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Abstract. The Routed DEVS (RDEVS) formalism provides a reasonable 

formalization for the simulation of routing processes. In this paper, we 

introduce a context-free grammar for the definition of routing processes as a 

particular case of a constrained network model. Such grammar is based on a 

metamodel that defines the semantics over the syntactical elements. This 

metamodel allows a direct mapping between its concepts and RDEVS 

simulation models. A Java implementation is provided for the grammar as a 

plug-in for Eclipse IDE. The main benefit of this software tool is the feasibility 

of getting a simulation model without having programming skills. 

1. Introduction 

Network theory is a useful technique to model relationships between entities [Newman, 

Barabasi and Watts 2006]. A network consists of nodes connected by a set of links. 

Such a representation has been widely adopted for modeling studies in several fields, 

such as, for example, the social network domain [Borgatti and Halgin 2011]. In 

Software Engineering, studies have used this technique to evaluate systems/software 

issues [Wen, Kirk and Dromey 2007; Pan 2011; Zakari, Lee and Chong 2018]. 

           When in a system of interacting components, the operation of a component and 

the routing of its outputs depend on what is happening throughout the process, the 

dynamic of the system can be seen as a routing process. Routing processes exhibit a 

strong interdependence within components that allow modeling their structure using 

network theory. Moreover, when routing processes are studied as discrete-event 

systems, the Discrete Event System Specification (DEVS) formalism [Zeigler, Muzy 

and Kofman 2018] provides a solid basis for their Modeling and Simulation (M&S). 

From this perspective, routing mechanisms can be structured over DEVS models to 

define routing processes. Such mechanisms can be interpreted as routing functionalities 

attached to the system behavior. This is the case of the Routed DEVS (RDEVS) 

formalism [Blas, Gonnet and Leone 2017]. 

 In this paper, we discuss how the RDEVS formalism provides a reasonable 

formalization for the M&S of routing processes based on a constrained network model. 



  

Moreover, from the experience described in [Blas and Gonnet 2021] where RDEVS 

simulation models are derived from graphical representations, we propose a natural 

language syntax for the routing process definition using a constrained network model 

grammar that allows a further derivation of RDEVS simulation models. Our aim is i) to 

offer a software environment for the natural language definition of routing situations 

using a constrained network model, and ii) to be able to get a model definition that 

supports a further generation of Java code for such routing situations in a way that they 

can be executed in DEVS simulators as discrete-event simulation models. 

 The remainder of this paper is organized as follows. Section 2 introduces the 

constrained network model that supports the definition of routing processes. Section 3 

presents the RDEVS formalism as the M&S core used to define routing processes as 

simulation models. Section 4 presents the grammar and its implementation for Eclipse 

Integrated Development Environment (IDE) [The Eclipse Foundation 2021a]. Finally, 

Section 5 is devoted to conclusions and future work. 

2. Routing Processes as Constrained Network Models 

A routing process can be defined as “a system of interacting components in which the 

operation of a component and the routing of its outputs depend on what is happening 

throughout the process”. Here, interactions between components depend on both local 

and external data. Local data refers to internal information of components, while 

external data refers to information derived from the process structure. 

 The definition of a routing process may contain different types of components. 

Each type of component operates independently. This means that the internal operation 

of components is defined independently from the structure of the routing process. Since 

routing depends equally on the operative description of the component and process 

structure, the component can decide the output destinations. Hence, components can 

take decisions about routing such as i) alternate the routing of its outputs to avoid 

congestion, ii) block the routing of its outputs from entering to a precise sector of 

predefined components, and iii) accelerate/decelerate the processing of its inputs (to 

produce faster/slower outputs) when knowing that downstream nodes are free/busy. 

 A conceptualization of routing processes can be defined using constrained 

network models. Network Theory proposes modeling a system as a set of nodes that are 

connected by links [Newman, Barabasi and Watts 2006]. Both elements (i.e., nodes and 

links) can have different meanings. For example, if the network is modeling the 

roadmap of Argentina, the network defines Argentina as a set of nodes that represents 

cities along with a set of links (among these nodes) that depicts roads between them. 

When modeling a routing process as a network, nodes define components, and links 

denote interactions between them. However, the network model that depicts a routing 

process should be constrained to ensure model correctness (e.g., components cannot be 

isolated, self-interactions are not allowed, etc.). These kinds of constraints restrict the 

original network model giving a constrained network model for representing routing 

processes. From this perspective, a routing process can be seen as a constrained instance 

of a network model. 

 A metamodel is a model which defines the used language to design a model 

[OMG 2002]. That is, it is a model in which instances are models. It defines (at the 

metamodeling level) the description of all the concepts, their semantics, and the 



  

syntactic rules of a language that is instantiated at the modeling level. Hence, both 

modeling concepts and relationships are equally defined as metamodel concepts. 

Metamodels are powerful modeling tools to ensure the correctness of models’ structure. 

Furthermore, they allow validating the model instantiation regarding the rules defined at 

the metamodeling level. Figure 1(a) presents a Unified Modeling Language (UML) 

diagram that depicts a metamodel containing the elements to be instantiated for the 

definition of a concrete network type. In such a metamodel, a Network Model is defined 

as a Composition Of Network Elements. Such elements are defined as Nodes and Links. 

In this case, Links are unidirectional. Hence, each Link Starts At a Node and Ends At a 

Node (possibly the same that the one placed at the beginning). 

 From the metamodel depicted in Figure 1(a), different types of networks can be 

instantiated. Figure 1(b) presents an instance of such a metamodel as a UML diagram 

that describes a routing process as a constrained network model. Stereotypes are used to 

refer the metamodel elements (i.e., concept or relationship) instantiated at the modeling 

level. The diagram is restricted with Object Constraint Language (OCL) constraints to 

ensure the routing process definition. These constraints are detailed in Table 1. 

 

Figure 1. UML class diagrams that support the definition of routing processes 
as constrained network models. (a) Metamodel that defines the main concepts 
and relationships required for instantiating a network model. (b) Constrained 
network model instantiated from the metamodel to represent a routing process.  

Table 1. OCL constraints attached to the UML diagram of Figure 1(b). 

ID OCL constraint 

C1 
context RoutingProcess 
invariant existsStartingComponent: self.component-> 
select(c|c.inputLink->size()=0 and c.outputLink->size()>0)->size()>0 

C2 
context RoutingProcess 
invariant existsEndingComponent: self.component-> select(c|c.inputLink-
>size()>0 and c.outputLink->size()=0)->size()>0 

C3 
context Component 
invariant notIsolated:(self.inputLink->size() +  
self.outputLink->size()) > 0 

C4 
context Component 
invariant multipleInteractions: self.outputLink->forAll(e1,e2|e1<>e2 
implies e1.destination <> e2.destination) 

C5 
context Interaction 
invariant notSelfInteraction: self.source<>self.destination 

 

 When a constrained Network Model is used to structure a Routing Process, the 

model is defined over a set of Components. It also includes a set of Interactions. At the 

modeling level, the Nodes denote Components, and Links define directed Interactions 

between Components. At least one Component should be identified as the starting 

Component (constraint C1). Also, at least one Component should be detailed as the 



  

ending Component (constraint C2). Components cannot be isolated (constraint C3). 

Two Components are linked in an Interaction. One Component acts as the source from 

which the Interaction takes place and the other acts as the destination to where the 

Interaction is directed. Various Interactions cannot connect the same Components 

(constraint C4). Moreover, self-interactions are not allowed (constraint C5). 

 In a Routing Process, each Component exhibits an internal operation. Such an 

operation cannot be mapped to the metamodeling level because it is part of the domain 

description (i.e., the operation is specified when a concrete routing process is defined). 

However, we introduce this attribute as part of the Component concept to provide a full 

definition of routing process’ elements. In the next section, we show how a routing 

process description can be mapped to discrete-event simulation models. 

3. The Routed DEVS (RDEVS) Formalism 

The RDEVS formalism employs the “embedding routing functionality” strategy over 

DEVS models to provide routing capability from the simulation model conception. 

Such a DEVS extension was presented in [Blas, Gonnet and Leone 2017] as a subclass 

of the classic DEVS that adds routing features to the atomic model capabilities by 

introducing a new model: the routing model. Hence, the formalism act as a “layer” 

above DEVS that provides routing functionality without requiring the user to “dip 

down” to DEVS itself for any functions. To accomplish that, RDEVS defines three 

models: essential (equal to the atomic model), routing (new model introduced by the 

extension), and network (like the coupled model). These models are related as follows: 

• the essential model is formally defined as a DEVS atomic model that specifies a 

domain behavior, 

• the routing model is formally defined as a container for an essential model that 

uses a routing policy to manage its inputs and outputs (i.e., domain and routing 

behaviors together), and 

• the network model is formally defined as a set of routing models coupled all-to-

all to leave the routing functionality to routing policies (i.e., the model structure). 

 The core of RDEVS is to abstract the event flow into discrete-event models that 

arrange events independently from the domain behavior of components. The routing 

policy is isolated from the domain behavior allowing the reuse of the essential model in 

distinct routing models. Furthermore, the same network model can support different 

configurations by only changing the routing policies attached to its routing models. 

3.1. RDEVS as Formalization of Routing Processes 

Formalization makes it easier to work out the implications of an abstraction and 

implement them in reality [Zeigler, Muzy and Kofman 2018]. As detailed in [Blas and 

Gonnet 2021], the RDEVS formalism is designed to level out the modeling effort of 

routing processes modeled in DEVS. Hence, the RDEVS formalism can be used as 

formalization language for the constrained network model depicted in Figure 1(b). 

 Each type of RDEVS model can be used to formalize an element defined in a 

routing process as follows: i) the network model structures the Routing Process (i.e., the 

Network Model at metamodeling level) as a composition of routing models; ii) the 

routing model represents a Component (i.e., a Node at metamodeling level) included in 



  

the Routing Process; and iii) the essential model describes the internal operation of a 

Component. For the formalization of a Component, the routing model is defined as the 

pair { routing policy, essential model } that verifies the routing policy over the incoming 

event and, then, passes on the operative content to the essential model for processing. 

Such a routing policy is defined as the formalization of the set of Interactions linked to 

the Component inside the Routing Process. So, the Component (formalized in a routing 

model) depends equally on its operative description (i.e., the internal operation 

formalized in the attached essential model) and the process structure (i.e., the related 

Interactions formalized in the routing policy). 

 Some of the advantages of employing RDEVS for the M&S of routing processes 

are that i) the modeler does not need to dip down to DEVS itself to add routing 

functionality to the models, ii) existing atomic models can be used to structure routing 

processes, iii) RDEVS models can be combined with DEVS models to define complex 

M&S scenarios where routing processes interact with other types of phenomena, and iv) 

DEVS simulators can be used to execute RDEVS models. Moreover, due to the 

conceptual foundation of routing processes as constrained network models, the UML 

diagrams presented in Section 2 can be combined with Model-Driven-X (MDX) and 

Model-Based (MB) approaches to get platform-specific implementation models. 

 The MDX methodologies are widely used in the Software Engineering field. For 

example, the Model-Driven Engineering (MDE) approach is based on several principles 

that involve the concepts of model, metamodel, meta-metamodel, and model 

transformations to provide a process that enables the automated development of a 

system [Cetinkaya et al. 2011]. Even when MDX approaches have been used in M&S, 

MB paradigms (such as MB System Engineering and MB Simulation) are also 

frequently used to get solutions to M&S issues [Kapos et al. 2014; Neto et al. 2018]. 

Such MB approaches use MDX practices pragmatically. This is, the models are 

important, but they do not necessarily drive the development process. In this context, in 

[Blas and Gonnet 2021] the authors employ MDE as a vehicle for designing and 

implementing a M&S software tool that provides RDEVS-based solutions for generic 

routing processes. They use a metamodel to abstract the routing process definition into a 

graphical representation based on nodes and links to describe its structure. Such a 

structure is used as a domain model description for building (automatically) an RDEVS 

implementation of the process without requiring any interaction with the modeler. Then, 

the modeler can define a routing process as a graph and then, get a RDEVS simulation 

model implementation for such a process without having programming skills.  

 Following the same approach, in this paper, we propose a Context-Free 

Grammar (CFG) to define the structure of routing processes using the constrained 

network model depicted in Figure 1(b). Since such grammar will be added to the M&S 

software tool presented in [Blas and Gonnet 2021] (developed as a plug-in for Eclipse 

IDE), Eclipse technology was used to implement its software modules. This will allow 

modelers to specify textually a routing process as a network and then, get the 

corresponding RDEVS simulation model implementation. 

4. The Constrained Network Model Grammar 

If a routing process is correctly defined as a constrained network model, then RDEVS 

simulation models can be automatically obtained following the formalization guidelines 



  

described in Section 3.1. In this context, we propose to use the network model that 

supports the routing definition (i.e., Figure 1(b)) to validate the semantic correctness of 

a process. The definition of such a process is obtained from the model instantiation. 

Such an instantiation is performed through the syntactical analysis of a natural language 

description called RDEVSNL. A CFG is introduced for the syntax. Hence, once the 

modeler has defined a natural language representation of a routing process, our strategy 

is to analyze the syntax of such a representation to get an instance of the model that can 

be validated using Figure 1(b) and Table 1. 

 The following subsections present both syntax and semantics that compose the 

grammar, following the example described in [Blas and Gonnet 2021] as proof of 

concept. Figure 2 shows the routing process to be defined. Icons depict machine types. 

 

Figure 2. Industrial routing process used as proof of concept (adapted from 
[Blas and Gonnet 2021]). 

4.1. The Syntax: RDEVSNL 

The RDEVSNL grammar abstracts the routing process definition into a textual 

representation based on nodes and links to describe its structure. The CFG of 

RDEVSNL was specified and implemented using ANTLR4 (i.e., a parser generator) and 

ANTRL4 IDE Eclipse Plugin for ANTLR 4 [Parr 2021]. We have defined two versions 

of the RDEVSNL: English and Spanish. Hence, the modeler can define routing 

processes in both languages. We have also implemented an Editor for such a CFG as an 

Eclipse plugin. A RDEVSNL specification file has the extension .rdevsnl. The language 

is defined by the modeler during the creation process. 

 In the RDEVSNL English specification, there are three primary building blocks: 

network, materializes, and edges. Figure 3 illustrates the production rule and the syntax 

diagram of these three main nonterminal symbols. The edges symbol is partially 

included for space reasons. The complete definition can be found here. Furthermore, 

Figure 4 illustrates an example of the RDEVSNL Editor. Such an example depicts a 

possible specification of the routing process illustrated in Figure 2. 

 
(a) 

http://www.ingar.santafe-conicet.gov.ar/wp-content/uploads/2021/07/RDEVSNL.rar


  

 
(b) 

 

 
(c) 

Figure 3. Production rules and the syntax diagram of the three main 
nonterminal symbols (a) network, (b) materializes, and (c) edges. 

 When a RDEVSNL specification is used to structure a Routing Process, a 

Network is defined to model that process. Such a model is defined over a set of Nodes. 

Each Node denotes a Component (Figure 1(b)). Therefore, a Network is specified using 

an id and it always includes a list of nodes (Figure 3(a)). This list can be denoted in a 

unique specification (i.e., detailing the complete list of nodes as listOfNodes -as in 

Figure 4-) or in multiple text lines (where each id node is part of the Network). In a 



  

Routing Process, each Component exhibits an internal operation. Such an operation is 

identified as a component in Figure 3(b), and it defines the behavior of a node or a list 

of nodes (Figure 3(b)). In Figure 1(b), Links define directed Interactions between Nodes. 

These interactions are specified by edges in Figure 3(c). The grammar enables the 

definition of these interactions in multiple ways (e.g., a node sends outputs to another 

node/list of nodes, a node receives inputs from a node/list of nodes, etc.) as in Figure 4. 

 

Figure 4. Screenshot of the Eclipse editor implemented to support the syntax. 
Suggestions are provided following the language configuration. Keywords are 
highlighted to help the modeler during the edition. 

4.2. The Semantics: The Constrained Network Model as an EMF Metamodel 

With aims to validate the semantics of an RDEVSNL definition, we implement an 

Ecore version of the model depicted in Figure 1(b). To get such an implementation, we 

use the EMF project of Eclipse [The Eclipse Foundation 2021b]. This project is a 

modeling framework and code generation facility for building software tools and other 

software applications based on a structured data model. The foundational metamodel 

used for modeling routing processes as constrained network models (Figure 1(b)) was 

implemented with EMF to get a data model specification for further instantiation and 

validation. Since this is Java technology, such an Ecore model was embedded in the 

plugin. Hence, the final RDEVSNL plugin is composed of the syntax (defined using 

ANTLR4), the RDEVSNL editor, and the semantic model (defined as an Ecore model). 

 Over the CFG implemented, we add to the Editor the option to validate the 

description file (Figure 5(a)). When the modeler activates this validation process, the 

syntactical analysis (i.e., the parser) of RDEVSNL is executed over the current content 

of the *.rdevsnl file. If such an analysis is successful, using the identified tokens, an 

instance of the Ecore metamodel is automatically created. In this instance, each element 

defined in the file is mapped to a concept or relationship. For example, line 1 of Figure 

4 is syntactically correct. Therefore, during the validation process, the plugin creates an 

instantiation with the following elements: i) an instance of RoutingProcess named 

“RoutingProcess”, ii) five instances of Component (each one named “Machine_1” to 

“Machine_5”), and iii) five relationships isDefinedOver to link each Component to the 

RoutingProcess. Then, over such an instance, the plugin runs the Ecore validation 

process to ensure its correctness. This validation checks the concepts, relationships, 

multiplicities, and OCL constraints of the metamodel over the instance (i.e., the 

semantic analysis). If both analyses are successful (i.e., syntax and semantic), the 

modeler gets the message of Figure 5(b). On the other hand, if issues are detected, a list 

of warnings is provided to the modeler. Then, the modeler can fix its routing process 

description and check again. 



  

 

Figure 5. Validation process of the routing process description. (a) At the left, 
the Java editor option used to run the CFG validation. (b) At the right, the 
confirmation message about the correctness of the routing process definition.  

5. Conclusions and Future Works 

In this paper, we have introduced a grammar based on a constrained network model to 

address the definition of discrete-event simulation models for routing processes through 

the RDEVS formalism. The core of RDEVS is the formalization of the set of elements 

that composes a routing process using a conceptual modeling approach. Then, the 

RDEVS formalism levels out the complexity of routing process specification to reduce 

the modeling effort. Using a constrained network model allows identifying all the 

elements required to define a routing process and, therefore, the RDEVS formalism can 

be further used to formalize these elements. Here, we have presented the first step in 

this direction.  

 We have shown that routing structures can be defined in natural language using 

a new grammar based on a constrained network model as support. As in the graphical 

definition proposed in the previous work, since all the data regarding the routing process 

structure can be obtained from the network abstraction, RDEVS network and routing 

models can be fully specified from this description. Then, the modeler only needs to 

complete the simulation model with the internal operation of components. 

 The network model basis used allows improving the routing process 

representation to get a deeper analysis of the associated simulation model. Much of the 

theoretical wealth of network analysis consists of characterizing network structures 

(e.g., small-worldness) and node positions (e.g., centrality). Hence, network analysis 

can be performed over the RDEVS simulation models to get information regarding the 

structure of the simulation process. 

 Future work is devoted to the translation of the routing process described in the 

network model instance (obtained from the grammar) to the RDEVS simulation models 

(following the definitions provided in Section 3.1). Such a translation process will be 

developed as the one already implemented in [Blas and Gonnet 2021]. Furthermore, we 

will use the existing graphical representation to display the natural language description 

as a graph. Hence, the M&S software tool will support both graphic and text definitions. 
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