

Modeling Routing Processes through Network Theory: A

Grammar to Define RDEVS Simulation Models

María J. Blas1,2, Clarisa Espertino2, Silvio Gonnet1,2

1Instituto de Desarrollo y Diseño INGAR – Consejo Nacional de Investigaciones

Científicas y Técnicas (CONICET) – Universidad Tecnológica Nacional (UTN)

Avellaneda 3657 – Santa Fe – CP 3000 – Argentina

2Departamento de Ingeniería en Sistemas de Información – Universidad Tecnológica

Nacional (UTN) – Facultad Regional Santa Fe

Lavaisse 610 – Santa Fe – CP 3000 – Argentina

mariajuliablas@santafe-conicet.gov.ar, cespertino@frsf.utn.edu.ar,

sgonnet@santafe-conicet.gov.ar

Abstract. The Routed DEVS (RDEVS) formalism provides a reasonable

formalization for the simulation of routing processes. In this paper, we

introduce a context-free grammar for the definition of routing processes as a

particular case of a constrained network model. Such grammar is based on a

metamodel that defines the semantics over the syntactical elements. This

metamodel allows a direct mapping between its concepts and RDEVS

simulation models. A Java implementation is provided for the grammar as a

plug-in for Eclipse IDE. The main benefit of this software tool is the feasibility

of getting a simulation model without having programming skills.

1. Introduction

Network theory is a useful technique to model relationships between entities [Newman,

Barabasi and Watts 2006]. A network consists of nodes connected by a set of links.

Such a representation has been widely adopted for modeling studies in several fields,

such as, for example, the social network domain [Borgatti and Halgin 2011]. In

Software Engineering, studies have used this technique to evaluate systems/software

issues [Wen, Kirk and Dromey 2007; Pan 2011; Zakari, Lee and Chong 2018].

 When in a system of interacting components, the operation of a component and

the routing of its outputs depend on what is happening throughout the process, the

dynamic of the system can be seen as a routing process. Routing processes exhibit a

strong interdependence within components that allow modeling their structure using

network theory. Moreover, when routing processes are studied as discrete-event

systems, the Discrete Event System Specification (DEVS) formalism [Zeigler, Muzy

and Kofman 2018] provides a solid basis for their Modeling and Simulation (M&S).

From this perspective, routing mechanisms can be structured over DEVS models to

define routing processes. Such mechanisms can be interpreted as routing functionalities

attached to the system behavior. This is the case of the Routed DEVS (RDEVS)

formalism [Blas, Gonnet and Leone 2017].

 In this paper, we discuss how the RDEVS formalism provides a reasonable

formalization for the M&S of routing processes based on a constrained network model.

Moreover, from the experience described in [Blas and Gonnet 2021] where RDEVS

simulation models are derived from graphical representations, we propose a natural

language syntax for the routing process definition using a constrained network model

grammar that allows a further derivation of RDEVS simulation models. Our aim is i) to

offer a software environment for the natural language definition of routing situations

using a constrained network model, and ii) to be able to get a model definition that

supports a further generation of Java code for such routing situations in a way that they

can be executed in DEVS simulators as discrete-event simulation models.

 The remainder of this paper is organized as follows. Section 2 introduces the

constrained network model that supports the definition of routing processes. Section 3

presents the RDEVS formalism as the M&S core used to define routing processes as

simulation models. Section 4 presents the grammar and its implementation for Eclipse

Integrated Development Environment (IDE) [The Eclipse Foundation 2021a]. Finally,

Section 5 is devoted to conclusions and future work.

2. Routing Processes as Constrained Network Models

A routing process can be defined as “a system of interacting components in which the

operation of a component and the routing of its outputs depend on what is happening

throughout the process”. Here, interactions between components depend on both local

and external data. Local data refers to internal information of components, while

external data refers to information derived from the process structure.

 The definition of a routing process may contain different types of components.

Each type of component operates independently. This means that the internal operation

of components is defined independently from the structure of the routing process. Since

routing depends equally on the operative description of the component and process

structure, the component can decide the output destinations. Hence, components can

take decisions about routing such as i) alternate the routing of its outputs to avoid

congestion, ii) block the routing of its outputs from entering to a precise sector of

predefined components, and iii) accelerate/decelerate the processing of its inputs (to

produce faster/slower outputs) when knowing that downstream nodes are free/busy.

 A conceptualization of routing processes can be defined using constrained

network models. Network Theory proposes modeling a system as a set of nodes that are

connected by links [Newman, Barabasi and Watts 2006]. Both elements (i.e., nodes and

links) can have different meanings. For example, if the network is modeling the

roadmap of Argentina, the network defines Argentina as a set of nodes that represents

cities along with a set of links (among these nodes) that depicts roads between them.

When modeling a routing process as a network, nodes define components, and links

denote interactions between them. However, the network model that depicts a routing

process should be constrained to ensure model correctness (e.g., components cannot be

isolated, self-interactions are not allowed, etc.). These kinds of constraints restrict the

original network model giving a constrained network model for representing routing

processes. From this perspective, a routing process can be seen as a constrained instance

of a network model.

 A metamodel is a model which defines the used language to design a model

[OMG 2002]. That is, it is a model in which instances are models. It defines (at the

metamodeling level) the description of all the concepts, their semantics, and the

syntactic rules of a language that is instantiated at the modeling level. Hence, both

modeling concepts and relationships are equally defined as metamodel concepts.

Metamodels are powerful modeling tools to ensure the correctness of models’ structure.

Furthermore, they allow validating the model instantiation regarding the rules defined at

the metamodeling level. Figure 1(a) presents a Unified Modeling Language (UML)

diagram that depicts a metamodel containing the elements to be instantiated for the

definition of a concrete network type. In such a metamodel, a Network Model is defined

as a Composition Of Network Elements. Such elements are defined as Nodes and Links.

In this case, Links are unidirectional. Hence, each Link Starts At a Node and Ends At a

Node (possibly the same that the one placed at the beginning).

 From the metamodel depicted in Figure 1(a), different types of networks can be

instantiated. Figure 1(b) presents an instance of such a metamodel as a UML diagram

that describes a routing process as a constrained network model. Stereotypes are used to

refer the metamodel elements (i.e., concept or relationship) instantiated at the modeling

level. The diagram is restricted with Object Constraint Language (OCL) constraints to

ensure the routing process definition. These constraints are detailed in Table 1.

Figure 1. UML class diagrams that support the definition of routing processes
as constrained network models. (a) Metamodel that defines the main concepts
and relationships required for instantiating a network model. (b) Constrained
network model instantiated from the metamodel to represent a routing process.

Table 1. OCL constraints attached to the UML diagram of Figure 1(b).

ID OCL constraint

C1
context RoutingProcess
invariant existsStartingComponent: self.component->
select(c|c.inputLink->size()=0 and c.outputLink->size()>0)->size()>0

C2
context RoutingProcess
invariant existsEndingComponent: self.component-> select(c|c.inputLink-
>size()>0 and c.outputLink->size()=0)->size()>0

C3
context Component
invariant notIsolated:(self.inputLink->size() +
self.outputLink->size()) > 0

C4
context Component
invariant multipleInteractions: self.outputLink->forAll(e1,e2|e1<>e2
implies e1.destination <> e2.destination)

C5
context Interaction
invariant notSelfInteraction: self.source<>self.destination

 When a constrained Network Model is used to structure a Routing Process, the

model is defined over a set of Components. It also includes a set of Interactions. At the

modeling level, the Nodes denote Components, and Links define directed Interactions

between Components. At least one Component should be identified as the starting

Component (constraint C1). Also, at least one Component should be detailed as the

ending Component (constraint C2). Components cannot be isolated (constraint C3).

Two Components are linked in an Interaction. One Component acts as the source from

which the Interaction takes place and the other acts as the destination to where the

Interaction is directed. Various Interactions cannot connect the same Components

(constraint C4). Moreover, self-interactions are not allowed (constraint C5).

 In a Routing Process, each Component exhibits an internal operation. Such an

operation cannot be mapped to the metamodeling level because it is part of the domain

description (i.e., the operation is specified when a concrete routing process is defined).

However, we introduce this attribute as part of the Component concept to provide a full

definition of routing process’ elements. In the next section, we show how a routing

process description can be mapped to discrete-event simulation models.

3. The Routed DEVS (RDEVS) Formalism

The RDEVS formalism employs the “embedding routing functionality” strategy over

DEVS models to provide routing capability from the simulation model conception.

Such a DEVS extension was presented in [Blas, Gonnet and Leone 2017] as a subclass

of the classic DEVS that adds routing features to the atomic model capabilities by

introducing a new model: the routing model. Hence, the formalism act as a “layer”

above DEVS that provides routing functionality without requiring the user to “dip

down” to DEVS itself for any functions. To accomplish that, RDEVS defines three

models: essential (equal to the atomic model), routing (new model introduced by the

extension), and network (like the coupled model). These models are related as follows:

• the essential model is formally defined as a DEVS atomic model that specifies a

domain behavior,

• the routing model is formally defined as a container for an essential model that

uses a routing policy to manage its inputs and outputs (i.e., domain and routing

behaviors together), and

• the network model is formally defined as a set of routing models coupled all-to-

all to leave the routing functionality to routing policies (i.e., the model structure).

 The core of RDEVS is to abstract the event flow into discrete-event models that

arrange events independently from the domain behavior of components. The routing

policy is isolated from the domain behavior allowing the reuse of the essential model in

distinct routing models. Furthermore, the same network model can support different

configurations by only changing the routing policies attached to its routing models.

3.1. RDEVS as Formalization of Routing Processes

Formalization makes it easier to work out the implications of an abstraction and

implement them in reality [Zeigler, Muzy and Kofman 2018]. As detailed in [Blas and

Gonnet 2021], the RDEVS formalism is designed to level out the modeling effort of

routing processes modeled in DEVS. Hence, the RDEVS formalism can be used as

formalization language for the constrained network model depicted in Figure 1(b).

 Each type of RDEVS model can be used to formalize an element defined in a

routing process as follows: i) the network model structures the Routing Process (i.e., the

Network Model at metamodeling level) as a composition of routing models; ii) the

routing model represents a Component (i.e., a Node at metamodeling level) included in

the Routing Process; and iii) the essential model describes the internal operation of a

Component. For the formalization of a Component, the routing model is defined as the

pair { routing policy, essential model } that verifies the routing policy over the incoming

event and, then, passes on the operative content to the essential model for processing.

Such a routing policy is defined as the formalization of the set of Interactions linked to

the Component inside the Routing Process. So, the Component (formalized in a routing

model) depends equally on its operative description (i.e., the internal operation

formalized in the attached essential model) and the process structure (i.e., the related

Interactions formalized in the routing policy).

 Some of the advantages of employing RDEVS for the M&S of routing processes

are that i) the modeler does not need to dip down to DEVS itself to add routing

functionality to the models, ii) existing atomic models can be used to structure routing

processes, iii) RDEVS models can be combined with DEVS models to define complex

M&S scenarios where routing processes interact with other types of phenomena, and iv)

DEVS simulators can be used to execute RDEVS models. Moreover, due to the

conceptual foundation of routing processes as constrained network models, the UML

diagrams presented in Section 2 can be combined with Model-Driven-X (MDX) and

Model-Based (MB) approaches to get platform-specific implementation models.

 The MDX methodologies are widely used in the Software Engineering field. For

example, the Model-Driven Engineering (MDE) approach is based on several principles

that involve the concepts of model, metamodel, meta-metamodel, and model

transformations to provide a process that enables the automated development of a

system [Cetinkaya et al. 2011]. Even when MDX approaches have been used in M&S,

MB paradigms (such as MB System Engineering and MB Simulation) are also

frequently used to get solutions to M&S issues [Kapos et al. 2014; Neto et al. 2018].

Such MB approaches use MDX practices pragmatically. This is, the models are

important, but they do not necessarily drive the development process. In this context, in

[Blas and Gonnet 2021] the authors employ MDE as a vehicle for designing and

implementing a M&S software tool that provides RDEVS-based solutions for generic

routing processes. They use a metamodel to abstract the routing process definition into a

graphical representation based on nodes and links to describe its structure. Such a

structure is used as a domain model description for building (automatically) an RDEVS

implementation of the process without requiring any interaction with the modeler. Then,

the modeler can define a routing process as a graph and then, get a RDEVS simulation

model implementation for such a process without having programming skills.

 Following the same approach, in this paper, we propose a Context-Free

Grammar (CFG) to define the structure of routing processes using the constrained

network model depicted in Figure 1(b). Since such grammar will be added to the M&S

software tool presented in [Blas and Gonnet 2021] (developed as a plug-in for Eclipse

IDE), Eclipse technology was used to implement its software modules. This will allow

modelers to specify textually a routing process as a network and then, get the

corresponding RDEVS simulation model implementation.

4. The Constrained Network Model Grammar

If a routing process is correctly defined as a constrained network model, then RDEVS

simulation models can be automatically obtained following the formalization guidelines

described in Section 3.1. In this context, we propose to use the network model that

supports the routing definition (i.e., Figure 1(b)) to validate the semantic correctness of

a process. The definition of such a process is obtained from the model instantiation.

Such an instantiation is performed through the syntactical analysis of a natural language

description called RDEVSNL. A CFG is introduced for the syntax. Hence, once the

modeler has defined a natural language representation of a routing process, our strategy

is to analyze the syntax of such a representation to get an instance of the model that can

be validated using Figure 1(b) and Table 1.

 The following subsections present both syntax and semantics that compose the

grammar, following the example described in [Blas and Gonnet 2021] as proof of

concept. Figure 2 shows the routing process to be defined. Icons depict machine types.

Figure 2. Industrial routing process used as proof of concept (adapted from
[Blas and Gonnet 2021]).

4.1. The Syntax: RDEVSNL

The RDEVSNL grammar abstracts the routing process definition into a textual

representation based on nodes and links to describe its structure. The CFG of

RDEVSNL was specified and implemented using ANTLR4 (i.e., a parser generator) and

ANTRL4 IDE Eclipse Plugin for ANTLR 4 [Parr 2021]. We have defined two versions

of the RDEVSNL: English and Spanish. Hence, the modeler can define routing

processes in both languages. We have also implemented an Editor for such a CFG as an

Eclipse plugin. A RDEVSNL specification file has the extension .rdevsnl. The language

is defined by the modeler during the creation process.

 In the RDEVSNL English specification, there are three primary building blocks:

network, materializes, and edges. Figure 3 illustrates the production rule and the syntax

diagram of these three main nonterminal symbols. The edges symbol is partially

included for space reasons. The complete definition can be found here. Furthermore,

Figure 4 illustrates an example of the RDEVSNL Editor. Such an example depicts a

possible specification of the routing process illustrated in Figure 2.

(a)

http://www.ingar.santafe-conicet.gov.ar/wp-content/uploads/2021/07/RDEVSNL.rar

(b)

(c)

Figure 3. Production rules and the syntax diagram of the three main
nonterminal symbols (a) network, (b) materializes, and (c) edges.

 When a RDEVSNL specification is used to structure a Routing Process, a

Network is defined to model that process. Such a model is defined over a set of Nodes.

Each Node denotes a Component (Figure 1(b)). Therefore, a Network is specified using

an id and it always includes a list of nodes (Figure 3(a)). This list can be denoted in a

unique specification (i.e., detailing the complete list of nodes as listOfNodes -as in

Figure 4-) or in multiple text lines (where each id node is part of the Network). In a

Routing Process, each Component exhibits an internal operation. Such an operation is

identified as a component in Figure 3(b), and it defines the behavior of a node or a list

of nodes (Figure 3(b)). In Figure 1(b), Links define directed Interactions between Nodes.

These interactions are specified by edges in Figure 3(c). The grammar enables the

definition of these interactions in multiple ways (e.g., a node sends outputs to another

node/list of nodes, a node receives inputs from a node/list of nodes, etc.) as in Figure 4.

Figure 4. Screenshot of the Eclipse editor implemented to support the syntax.
Suggestions are provided following the language configuration. Keywords are
highlighted to help the modeler during the edition.

4.2. The Semantics: The Constrained Network Model as an EMF Metamodel

With aims to validate the semantics of an RDEVSNL definition, we implement an

Ecore version of the model depicted in Figure 1(b). To get such an implementation, we

use the EMF project of Eclipse [The Eclipse Foundation 2021b]. This project is a

modeling framework and code generation facility for building software tools and other

software applications based on a structured data model. The foundational metamodel

used for modeling routing processes as constrained network models (Figure 1(b)) was

implemented with EMF to get a data model specification for further instantiation and

validation. Since this is Java technology, such an Ecore model was embedded in the

plugin. Hence, the final RDEVSNL plugin is composed of the syntax (defined using

ANTLR4), the RDEVSNL editor, and the semantic model (defined as an Ecore model).

 Over the CFG implemented, we add to the Editor the option to validate the

description file (Figure 5(a)). When the modeler activates this validation process, the

syntactical analysis (i.e., the parser) of RDEVSNL is executed over the current content

of the *.rdevsnl file. If such an analysis is successful, using the identified tokens, an

instance of the Ecore metamodel is automatically created. In this instance, each element

defined in the file is mapped to a concept or relationship. For example, line 1 of Figure

4 is syntactically correct. Therefore, during the validation process, the plugin creates an

instantiation with the following elements: i) an instance of RoutingProcess named

“RoutingProcess”, ii) five instances of Component (each one named “Machine_1” to

“Machine_5”), and iii) five relationships isDefinedOver to link each Component to the

RoutingProcess. Then, over such an instance, the plugin runs the Ecore validation

process to ensure its correctness. This validation checks the concepts, relationships,

multiplicities, and OCL constraints of the metamodel over the instance (i.e., the

semantic analysis). If both analyses are successful (i.e., syntax and semantic), the

modeler gets the message of Figure 5(b). On the other hand, if issues are detected, a list

of warnings is provided to the modeler. Then, the modeler can fix its routing process

description and check again.

Figure 5. Validation process of the routing process description. (a) At the left,
the Java editor option used to run the CFG validation. (b) At the right, the
confirmation message about the correctness of the routing process definition.

5. Conclusions and Future Works

In this paper, we have introduced a grammar based on a constrained network model to

address the definition of discrete-event simulation models for routing processes through

the RDEVS formalism. The core of RDEVS is the formalization of the set of elements

that composes a routing process using a conceptual modeling approach. Then, the

RDEVS formalism levels out the complexity of routing process specification to reduce

the modeling effort. Using a constrained network model allows identifying all the

elements required to define a routing process and, therefore, the RDEVS formalism can

be further used to formalize these elements. Here, we have presented the first step in

this direction.

 We have shown that routing structures can be defined in natural language using

a new grammar based on a constrained network model as support. As in the graphical

definition proposed in the previous work, since all the data regarding the routing process

structure can be obtained from the network abstraction, RDEVS network and routing

models can be fully specified from this description. Then, the modeler only needs to

complete the simulation model with the internal operation of components.

 The network model basis used allows improving the routing process

representation to get a deeper analysis of the associated simulation model. Much of the

theoretical wealth of network analysis consists of characterizing network structures

(e.g., small-worldness) and node positions (e.g., centrality). Hence, network analysis

can be performed over the RDEVS simulation models to get information regarding the

structure of the simulation process.

 Future work is devoted to the translation of the routing process described in the

network model instance (obtained from the grammar) to the RDEVS simulation models

(following the definitions provided in Section 3.1). Such a translation process will be

developed as the one already implemented in [Blas and Gonnet 2021]. Furthermore, we

will use the existing graphical representation to display the natural language description

as a graph. Hence, the M&S software tool will support both graphic and text definitions.

References

Blas, M. and Gonnet, S. (2021). Computer-aided Design for Building Multipurpose

Routing Processes in Discrete Event Simulation Models. In Engineering Science and

Technology, an International Journal, vol. 24, pages 22–34.

Blas, M., Gonnet, S. and Leone, H. (2017). Routing Structure over Discrete Event

System Specification: A DEVS Adaptation to Develop Smart Routing in Simulation

Models, In Proceedings of the 2017 Winter Simulation Conference, pages 774-785.

Borgatti, S. P. and Halgin, D. S. (2011). On network theory. In Organization Science,

vol. 22(5), pages 1168-1181.

Cetinkaya, D., Verbraeck, A. and Seck, M. (2011). MDD4MS: A Model Driven

Development Framework for Modeling and Simulation. In Proceedings of the 2011

Summer Computer Simulation Conference, pages 113–121.

Kapos, G., Dalakas, V., Tsadimas, A., Nikolaidou, M., and Anagnostopoulos, D. (2014)

Model Based System Engineering using SysML: Deriving Executable Simulation

Models with QVT. In Proceedings of the 2014 IEEE International Systems

Conference, pages 531–538.

Neto, V., Manzano, W., Kassab, M., and Nakagawa, E. (2018). Model-based

Engineering & Simulation of Software-Intensive Systems-of-Systems: Experience

Report and Lessons Learned. In Proceedings of the 2018 European Conference on

Software Architecture, pages 1–7.

Newman, M., Barabasi, A.-L., and Watts, D. J. (2006). The Structure and Dynamics of

Networks. Princeton University Press.

OMG (2002). Meta Object Facility (MOF) Specification, Version 1.4.

Pan, W. (2011). Applying Complex Network Theory to Software Structure Analysis. In

International Journal of Computer and Systems Engineering, vol. 5(12), pages 1634-

1640.

Parr, T. (2021). ANTLR. Available at https://www.antlr.org/ (accessed 28th June 2021).

The Eclipse Foundation (2021a). Eclipse. Available at https://www.eclipse.org/

(accessed 24th June 2021).

The Eclipse Foundation (2021b). Eclipse Modeling Project. Available at

https://www.eclipse.org/modeling/emf/ (accessed 29th June 2021).

Wen, L., Kirk, D. and Dromey, R. G. (2007). Software Systems as Complex Networks.

In Proceedings of the 2007 IEEE International Conference on Cognitive Informatics,

pages 106-115.

Zakari, A., Lee, S. P., and Chong, C. Y. (2018). Simultaneous Localization of Software

Faults based on Complex Network Theory. In IEEE Access, vol. 6, pages 23990-

24002.

Zeigler, B., Muzy, A. and Kofman, E. (2018). Theory of Modeling and Simulation:

Discrete Event & Iterative System Computational Foundations, Academic Press, 3rd

edition.

https://www.antlr.org/
https://www.eclipse.org/
https://www.eclipse.org/modeling/emf/

