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Abstract. Software architectures can be used as a vehicle to improve the study 

of quality properties in the early stages of development. This paper proposes 

an automatic mapping between the design of architectural components and the 

specification of DEVS atomic models with aims to evaluate all-purpose quality 

metrics. Then, we use the functional description of architectural components 

(that address functional requirements) to estimate the architecture adjustment 

to non-functional requirements. The guidelines for structuring the simulation 

models are defined starting from the design of high-level components. To 

illustrate the proposal, web-based architecture is used as proof of concepts. 

1. Introduction 

Software engineering encompasses processes, methods, and tools that enable complex 

computer-based systems to be built in a timely manner with quality [Pressman and 

Maxim 2019]. From a broad point of view, quality refers to the degree to which 

software products meet their stated requirements. Specifically, software quality can be 

defined as “the capability of a software product to satisfy stated and implied needs 

under specified conditions” [ISO/IEC 2011]. Then, quality is the basic parameter of 

software engineering efforts whose primary goal is the delivery of maximum 

stakeholder value while balancing cost and schedule. 

 Quality is everyone’s business [Li, Chen and Cheung 2000]. In software 

development, the quality encompasses requirements, specifications, design, and 

implementation of the system. Each artifact produced during development has its 

individual quality properties. These properties provide a feasible context that will allow 

achieving quality in the final product. Take software architecture as an example. The 

architecture of a computing system is the structure or structures of the system, which 

comprise software elements, the externally visible properties of those elements, and the 

relationships among them [Bass, Clements and Kazman 2012]. Regarding the design 

itself, system engineers usually inspect the architecture to determine whether it is 

acceptable. Typically, this determination is made by a human engineer inspecting a set 

of architectural representations and using heuristics to judge whether they will result in 

a viable system that, when built, will meet the system requirements [Rodano and 

Giammarco 2013]. There is no such thing as an inherently good or bad architecture: 

architectures are either more or less fit for some stated purpose [Bass, Clements and 

Kazman 2012]. Hence, one of the vexing challenges of software architecture is the 

problem of satisfying the functional specifications of the system to be created while at 

the same time meeting its non-functional needs [Harrison and Avgeriou 2007]. 
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 The software architecture is a pivotal vehicle to address and guarantee non-

functional software qualities such as security, maintainability, extensibility, and 

portability [Heijstek, Kühne and Chaudron 2011]. From this perspective, the software 

architecture can be used as a vehicle to improve the study of quality properties in the 

early stages of development. Instead of applying heuristics for architectural evaluation, 

innovative approaches combine new types of techniques (as additional evaluation 

methods) with the traditional ones (such as SAAM and ATAM). This is the case of 

Modeling and Simulation (M&S). A deeper discussion regarding the use of M&S for 

software architectures in comparison with other traditional approaches is presented in 

[Blas, Leone and Gonnet 2020].  

 Software architectures are design models that refer to discrete-event systems. 

Under this conceptualization, the user requests are seen as the events to which 

architectural components react. Hence, discrete-event simulation models can be used to 

perform their evaluation quantitatively [Bogado, Gonnet and Leone 2014; Blas, Gonnet 

and Leone 2016; Reussner et al. 2016]. Most approaches use the Discrete Event System 

Specification (DEVS) formalism [Zeigler, Muzy and Kofman 2018] to define the 

simulation model. 

 Building a simulation model that provides a quality estimation using the 

software architecture as a sketch is not easy. Prior to defining the model design, quality 

measures should be defined (i.e. the simulation goal) with aims to ensure the 

measurement of non-functional requirements. Also, the architectural representation 

should be taken into account with aims to ensure the correctness of the simulation model 

structure. Combining both fields (software quality and architecture representation) in a 

single simulation model is a complex task [Blas 2019]. 

 With aims to provide a partial solution to this problem, in this paper we propose 

an automatic mapping between the design of architectural components and the 

specification of DEVS atomic models in order to evaluate all-purpose quality metrics. 

The architectural components studied in this paper are located at low-level design (i.e. 

functional components). To illustrate the approach, we use a web-based architecture as 

proof of concepts. The main contribution of this paper is the strategy proposed to 

obtaining a runnable DEVS atomic model from the functional definition of an 

architectural component. 

 The remainder of this paper is organized as follows. Section 2 introduces the 

M&S approach used as a guideline to study quality using the software architecture 

design. Section 3 presents the DEVS-centered modeling strategy that allows building 

the simulation model specification for measuring a set of generic quality properties. 

Finally, Section 4 is devoted to conclusions and future work. 

2. Software Architecture Evaluation using M&S 

Quality estimation of software architecture using M&S involves the understanding of i) 

the software product domain that describes the architecture to be evaluated, and ii) the 

M&S formalism that will be used for describing the discrete-event specification of the 

architecture. To accomplish i), the evaluation requires defining: i) the set of quality 

attributes to be measured during the simulation, and ii) the way in which architecture 

components should be structured to build the simulation model. On the other hand, to 

achieve ii), the definitions required in i) must be set. 
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 The goal of the final simulation model is to perform the behavior of the software 

product following its architectural components as a prototype with aims to measure a set 

of pre-defined quality properties. At the core of the simulation model, the components 

and relationships detailed in the architecture provide the functional behavior. Depending 

on the type of component, different strategies can be used to get this behavior. Then, the 

following subsections detail how the statements described in i) were defined with aims 

to structure the functional behavior of the simulation model in a generic DEVS 

specification. Such specification is detailed in Section 3. 

2.1. Definition of Quality Properties 

The quality model proposed in ISO/IEC 25010 [ISO/IEC 2011] classifies the software 

product quality using three hierarchical levels: i) characteristic level to represent 

external quality views, ii) sub-characteristic level to define properties that can be 

evaluated when the software is used in a system, and iii) attribute level to depict entities 

that can be verified or measured over the software product.  

 Due to attributes change among distinct types of products, the standard does not 

define entities to be measured. However, a set of all-purpose quality measures can be set 

up using the most common software attributes. Table 1 summarizes these measures 

including the quality properties attached to each case. 

Table 1. Quality properties to be measured during the architecture simulation. 

Quality* Software 

Characteristic 
Sub-

characteristic 
Attribute 

Quality Measure 

Description (Abrev) Unit 

Performance 

efficiency 

Time 

behavior 

Invocation 

time 

Processing time for user requests (ET). time 

Total time for processing a request (TSIT). time 

Reliability 

Maturity 
Replies 

accuracy 

Number of processed requests (TR). request 

Number of requests with incorrect responses (IR). request 

Availability 
Software 

robustness 

Inactive time (FT). time 

Operative time (TT). time 

Fault 

tolerance 

Software 

stability 

Number of faults that are not failures (FNF). fault 

Number of faults (TF). fault 

* Quality properties defined as characteristic and sub-characteristic in [ISO/IEC 2010]. 

 The attributes detailed in Table 1 refer only to internal quality properties (i.e. 

the factors that affect the software itself and its developers). For example, the quality 

characteristic named reliability is defined in [ISO/IEC 2011] as “the degree to which a 

system, product, or component performs specified functions under specified conditions 

for a specified period of time”. This characteristic includes the sub-characteristic named 

maturity. This quality sub-characteristic is defined as “the degree to which a system, 

product or component meets needs for reliability under normal operation” [ISO/IEC 

2011]. Regarding these quality properties, a generic attribute to be measure in any 

software product is replies accuracy. This attribute is defined as “the accuracy of the 

software product in responding to a specific user request”. For this attribute, Table 1 

defines two metrics: the number of requests processed (TR) and the number of requests 

with incorrect responses (IR).  

 As a result of the quality properties definition, each quality measure becomes a 

simulation goal. That is, the architectural simulation model should lead to the 

calculation of the set of metrics detailed in Table 1. 
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2.2. Representation of Software Architectures 

A software architecture design representation is a description of the highest-level 

concept of a system in its environment [Kruchten 2003]. The architectural principles 

related to the topology of the architecture should be obvious in any design. A style 

determines the vocabulary of components and connectors that can be used in instances 

of that style, together with a set of constraints on how they can be combined [Garlan 

and Shaw 1993]. The use of patterns offers a reusable and proven way to partition a 

system with known consequences to quality attributes [Harrison and Avgeriou 2007]. 

 Given that software architectures should satisfy the functional specifications of 

the system to be created, most architectural styles define different types of elements to 

be used for functional design. Commonly, two architecture levels are defined. 

Architects employ low-level components to define high-level components. Then, high-

level components refer to domain components specifically designed to fulfill some 

software functionality. Instead, low-level components refer to basic actions, functions, 

or procedures that combined allow getting complex behaviors. Links are frequently 

allowed on both levels. In the case of low-level components, links describe an execution 

flow. For high-level components, links describe interactions.  

 Take web-based architectures as an example. Web-based systems and 

applications have evolved from simple collections of information content to 

sophisticated systems that present complex functionality and multimedia content 

[Pressman and Maxim 2019]. The architectural patterns for web-based software 

architectures proposed in [Fehling et al. 2014] employ three types of architectural 

components: i) application components as elements used to define functional 

requirements, ii) management components as elements used to watch the performance 

of application components, and iii) functional components as basic functionalities used 

to build the complex behaviors of application components. A full analysis of these types 

of architectural components is presented in [Blas, Leone and Gonnet 2019]. 

 Figure 1 presents an architecture composed of three high-level components 

(Load Balancer, Elastic Load Balancer, and Presentation and Business Logic) and three 

low-level components (User Interface, Processing, and Data Access). In this example, 

two types of application components are used: i) generic components that refer to 

components frequently used as standard templates in web-based software (such as Load 

Balancer), and ii) domain-specific components that refer to components specifically 

used to define software functionalities (i.e. Presentation and Business Logic). Then, the 

behavior of generic application components is well-know. Meanwhile, the behavior of 

domain-specific components varies from one architecture to another according to the 

functional components employed in the design. 

 Since functional requirements describe the required behavior of the system in 

terms of required activities [Pfleeger and Altee 2006], high-level components are the 

ones that should be studied during the simulation. That is, quality measures should be 

obtained over high-level components. However, at the basic level, low-level components 

are the ones that perform functionalities. For example, the behavior of domain-specific 

components (Figure 1) is detailed as a sequence of functional components. Then, the 

simulation models for high-level components (i.e. domain-specific components in Figure 

1) should be designed following the structure of low-level components (i.e. functional 

components in Figure 1) with aims to get the quality measures. 
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Figure 1. Example two-tier web architecture (adapted from [Fehling et al. 2014]). 

 Section 3.4 presents a DEVS-based solution for building the simulation model 

of the high-level component named Presentation and Business Logic using low-level 

components as phases. These phases are designed considering the quality measures. 

3. DEVS Atomic Model for High-Level Components 

3.1. DEVS Formalism 

DEVS is a modular and hierarchical formalism based on systems theory that provides a 

general methodology for the construction of reusable models at two distinct levels 

[Wainer and Mosterman 2010]. At the lower level, an atomic DEVS describes the 

autonomous behavior of a discrete-event system as a sequence of deterministic 

transitions between sequential states as well as how it reacts to external input events and 

how it generates output events. On the other hand, at a higher level, a coupled DEVS 

describes a system as a network of DEVS components. 

 Therefore, an atomic DEVS defines the system behavior while a coupled DEVS 

defines the system structure. In this context, our approach uses an atomic DEVS to 

define the behavior of high-level architecture components. Then, the final model can be 

obtained structuring architectural interactions among the simulation models built for 

high-level components. 

3.2. Simulation Model Definition 

3.2.1. Input and Output Events 

Following the architecture design, a high-level component receives user requests to be 

processed. Considering that any software component is executed over infrastructure, the 

behavior of high-level components is influenced by their state during hardware 

execution. To include this influence as part of the model, we consider running and not-

running as possible execution states. Hence, the simulation model inputs are defined as 

two distinct events named user_request and execution_state. 

 As Table 1 shows, two types of quality measures should be calculated during the 

simulation: measures related to user requests (ET, TSIT, TR, and IR) and measures 

related to the software itself (FT, TT, FNF, and TF). For the first set, measures are 

directly calculated in the user_request. That is, a user_request is modeled to include the 

quality measures related to its processing. Table 2 presents the properties included in the 

user_request event in order to capture these metrics. After a user_request is processed 

in a high-level component, the user_request should be transferred to the next component 

defined in the architecture. Then, user_request is also an output event. 
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Table 2. User request information. 

Name Description 

execution_time1 Processing time. 

total_time2 Total time used to solve the request (processing and waiting). 

incorrect3 Boolean value that is true if the request is processed in a fault function (false in other case). 

1 Quality metric ET of the actual request. 
2 Quality metric TSIT of the actual request. 
3 To measure the quality metric IR. 

 On the other hand, the simulation model includes an explicit output event named 

component_state to measure software processing states. This output captures the state 

information from three perspectives: hardware, activity and processing. According to 

the quality measures to be calculated during the simulation, a high-level component can 

be: i) running or not-running from the hardware perspective, ii) active or in failure from 

the activity perspective, and iii) ok or in fault from the processing perspective. Not all 

combinations are possible. For example, if a component is not-running, it cannot be in 

activity or processing. Table 3 resumes available combinations for component_state. 

Table 3. Component state information. 

Hardware State Activity State Processing State 

not-running N/A N/A 

running failure N/A 

running active ok 

running active fault 

N/A = not applicable. 

3.2.2. State Definition 

An atomic DEVS is based on a sequence of deterministic states. The state definition 

should include all the information required to describe the behavior of the model. 

 For high-level architectural components, this information is related to its 

processing state (phase), the processing time attached to the actual processing state 

(sigma), the user request been processed by the component (request), and the possibility 

of having a failure (or fault) in a low-level component (function_state). Hence, the state 

of the model is structured as { phase, sigma, request, function_state }. 

3.2.3. Low-Level Components as DEVS Phases 

Initially, any high-level component is waiting for some user_request. When a 

user_request arrives, the component should perform its behavioral description (saving 

the user_request as the value of request in the next state). If new requests arrive during 

the processing, the component just ignores them. 

 The behavioral description of a high-level component is given by the execution 

flow depicted using the set of low-level components that compose them. Hence, a low-

level component can be seen as a basic function that can act correctly or not during a 

certain period (i.e. processing_time). The correctness in the function behavior is given 

by the parameter fault_probability. Then, for each low-level component included in the 

high-level component, two possible phases are considered using the fault_probability: 

processing and processing with faults. Before executing some function, the variable 

function_state is used to define the next phase. The value of this variable is calculated 

using the fault_probability of the next function to be executed. Once the execution of a 
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function ends (correctly or not), the control is given to the next function in the sequence 

according to the function_state. The evolution among phases is detailed following the 

sequence of low-level components. When the sequence final function is executed, the 

request is sent as output. After that, the component returns to waiting.  

 A function can also fail. When a low-level component presents a fault, this fault 

can become a failure according to a failure_probability. If a function fails, the high-

level component cannot continue working. That is, once a failure is detected in a high-

level component, the entire component fails. Then, a new phase is added to the model: 

failure. This phase is used to evolve the simulation model when any low-level 

component fails. In our approach, failures cannot be fixed. Hence, once the component 

achieves the failure phase, the simulation model stays in this phase until the hardware 

information indicates that the component is not-running. 

 In any case, when hardware information notifies that the component is not-

running, the simulation model changes to the inactive phase. Once the component is 

inactive, the model stays in this phase forever. 

 Table 4 summarizes the transitions following the prior description. The 

guidelines for updating the quality_measures of the request are the following: i) 

execution_time set as execution_time + processing_time and total_time set as total_time 

+ processing_time if the phase is processing or processing with faults, ii) incorrect set 

as true if the next phase is processing with faults. 

3.3. Building an Example: Defining a Web-based Application Component 

With aims to provide proof of concepts, the high-level component named Presentation 

and Business Logic (Figure 1) is used as an example. In this case, the high-level 

component is composed of three functional components: User Interface Component 

(UIC), Processing Component (PC), and Data Access Component (DAC). Per each 

functional component, three parameters are included: processing_time, 

fault_probability, and failure_probability. Then, for example, the parameters related to 

UIC are named processing_timeUIC, fault_probabilityUIC, and failure_probabilityUIC. 

 For space reasons, the formal specification of the DEVS atomic model cannot be 

included. However, Figure 2 shows a simplified statechart diagram of the model. 

 

Figure 2. Representation of the “Presentation and Business Logic” model. 

Anais do II Workshop em Modelagem e Simulação de Sistemas Intensivos em Software (MSSiS 2020)



  

Table 4. Transitions for a high-level component with N low-level components. 

Phase 
Final Phase 

Evolution 
Description 

waiting 

waiting → 

inactive* 

The model goes from waiting to sending state (transient state). Then, the 

model changes to inactive after sending the output component_state = 

(not-running).  

waiting →  

processing1
** 

The model goes directly from waiting to processing1. 

waiting →  

processing with 

faults1
** 

The model goes from waiting to sending fault (transient state). Then, the 

model changes to processing with faults1 after sending the output 

component_state = (running, active, fault). 

waiting → 

failure** 

The model goes from waiting to sending failure (transient state). Then, the 

model changes to failure after sending the output component_state = 

(running, failure). 

processingi
*** 

processingi → 

processingi+1 

The model goes from processingi to processingi+1 after sending the output 

component_state = (running, active, ok). In the new state, the 

quality_measures of the request are updated. 

processingi →  

processing with 

faultsi+1 

The model goes from processingi to processing with faultsi+1 after sending 

the output component_state = (running, active, fault). In the new state, the 

quality_measures of the request are updated. 

processingi → 

failure 

The model goes from processingi to failure after sending the output 

component_state = (running, failure). 

processingi → 

inactive* 

The model goes from waiting to sending state (transient state). Then, the 

model changes to inactive after sending the output component_state = 

(not-running). 

processingN 

processingN → 

waiting 

The model goes from processingN to sending request (transient state) after 

sending the output component_state = (running, active, ok). In the new 

state, the quality_measures of the request are updated. Then, the model 

changes to waiting after sending the output user_request = (request). 

processingN → 

inactive* 

The model goes from waiting to sending state (transient state). Then, the 

model changes to inactive after sending the output component_state = 

(not-running). 

processing 

with faultsi
*** 

processing with 

faultsi → 

processingi+1 

The model goes from processing with faultsi to processingi+1 after sending 

the output component_state = (running, active, ok). In the new state, the 

quality_measures of the request are updated. 

processing with 

faultsi → 

processing with 

faultsi+1 

The model goes from processing with faultsi to processing with faultsi+1 

after sending the output component_state = (running, active, fault). In the 

new state, the quality_measures of the request are updated. 

processing with 

faultsi → failure 

The model goes from processingi to failure after sending the output 

component_state = (running, failure). 

processing with 

faultsi → 

inactive* 

The model goes from waiting to sending state (transient state). Then, the 

model changes to inactive after sending component_state = (not-running). 

processing 

with faultsN 

processing with 

faultsN →  

waiting 

The model goes from processing with faultsN to sending request (transient 

state) after sending the output component_state = (running, active, ok). In 

the new state, the quality_measures of the request are updated. Then, the 

model changes to waiting after sending user_request = (request). 

processing with 

faultsN → 

inactive* 

The model goes from waiting to sending state (transient state). Then, the 

model changes to inactive after sending component_state = (not-running). 

failure 
failure →  

inactive* 

The model goes from waiting to sending state (transient state). Then, the 

model changes to inactive after sending component_state = (not-running). 

inactive -  

*** External transition due an input event execution_state = (not-running). 

** External transition due an input event user_request defined as (domain_request, quality_measures) with 

quality_measures = (execution_time, total_time, incorrect). The domain_request field should be defined 

according to the software product in development. 

*** 1 ≤ i ≤ N-1 con N ≠ 1. 
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4. Conclusions and Future Work 

In this paper, we present a DEVS-based approach for building simulation models for 

functional components defined in software architectures as high-level components. A 

set of all-purpose quality measures is used as a simulation goal with aims to provide a 

feasible solution for architectural evaluation in the early stages of development. The 

DEVS atomic model definition detailed in this paper can be used as a foundation for 

other types of measures related to software products (such as quality in use). The 

prerequisites of software architectures studied in this paper are the chance to distinguish 

low-level components as actions of high-level components. 

 Actually, the approach presented in this paper is used as a support mechanism 

for building the essential models required for quality estimation in web-based 

applications using the architecture design. The Routed DEVS (RDEVS) essential 

models are basically DEVS atomic models used as embedded components in a new type 

of discrete-event model named RDEVS routing model [Blas, Gonnet and Leone 2017]. 

The use of Routed DEVS as a formalism for building architectural simulation models 

was presented in [Blas, Leone and Gonnet 2020]. 

 Given that the approach is centered on building DEVS atomic models from the 

design of functional components, the final goal is performing the mapping as an internal 

functionality of a software tool. In such a case, the modeling effort required to use the 

approach in real-world projects should be minimum. However, a deeper evaluation of 

such a modeling effort is part of the future work. Moreover, the approach may need 

some adjustment if other different domains are studied. For example, for software 

components that implement concurrency with threads, new phases may be required. 

 Future work is devoted to expanding the number of quality metrics measured 

during the simulation with aims to support new quality properties at the basic 

architectural level. Higher levels of architectural design could be modeled hierarchically 

by adding new top-level models to the existing ones. In DEVS, this can be done by 

building coupled models. In RDEVS, instead, routing and network models should be 

defined. In this last case, the advantage is that the essential models are used to define the 

behavior of routing models. Hence, when the architectural design changes, only the 

routing information attached to the specification of routing models need to be modified. 

The behavior of the components (essential model definition) remains the same.  
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