tests were conducted under consistent
conditions, using the same computer, test engineer, and
database, ensuring that the only variable was the data

processing method. The table and graph below compare the
time spent on each test, clearly illustrating the application's
superior efficiency. The reported time values are point
estimates, with a potential variability range of ±2.5 minutes
and the time measure system is in 24-hour time format
(hh:mm:ss).

TABEL I
TIME COMPARISON BETWEEN CONVENTIONAL ANALYSIS AND

ANALYSIS BY APPLICATION

Test Type Conventional Application
Coast Down 01:45:00 00:40:00

Parasitic Losses 01:10:00 00:20:00
Full Load 02:30:00 00:35:00

Acceleration Metrics 02:30:00 00:40:00
Fuel Consumption 02:00:00 00:30:00

Fig. 2. Time Comparison Char - Comparative graph between
Conventional data processing and Application data processing
analyzing the time spent for each type of test.

VII. Discussion
The application developed in this work has proven

effective in automating data analysis for Energy
Management tests in the automotive sector, with enhanced
efficiency achieved through the use of dataframes and
Python functions, which surpass the limitations of
traditional Excel spreadsheets. While engineering
calculations have traditionally been performed manually or
with Excel macros, facing challenges with large data
volumes, the application provides a more robust and
adaptable solution, allowing for quick adjustments
according to project needs. The analysis of the Fuel
Consumption test, conducted entirely in Python,
demonstrated greater efficiency, suggesting that a complete
migration of calculations to Python could yield additional
benefits. The transition to this new automated tool requires
adaptation and training of the engineering team, ensuring
continuous validation of results compared to traditional
methods, to maintain the accuracy and reliability of the
analyses.

Finally, the application, initially focused on the
automation of Energy Management tests, has a modular
structure that allows for expansion into other testing areas
within the automotive sector. Future improvements may
include the automation of engineering decisions based on
the generated reports, further deepening the integration into
development processes.

VIII. Artifact Availability
The code from Application including Data process by

application, interface example, and framework to export are
available at
https://anonymous.4open.science/r/AutomatedApplication-
CEF9/README.txt

IX. Proposals for Future Research
The solution provided by this application encompasses

the entire process, from test execution to report generation;
however, it currently lacks automation for making
engineering decisions based on the analysis of these reports.
A proposed enhancement is to integrate this software with
the "Software Integration Test Report Analysis Automation
Using Python" [13], developed by Paigude, Gajul, Mishra,
and Katkar, and presented at the 2021 ASIANCON. Due to
the structural similarities and shared programming language,
combining these solutions could further reduce the workload
for engineers managing Energy Management tests.

X. CONCLUSIONS

The results demonstrate the benefits of automation in
automotive engineering analysis, highlighting a significant
reduction in the time required to deliver engineering results.
The developed application was able to produce the same
results as the traditional methodology, but with a more than
70% decrease in data analysis time. Furthermore, this
reduction in analysis time is expected to be even greater
when all engineering calculations are performed directly in
Python, without the need for integrations, as was the case
with the Fuel Consumption test.

The consistent operation of the platform, following
standardized procedures at all stages of analysis, improves
efficiency and accelerates the development process. This
represents a competitive advantage for automotive
companies seeking to optimize their processes and stay
ahead in the market. The application provides an efficient
and flexible tool for automotive engineers, contributing to
cost reduction and faster development of high-quality
products.

1 ACKNOWLEDGMENTS

This work was conducted by engineers from a Private
Automotive Company, and we would like to extend our
acknowledgment for their contributions.

2 REFERENCES

[1] R. Bhadani et al., "Strym: A Python Package for
Real-time CAN Data Logging, Analysis and
Visualization to Work with USB-CAN Interface,"
2022 2nd Workshop on Data-Driven and Intelligent

Cyber-Physical Systems for Smart Cities Workshop
(DI-CPS), Milan, Italy, 2022, pp. 14-23, doi:
10.1109/DI-CPS56137.2022.00009.

[2] D. Wetzel, A. Reindl, H. Meier, M. Niemetz and M.
Farmbauer, "A Customized Python Interface for
Windows OS for a Low Budget
USB-to-CAN-Adapter," 2022 International
Conference on Electrical, Computer and Energy
Technologies (ICECET), Prague, Czech Republic,
2022, pp. 1-5, doi:
10.1109/ICECET55527.2022.9872574.

[3] G. Andria, F. Attivissimo, A. Di Nisio, A. M. L.
Lanzolla, and A. Pellegrino, "Development of an
automotive data acquisition platform for analysis of
driving behavior," Measurement, vol. 93, pp.
278-287, 2016. doi:
10.1016/j.measurement.2016.07.035

[4] "TDMS File Format Internal Structure" National
Instruments, 21 de setembro de 2022. Available:
https://www.ni.com/en/support/documentation/suppl
emental/07/tdms-file-format-internal-structure.html.

[5] INCA V7.5 | Getting Started R01 EN | 03.2024,"
ETAS GmbH, 2024.

[6] DATA SHEET catman: Universal data acquisition
and analysis software," Hottinger Brüel & Kjaer
GmbH, Darmstadt, Germany, Jul. 7, 2023

[7] A. Reeve, npTDMS, stable version. Available:
https://github.com/adamreeve/npTDMS.

[8] A. Rateau, "mdfreader: A library for reading MDF
(Measurement Data Format) files, version 0.1.8,"
PyPI, Sep. 16, 2017. Available:
https://github.com/ratal/mdfreader.

[9] MDF Big Data Support," ETAS GmbH, versão V0.5
R01 EN, Stuttgart, Germany, Nov. 2020.

[10] L. Bohmann and H. Line, APReader, versão 1.1.2,
Zenodo, 2024. doi: 10.5281/zenodo.8369804.
Available:
https://github.com/leonbohmann/APReader/compare/
v1.1.1...v1.1.2.

[11] A. Ronacher, Flask, versão 2.0.1, 21 de maio de
2021. Available: https://github.com/pallets/flask.

[12] M. S. Bonney, M. de Angelis, M. Dal Borgo, L.
Andrade, S. Beregi, N. Jamia, and D. J. Wagg,
"Development of a digital twin operational platform
using Python Flask" Data-Centric Engineering, vol.
3, p. e1, Jan. 2022. doi: 10.1017/dce.2022.1.

[13] P. Paigude, V. Gajul, J. Mishra, e S. Katkar,
"Software Integration Test Report Analysis
Automation Using Python" in Proceedings of the
2021 Asian Conference on Innovation in Technology
(ASIANCON), PUNE, India, 27-29 August 2021,
ISBN:978-1-7281-8402-9,doi:
10.1109/ASIANCON51346.2021.9544984.

