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Abstract. We propose an integrative environment for the modeling and simula-
tion of activity specification. The devised approach relies on the DEVS (Discrete
Event System Specification) formalism for the foundational semantics of the es-
sential activity elements. The code generation takes place afterward, targeting
specific DEVS-compliant modeling and simulation (M&S) environments such as
DEVS-Suite and MS4 Me. The modelers can set parameters or modify the code
to satisfy specific needs. The simulation can then be conducted with behavior
monitoring and visualization. We demonstrate the approach with observations
about performance evaluation and tracking. Such environments have the po-
tential to facilitate computational model development for System of Systems via
full-scale simulation support.

1. Introduction

There is a growing interest in developing environments that provide model execution and
simulation for models specified at a higher level abstraction [Mohlin 2010, OMG 2018,
MS4 Systems 2018, Eclipse Foundation 2019, NoMagic 2020]. Such abstractions tend to
invoke and enrich the modeling of different scenarios and behaviors in various domains
and perhaps cross domains. However, they can become challenging to realize in more
concrete settings and environments. The simulation modeling can deliver more insightful
observations of the system under study that is being modeled with such abstractions.

Among these abstractions are some languages adopted in software as well as sys-
tem engineering problems. For example, the Unified Modeling Language (UML) and
the System Modeling Language (SysML) are two popular cases where such an issue can
exist, that is, the realization of the higher-level concepts in the lower level executions.
Thus, there has been a growing interest in the last decade to equip them with model ex-
ecution and simulation. The foundational semantics for executable UML subset (fUML)
[OMG 2018] has been proposed and adopted in some recent tools development. However,
some of the developed solutions for executable modeling have relied on fUML and the
precise semantics of UML state machines (PSSM) [OMG 2019], which is an extension of
the former. These two specifications, along with their execution engines, do not have an
account of some aspects of the system, such as the temporal structure, since they primarily
target the UML in general from an execution standpoint.
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The model can be conceived in various forms, such as physical, mathematical, and
logical representations. It can take the form of a visual, textual, or mathematical formu-
lation. It can be written in a set-theoretic specification or according to the syntax of some
programming language. From a simulation modeling standpoint, it is “a set of instruc-
tions, rules, equations, or constraints for generating I/O behavior” [Zeigler et al. 2018].
The challenge arises when such models are too abstract in a way that creates a major ob-
stacle when someone tries to grasp a precise expression out of them or conduct a rigorous
study or experiment. Nevertheless, this abstract way of deriving the models is a necessary
part, or useful to say the least, of the modeling process at human thinking as well as the
organization level. For example, interoperability emerges in conditions where multiple
agents or constituents of some system have successfully identified their higher concepts
that will most likely cause the desired impact at the operational level.

Therefore, the integrative approach to such issues can deliver some understanding
of the mostly different models in place. Some models are abstract, with the possibility
of running into multiple interpretations. Others have a large degree of precision, leaving
no room for different adaptations. Putting these different models in one environment,
which is the main contribution of this paper, may facilitate model development and reveal
interesting insights or stimulate posing questions akin to the mental activity triggered in
simulation and experimentation. The path toward such endeavor by no means should be
overlooked. There are infinite possibilities, and navigating through them must take place
with sufficient care.

In this paper, we discuss in details the model development steps in such an integra-
tive environment for the modeling and simulation (M&S). It is organized as follows. The
background section discusses our previously given definition of Activity and the DEVS
formalism (Section 2). Then, we explain the overall modeling life-cycle in the proposed
M&S environment (Section 3). In Section 4, we illustrate the life-cycle by going through
the simulation modeling steps for an example increment operation. In Section 5, we go
through the same steps but briefly in a more holistic manner for an example simulation
for comparing the performance of single versus multiple servers.

2. Background
2.1. Activities
In this section we review our previous definition of Activity [Alshareef 2019]. We con-
sider an essential set of activity elements. The Activity is primarily a graph that consists
of nodes and edges that further specialize in many different nodes and edge types, mostly
for nodes. An example of object nodes is the parameter that can refer to distribution and
defines the arrival, or departure, of inputs, or outputs. Control nodes can be merge, deci-
sion, join, fork, initial, and final nodes, each of which describes a different type of control
over the flow. The merge and decision nodes select at least one incoming or outgoing
flows to proceed after evaluating its corresponding condition. We refer to both nodes as
Select element. In SysML, the likelihood of traversing the outgoing flow of a decision
node can be specified with probabilities. The join and fork nodes synchronize the incom-
ing or outgoing flows waiting for all incoming flows in join and resulting in concurrent
flows in fork. We refer to them as Sync elements. The initial and final indicates the initi-
ation and termination of an activity. The other important type of node is the action node.
It is the super-type of many specialized types of actions in the fUML model.

Anais do II Workshop em Modelagem e Simulação de Sistemas Intensivos em Software (MSSiS 2020)



2.2. The DEVS formalism

The Parallel DEVS model [Zeigler et al. 2018] is 〈X, Y, S, δext, δint, δcon, λ, ta〉. X is the
set of input events. S is the set of sequential states. Y is the set of output events. δint, δext,
and δcon are the internal, external, and confluent transition function, respectively. λ is the
output function, and ta is the time advance function. A specification is devised for each
type of activity node. Primarily, three atomic models are specified to correspond to action,
join and fork, and merge and decision. These three atomic models mimic the behavior of
their corresponding nodes during the simulation according to their ascribing semantics.
Other aspects of the models are also captured, such as the flows, I/O parameters, and pins.

In a DEVS-based simulation of activities, the atomic model specification describes
the action as well as the control node. We refer the reader to [Alshareef 2019] for further
details about the DEVS formal specification of the action, and four control nodes that are
merge, decision, join, and fork. The DEVS correspondent to the activity diagram is then
the coupled model created based on the structure of the given Activity. Stimuli can be
received by either a generator component or through an external input coupling resulting
in the activation.

3. DEVS-based Support for Simulation Modeling Activities

The proposed environment relies on the DEVS as an underlying formalism for speci-
fying the semantics of a set of activity elements. The identified set captures sufficient
yet rich semantics associated with activities at a general level. The Parallel-DEVS, for
example, provides a suitable candidate for the simulation of parallelism aspects and sup-
port offered by activities. The set consists mainly of Action, Sync, Select, Parameter,
Activity, and Flow (see the palette in Figure 1). The Action represents a general way to
capture many different specializations, such as processing, value specification, or object
manipulation. These specializations are encountered in various system models and pro-
gramming languages. The Sync is a general specification for fork and join nodes that are
responsible for synchronizing the flow, whether it is incoming or outgoing. The Select
is a general specification for decision and merging nodes that are responsible for select-
ing the incoming or outgoing flow. The Parameter can be input or output parameters to
the Activity. The Activity can be placed within another activity in a hierarchical manner
[Alshareef and Sarjoughian 2019] in order to set the stage for exploiting the support of
modeling hierarchy offered in DEVS. Finally, the Flow is a general concept to represent
different types of flow, such as object or control. Each Action, Sync, and Select map to an
atomic models in the DEVS corresponding representation. The Activity maps to a cou-
pled model. While the Parameter maps to an I/O port and the Flow maps to an external
or internal coupling [Alshareef and Sarjoughian 2017].

3.1. The model lifecycle

The modeling starts by drawing the desired activity diagram using the palette. After do-
ing so, the code generation can takes place. Currently, we have implemented three code
generation facilities. The first one generates Java code for the simulation in DEVS-Suite.
The time advance function is set with fixed time steps to provide the initial simulation.
The second facility generates the code similarly but for the simulation in the MS4 Me en-
vironment. The third facility generates the code to be simulated in the same environment
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however, with Markov time advance and state transition function. The resulting models
are known as DEVS-Markov [Seo et al. 2018, Zeigler et al. 2018]. All of the three sets
of classes are generated automatically.

Then, the modeler can interject by setting further parameters or modify the code
to satisfy specific needs. For example, the time advance function can be set according to
different timing assignment or distribution. The same can take place for all other func-
tions, including their internal specification, to dictate certain behavior. The target M&S
environment (i.e., MS4 Me or DEVS-Suite, as of now) can then conduct the simulation
run along with the support for behavior monitoring and visualization offered in each tool,
such as the simulation view [ACIMS 2019, MS4 Systems 2018] and super-dense time tra-
jectories [ACIMS 2019]. The code generation can be extended to add further facilities to
support the simulation in any environment that implements the DEVS abstract simulator.

The process can continue after observing the simulation and obtaining the results
of it. The modeler can evaluate the performance and potentially use the resulting simu-
lation to feedback the drawing of the activity diagram, setting the parameters, or making
some changes to the code. Then, it goes through the simulation rerun, and so forth. Figure
1 highlights the important steps of the life-cycle in the proposed environment.

@Override

public void externalTransition(double e, MessageBag x) {

currentTime += e;

sigma -= e;

if (phaseIs("passive")) {

for (Port in_port : this.getInputPorts())

. . . 

Activity Diagram
DEVS Model
Atomic/Coupled

Simulation

Performance 
Evaluation

Simulation Run
Code 

Generation

Set parameters 
Add/modify code

Draw the 
diagram

Figure 1. Integration of Activity Specification into DEVS M&S Development Envi-
ronment

4. Simulation modeling increment
We will use this simple example to go through the model life-cycle steps with explana-
tions. The increment is a basic operation to increase an integer by one. This example has
been used in the tutorial provided by Moka execution engine [Eclipse Foundation 2019].
We use the same example to demonstrate the DEVS-based simulation support for oper-
ations or instructions that can take place at this level of development. In previous work
[Alshareef et al. 2020], we discussed the example with details in both approaches with
some comparison and evaluation remarks.

4.1. Drawing the activity diagram
The modeling initiates by drawing the activity diagram by selecting from the elements
mentioned above the most suitable one to describe the desired behavior. The nodes can
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be categorized into two groups. The first group is the action nodes that currently consists
of the Action only and can be extended to describe more specific cases. The second
group is the control nodes, which currently consists of the two elements Sync and Select.
The Sync describes the flow where some form of synchronization is required. Sync with
multiple incoming flow corresponds to the join node in activities. It is a maximum flow
in a way that it requires to receive input through all of its incoming flows. The Sync with
multiple outgoing flows produces its output to all of them simultaneously. Conversely,
the Select is a minimum element by which only one flow is needed for proceeding. In the
case of multiple incoming flows, it is a merging node where one input arrival is sufficient
to trigger producing an output. While Select with multiple outgoing flows is a decision
node by which some outgoing flow is selected to proceed where the condition is met.

The remaining elements, the Parameter, the Activity, and the Flow, allow for mod-
eling I/O for the Activity, hierarchical activities, and the flow connecting these elements,
respectively. The parameter can be an input for receiving stimuli, activation, or any dis-
tribution. It can also be an output to produce the result of the simulated behavior or
some cycle thereof. The Activity can contain another activity in a hierarchical manner
[Alshareef and Sarjoughian 2019]. In the activity diagram, such a notion is modeled us-
ing communication signals to either pause the flow and call some other behavior or opera-
tion or do the same thing without a pause. We have extended the Activity with this notion
exploiting the hierarchical DEVS since we will be using it for the simulation modeling.
The flow can be categorized into control or object flow. However, we only model it using
this generic element since the distinction can be carried out using the I/O communicated
between the different components during the simulation.

Modeling the increment operation can take various form. A simple activity in
Figure 2 consists of an input parameter to receive the activation token. Then, a merging
node allows any received flow to proceed in the outgoing flow. The first incoming flow,
with the input parameter as a source, allows for the activation of this Activity. While the
second incoming flow, with the fork node as a source, allows for the feedback loop after
completing the increment action in order to initiate the following rounds. The increment
action is responsible for conducting the actual operation. After that, it produces the output
containing the new counter value after the operation. The fork node then simultaneously
sends out the output to the output parameter and back to the merging node in order to
continue the procedure. Figure 3 show a screenshot of the simulation after completing the
third round. We note that this sort of scenario can be described with different diagrams.
Moreover, further elaboration can also take place, such as the distinctions between dif-
ferent inputs. In [Alshareef et al. 2020], we discussed another scenario where a specific
counter is associated with each different input or type thereof.

4.2. DEVS models code generation

After finishing drawing the diagram, the code generation process takes place. The
generators are devised based on the proposed DEVS specification for the activity ele-
ments [Alshareef 2019]. The resulting codes are DEVS-compliant. Currently, the tar-
get simulators of the generation process are DEVS-Suite [ACIMS 2019] and MS4 Me
[MS4 Systems 2018]. Since the drawn Activity in the previous step does not specify state
explicitly, the specification describes that in a way that captures the essence of the activity-
based semantics while the modelers are allowed to make changes as desired. The Action
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Figure 2. The activity abstraction for the increment example

Figure 3. Simulation view after completing three rounds

initially has two phases that are active and passive. The active, or busy, state represents
action being consumed in some task or, in other terms, having the token and executing.
In contrast, the passive state represents the action being idle. The Sync has three different
phases in order to capture the essence of the fork and join semantics. A waiting state is
added to the phase set to allow for synchronizing incoming flow. However, the model
does not transition to this state if it is a fork node since it does not expect other inputs.
The Select state has a set of conditions as state variables to facilitate the determination of
which outgoing flow is supposed to proceed.

Each Action, Sync, and Select will have a corresponding class generated in Java
since it is the language for the target simulators. The class extends the atomic model class.
The Activity will have a class as well; however, it extends the coupled model properties
and features since the Activity corresponds to a coupled model in the proposed mapping.
The Parameter will correspond to ports in the generated classes, and the couplings will
be determined based on the flows.

The time advance function is set in various ways in the initial classes and can
be set further by the modelers. We currently generate three sets of classes. The first
set consists of Java classes with fixed time assignments for simulation in DEVS-Suite.
The second set is the same however, for the simulation in MS4 Me [MS4 Systems 2018].
While the third set consists of classes that correspond to DEVS-Markov models, which
are stochastic models with Markovian state transition and time advance.

4.3. Setting parameters and making code changes

The proposed environment takes an abstraction view that is complementary to code. Since
modeling involves lower-level equations and operations, the generated DEVS model in
the code format can undertake further modification and enhancement, especially concern-
ing the operational level and parameter setting. Such modifications might be convenient
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to be encoded directly into the concrete model in a consistent manner without losing the
prior specification of the abstraction. We note that this step is optional, and the automati-
cally generated code can proceed directly for the simulation step without modifications.

In this example, the basic operation that is taking place is the increment. It is sim-
ple enough, and its syntactical representation is very close to its abstract one. Therefore,
it does not require substantial modeling effort with logic and procedure. The modelers do
not need to have advanced knowledge of programming techniques and data structures in
order to encode such an operation. Therefore, we delegate this step to the concrete code
to preserve a more succinct activity diagram that focuses on the logic and semantics of
the model. Figure 4 shows a code snippet for MS4 Me corresponding to the external tran-
sition function in the atomic model for the increment action. The tool generates this code
automatically with an initial and default value for the job, while the change to represent
the desired operation is highlighted and made on the generated code.

@Override

public void externalTransition(double e, MessageBag x) {

currentTime += e;

sigma -= e;

if (phaseIs("passive")) {

for (Port in_port : this.getInputPorts())

if (x.hasMessages(in_port)) {

ArrayList<Message<Serializable>> messageList = in_port.getMessages(x);

for (int i = 0; i < messageList.size(); i++) {

job = counter+++"";

holdIn("active", processing_time);

}

}

}

}

Manually modified after the 
code generation step

Figure 4. The code snippet for MS4 Me corresponding to the external transition
function in increment action

4.4. Running the simulation

The code for the DEVS models is now ready for conducting the simulation. As part of
the code generation process, a generator is added to the model to initiate the simulation
with inputs. Various generators can be used for this purpose using various uniform or
statistical distributions. The simulation view in MS4 Me supports running the simula-
tion at once. It also allows stepping through each iteration, running a specific number
of iterations, or to the desired simulation time. It shows the modelers the simulation
status and some animations of the dynamics such as I/O communication amongst the
components. The simulation can be evaluated through such means or via designing an
experimental frame, especially for models with some degree of complexity and scale.
In DEVS-Suite, different types of time trajectory, including super-dense time, can be
generated concerning state variables or I/O, which can be useful in many cases for ob-
serving the logic of the created model or evaluating their performance. In previous work
[Alshareef and Sarjoughian 2018], we showed some cases of such examination and high-
lighted its importance, especially in the case of modeling activities.

Anais do II Workshop em Modelagem e Simulação de Sistemas Intensivos em Software (MSSiS 2020)



In this increment example, only one input needs to feed into the Activity for the
activation. After that, the model will loop around the action due to having a feedback flow
outgoing from the fork node. There could be, however, other scenarios. For example,
there could be another input from the generator for deactivation.

4.5. Evaluating the performance
Observing the simulation run, whether via the offered visualization and animation fea-
tures or some designed experimental frame, is significant for performance evaluation of
the model. In previous works [Alshareef and Sarjoughian 2018, Alshareef 2019], we have
examined some measures of evaluation in multi-processing architectures such as through-
put and parallelism. The same measures can apply to the increment example or other
models to examine specific aspects of their logic. Moreover, models can be subjected
to further constraints, such as timings, for more advanced analysis as opposed to basic
debugging. We devise an activity abstraction to correspond to various multi-processing
schemes. Then we examine intrinsic characteristics of these schemes using the generated
code for the DEVS models to verify and compare. Parallel execution was an essential as-
pect of particular interest to examine parallel flow in the activity specification. An engine
with support for parallel simulation is necessary to underline this aspect.

5. Single server versus multiple server example
The example consists of a server or multiple servers that receive jobs for processing and
could be linked together in different archetype architectures. The example is presented
initially in the Simulink SimEvents documentation center [Mathworks 2018] to compare
between different server architectures considering different service times. The experiment
aims to conclude that one fast server is better than multiple slower servers when it comes
to the average waiting time. The architecture is designed with two settings. The one
server model has the required service time for each job generated based on exponential
distribution with mean µ = 1. The second case has three servers with mean µ = 3 for
generating service time periods. In both cases, the arrival of jobs is generated based on
exponential distribution with µ = 2. The experiment concludes that the turnaround time
achieved by the single but fast server is less than the turnaround time achieved by the
multiple but slower servers.

The server systems are described by [Wymore 1993] with servers being developed
after examination of their counterparts in a manufacturing system model. Two models are
developed using the activity specification from a system standpoint. Figure 5 shows the
Activity corresponding to the multiple servers architecture. The single server architecture
has one action only instead. The merge node will be equipped with a queue at the DEVS-
level to hold on jobs in case none of the servers is available at the moment of the job
arrival. The calculation of the turnaround time starts recording until the job processing
is completed. We note that turnaround time is the total time for the job being in the
system and includes the waiting time to be served as well as the time during the service
([Mathworks 2018] refers to this quantity as the waiting time.) The notification of the
availability of the server is sent back to the merge node via feedback flow outgoing from
the fork node. The full details of the experiment are captured at the DEVS level.

The resulting DEVS models are evaluated using an appropriate experimental
frame to confirm the aforementioned conclusion. The time required for processing each
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Figure 5. An activity diagram for the multi-server system with three actions

job is set with µ equal to the number of servers while µ for job arrival is 2 for all runs.
The results on turnaround time are shown in Table 1, where a different number of servers
is specified and simulated. The table shows average turnaround times for service of 100
jobs for the cases of 1, 3, 5, and 6 servers.

Number of servers 1 3 5 6
Turnaround time 1.241 2.659 4.378 5.254

Table 1. The result of simulation with different turnaround time for different num-
ber of servers and µ equal to the number of servers in each case for the job
service time

The example briefly highlights our approach and demonstrates how analysis with
some degree of rigor can take place within activities that are developed to describe flow in
the system or some parts thereof. The experimental frame for turnaround time can be gen-
eralized to correspond to many aspects of the design of software architecture. In addition
to the numerical analysis, the use of M&S can provide valuable insights regarding specific
procedures or steps thereof with varying degrees of temporal precision or resolution. The
DEVS Markov mapping also shows how the approach can account for stochastic model-
ing which can be useful in predicting and enhancing the analysis of different alternatives.
Whether a system is under study or development, simulation models can continue to be
developed and become part of the actual running system in a seamless manner.

6. Future work
Software errors become far more threatening when they are within a software-intensive
system or cyber-physical system environments due to their prevailing impact on the phys-
ical world. It is crucial to treat parts of these systems with more rigorous approaches,
especially the ones with safety implications in critical systems. It can be helpful to enable
the modeling and simulation of these parts at different stages of the analysis and design.

We plan to continue examining further techniques for the proposed integrative
environment to enhance the model life-cycle. In particular, we are examining different
ways to incorporate the abstraction concepts along with the lower-level components of
the model in a systematic manner. The model in this approach currently can be further
refined to the hardware-level design, although in an ad-hoc way. We are currently working
to demonstrate its applicability and use in domains with varying levels of complexity, such
as Cyber-Physical Systems, Internet of Things, and cloud-based systems.
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