
Teasy: A domain-specific language to reduce time and
facilitate the creation of tests in web applications

Yury Alencar Lima1, Elder de Macedo Rodrigues1, Fabio Paulo Basso1,
Rafael A. P. Oliveira2

1Universidade Federal do Pampa (UNIPAMPA)
Código Postal 97.546-550 – Alegrete – RS – Brasil

yuryalencar19@gmail.com, fabiobasso@unipampa.edu.br

elderrodrigues@unipampa.edu.br

2Universidade Tecnológica Federal do Paraná (UTFPR)
Código Postal 85.660-000 – Dois Vizinhos – PR – Brasil

raoliveira@utfpr.edu.br

Abstract. Software testing automation is one of the most challenging activi-
ties in Software Engineering scenarios. Moden-Based Testing (MBT) is a fea-
sible strategy to alleviate efforts on automating testing activities. Trough a
model that specifies the behavior of the Software Under Testing (SUT), MBT
approaches are useful strategies to generate test cases and run them. However,
some domains such as, web applications require extra efforts on applying MBT
approaches. Due to this, in this study we propose and validate Teasy - a Do-
main Specification Language (DSL) that makes MBT feasible for web applica-
tion. Through the conduction of a Proof-of-Concept on testing a real-world web
application, we noticed Teasy has potential to evolve to effectively support soft-
ware development environments. Using a real-world application and projects
with manually seeded faults, Teasy testing scenarios have detected 78,57% of
the functional inconsistencies.

Resumo. A automação de teste de software é uma das atividades mais desafi-
adoras nos cenários de Engenharia de Software. Teste Baseado em Modelos
(MBT) é uma estratégia viável para aliviar os esforços na automação das ativi-
dades de teste. Através de um modelo que especifica o comportamento do Soft-
ware Under Testing (SUT), as abordagens MBT são estratégias úteis para gerar
casos de teste e executá-los. No entanto, alguns domı́nios, como aplicativos da
web, exigem esforços extras na aplicação de abordagens MBT. Por isso, neste
estudo propomos e validamos o Teasy - uma Domain Specification Language
(DSL) que torna o MBT viável para aplicação web. Por meio da realização
de uma Prova de Conceito para testar um aplicativo da web do mundo real,
percebemos que o Teasy tem potencial para evoluir para oferecer suporte efi-
caz aos ambientes de desenvolvimento de software. Usando um aplicativo do
mundo real e projetos com falhas semeadas manualmente, os cenários de teste
do Teasy detectaram 78,57 % das inconsistências funcionais.

1. Introduction
Software Engineering (SE) is the wide usage of engineering resources in software projects
[Pressman 2010]. Analysis, projects, measurements (metrics), testing, reviews, refac-
toring, and verification are some of the engineering activities promoted by SE rou-
tines. All of the SE arrangements have one common goal: building a software prod-
uct with quality [Sommerville 2010]. The result of using SE concepts properly brings



five main characteristics to the final software product: (i) maintainability, (ii) preci-
sion, (iii) productivity, (iv) functionality, and (v) longevity. Neglecting SE activities lead
projects to be over budget, late, missing functions or a combination of all three aspects
[Sommerville 2010, Pressman 2010].

Practitioners know that applying SE activities in software projects brings up a
well-know “dilemma” related to cost aspects. SE activities are necessary to make the
quality sure in final software products. However, SE activities need for several human
labor efforts on analysis, modeling, verification, testing, and validation, which makes the
project to be costly. Finally, SE activities are time-consuming and non-trivial to conduct
[Sommerville 2010].

An accepted solution to alleviate project costs due to the application of SE ac-
tivities is to implement their automation (or semi-automation) [Bertolino 2007]. Auto-
mate SE activities trough scripts, tools or CASE (Computer-Aided Software Engineer-
ing)-based systems reduces the development time, allowing the quality of the final product
and adapting the customer to market competitiveness [Bertolino 2007].

Regarding SE activities, Software testing is one of the most challengers activities
to automate [Bertolino 2007]. Generating valid and invalid inputs, calculate expected out-
puts, and providing reports are some of the desirable activities from an automate testing
scenario. Further, depending on the application domain, automating testing activities is
even harder.

An instance of non-trivial domain to automate test is the web applications. This
domain has some technical particularities that make the complete testing automation
costly. Requests, responses, services, events, protocols, security, and internet issues are
key-elements that makes web applications harder to test than regular desktop-applications
[Vani et al. 2013].

Model-Based Testing (MBT) can be a viable alternative to alleviate problems re-
lated to testing automation of web applications. MBT can be used to perform the au-
tomated generation of tests, using predefined models, thus improving the efficiency on
creating test cases and reducing project time. MBT allows practitioners to update only
one model (based on the system specification) and as consequence all of test cases can
be generated again and updated. This feature improves the test cases’ maintainability
and it reduces the effort required [Utting and Legeard 2010]. However, using MBT is not
trivial and it can be complex even for expert domain users. An alternative on using the
MBT approach is through a Domain-Specific Language (DSL). DSLs are languages that
aim to represent a specific domain, increasing the productivity and engagement of those
involved, enabling or not, to generate artifacts since created for this purpose, and conse-
quently reducing the complex to domain expert users [Fowler 2010]. For instance, using
a DSL to apply MBT in the web application testing process facilitates the communication
between development and quality teams, reducing the effort on creating automated tests.

This study presents a DSL called Teasy that provides an approach on using MBT
for web application. Created in the context of the final project of an undergraduate course
(Bachelor of Software Engineering), Teasy is a DSL focused on three main concepts: (i)
code reuse, (ii) smooth maintenance of testing routines, and (iii) easy of usage. Finally,
to provide a bird-eye-view of the process of using Teasy, we provide a validation using a



real-world application.

This study brigs three main contributions to state-of-the-art: (i) a comprehensive
DSL to automate MBT of web applications;(ii) an useful process to generate test scripts
using Teasy; and (iii) a massive discussion towards on bridging the gaps between theory
and practice of MBT and contemporary software development projects.

The rest of this paper is organized as follows: Section 2 that presents background
with the technical concepts to understand how Teasy was developed. Section 3 intro-
duces Teasy, its general structure, and a process for creating an automated test using the
language. Section 4 presents a proof-of-concept on using Teasy to test a real-world web
application taken from a public repository. Section 5 presents an analysis and results of
the validation presented in Section 4. Section 6 presents the related works associated to
our study. Finally, in Section 7 we present some final remarks containing a brief of our
results, study contributions, and some future work.

2. Background
This section presents essential concepts to fully understand the Teasy process and its
goals.

2.1. Functional Tests

Testing activities are intended to detect faults in software products [Delamaro et al. 2013].
This practice positively impacts product-related reliability and it assists to ensure that the
software product meets its requirements. Functional tests represent a testing method in
which the system is taken as a black-box, that is, the application’s source codes are not
considered, only its behavior [Delamaro et al. 2013]. This behavior is, then, derived from
the software requirements and verified through test cases. Thus, enabling the detection
of functional faults before the product is delivered. In this way it is possible to reduce
the costs related to the need for maintenance in the application after its delivery, making
bigger the life cycle of the software product [Delamaro et al. 2013].

2.2. Model-Based Testing

The Model-Based Test (MBT) aims to increase the level of abstraction necessary for the
development of the tests [Utting and Legeard 2010]. Providing a better understanding of
the software to be tested and improving its specification. In this approach, a model is
defined through the SUT’s (Software under Testing) behaviors and requirements. Using
these information, test cases, and/or scripts of automated tests are generated. A model is
a description of a SUT’s behavior.

MBT mitigates possible ambiguities related to textual documentation and can re-
duce costs, given that faults can be detected even before the product is developed. This is
possible because this approach requires only the model related to the software to perform
the verification. In addition, MBT also allows non-programmers to create automated tests,
due to the possibility of automatic generation of test scripts [Utting and Legeard 2010].

2.3. Domain-Specific Languages

Unlike General Purpose Languages (GPL) like JavaScript, Java, among others, Domain-
Specific Languages (DSL) are computer languages that have the objective of supporting



and models for problems associated to a given domain [Mernik et al. 2005]. Then, a given
DSL goals to solve a specific domain problem. Since DSLs cannot solve adversities that
occur in others scenarios/situations, they are considered part of the Engineering Domain
[Fowler 2010]. Based on this, its level of abstraction is usually higher than a GPL, making
it easier for domain experts to use DSLs on solving problems [Živanov et al. 2008].

Even though a DSL can increase the productivity and engagement of domain ex-
perts, its implementation is not a trivial task. In addition, the profile of the specialists who
will use the language can influence its type and way of development. Based on this, there
several ways to implement a DSL that influence the definition of its types. Considering
the DSLs’ essence, [Fowler 2010] present the following taxonomy for DSLs:

• Internal Languages: Internal or Embedded Languages are defined and imple-
mented within another existing language that is usually a GPL. As they are related
to the GPL in which they were created, domain experts who will use them have
an advantage if they have prior knowledge related to the respective GPL;

• External Languages: External Languages are DSLs independent of other lan-
guages such as GPLs, they contain their own analyzer and generator when they
have; e

• Languages Workbenches: The Languages Workbenches (LW) are tools that sup-
port the implementation of DSL, providing a development environment. This
environment provides a scheme for defining a semantic model, editing the DSL
and performing behavioral semantics through interpretation and code generation
if necessary.

3. Teasy
In this section, we present the Teasy language with its structure and all process necessary
to create functional automated tests. Teasy allows testers to create an automated test using
just five setting files, reducing the effort and complexity on applying MBT.

Teasy is designed to provide the following benefits: (1) Better project organiza-
tion; (2) Reducing the complexity of the project; (3) Allowing the adoption of a design
pattern for testing; (4) Automated generation of functional test scripts; (5) Reduction of
the effort required to create the test scripts due to the fact that Teasy has a systematic data
projection of the data, requiring from testers only some key-elements; (6) generation of
reports in navigable HTML (HyperText Markup Language); (7) Allowing the generation
of test sequences based on the paging files; (8) Providing a comprehensive development
environment, with suggestions, highlights, and auto completes; (9) Providing a effortless
maintenance of test codes; and (10) Promote code reusing, reducing the time required to
create an automated test set.

3.1. General Structure

The DSL promoted by Teasy contains a simple structure based on page object pattern
providing easy maintainability. In addition, Teasy contains only five archive for creating
functional automated testing scripts.

Teasy’s file structure follows some specific files: Configuration: in this file, in-
formation related to the execution configuration is inserted, such as the browser to use,
implicit timeout, and base URL (Uniform Resource Locator) for the web application;



Components: in this file, the page components are registered, using their unique name
with a selector defined using the HTML of the web application; Page: in this file, the
pages are registered with their actions, each action make manipulations in components
registered in the components file; PageRegister: after a page is finalized, it is necessary
to register that page name in this file for generation code import to work; and Flows: on
flows file, it is possible to create test scenarios using the actions registered in page files.

Teasy is designed to reduce the time required to write testing code, providing au-
tomatically repetitive information, and requiring only important information. In addition,
Teasy’s environment provides auto completes and highlights for a better users/tester ex-
perience.

Regarding the testing code generated, it’s important to highlight that Teasy’s codes
are not executable. However the code generated by Teasy can be executed using the Robot
framework [Bisht 2013] and Python. Due to that, it also contains other benefits provided
in that framework, how a report generation.

The generated code structure contains: (1) components’ directory and representa-
tion of components registered in Teasy code; (2) “config” directory containing all of the
information related of the configuration and page register of Teasy files; (3) pages’ direc-
tory including all of the pages created in page files; (4) commons directory containing a
hooks file generated by Teasy for open and close browser; and (5) finally, tests directory
refers to all testing scenarios created in the flow files.

3.2. Teasy process

To create a test suite using the Teasy language, a set of implemented pages or a set of page
prototypes is required, Figure 1 shows a BPMN (Business Process Model and Notation)
diagram of this process.

The first step in creating tests using Teasy. This step aims at mapping all of the
pages of the web application that will be involved in the tests. Additionally, this step
verifies whether all of the components of the pages are mapped in the component file.
A component is an HTML element presented on a page, this element can be a button,
input field, among others. If there are unmapped components, tester can insert it in the
component file as one can see in Figure 2.

Once all of the page components are mapped, tester are required to create page
files. For each page in the application, it is necessary to create a page file on Teasy. In
this file, page actions are registered, such as click on some button, insert text on the field,
among others. Figure 3 presents an example of this implementation.

With registered pages, it is possible to create test scenarios using flow files. In
this file, the page’s actions are inserted in sequence to create a flow. This string must
contain actions from the first page of the application, and the first page must be accessed
in the base URL informed in the configuration file. Figure 4 presents an example of the
implementation of this file.

To compile the tests, it is necessary to implement a simple configuration. For
each page created, its respective name must be registered in the PageRegister file and the
configuration file must also be filled out. As shown in Figure 5 and 6 respectively. The
last step is to get all the generated files.



Figure 1. Teasy Process
Figure 2. Teasy – compo-

nent file

Figure 3. Teasy – page file Figure 4. Teasy – flow file

Figure 5. Teasy –
PageRegister

Figure 6. Teasy – Configu-
ration file



4. On using Teasy: a proof-of-concept
In this section, we present a Proof-of-Concept (PoC) related to Teasy use in real projects.
The focus of the PoC is to analyze whether the Teasy Language can find errors in web
applications, for this, a public project with injected mutants of different categories was
used.

The PoC was performed by only one researcher and its main focus is to validate
some benefits of using Teasy. Exploring mutation test concepts and a web application
present in a public repository 1. In addition, The structure2 for use generated test scripts
and Teasy3 implementation also are in public repositories on GitHub.

4.1. Research Questions
This study addresses to answer the following Research Questions (RQ):

• RQ01: Is it possible to automate test scenarios using Teasy?
• RQ02: Is it possible to identify functional seeded-faults in real-world Web appli-

cations using Teasy?

4.2. Research Strategy
To find elements to answer (partially or completely) the aforementioned RQs, we followed
a sixfold strategy:

• Step 1: search a Web Application in public code repositories;
• Step 2: collecting some software metrics from the web application selected: LoC

(Lines of Code), technology, last commit date, amount of the classes, methods,
and components;

• Step 3: To create testing scenarios using Teasy Language for the chosen applica-
tion;

• Step 4: using a mutation testing strategy for Javascript to several other faulty-
projects. Then, the “mutated” projects contain a modification that is expected to
affect the original behavior of the project or even its visually aspect. To make this
change, we use all the mutation operators present in [Mirshokraie et al. 2015]. For
each method of the project, all the possible mutation operators were applied;

• Step 5: We run all generated test scripts on the original project and for each mutant
made. For each project, the test scripts have generated a report with screenshots
and step by step executed;

• Step 6: For last, we make an analysis in each report results and verifying manually
in error occurrence to detect the reason and summarize this data.

4.3. Subject Application
In this PoC we have chosen a subject application developed using ReactJS
[Fedosejev 2015] and available online in a public repository in GitHub. The application
is a calculator and below one can find a set of the data/metrics extracted from it:

• Application Name: ReactJSCalculator4;
• Technology Used: Javascript with ReactJS;
• LoC (Lines of Code): 13281;
• Last Commit Date: 15 Aug 2019;
• Number of the classes: 3;
• Number of the Methods: 7;
• Number of the Components: 3.

1See the Teasy evaluation project: https://github.com/yuryalencar/TeasyValidation
2See the structure for use in generated scripts: https://github.com/yuryalencar/TeasyStructure
3Link of the Teasy implementation: https://github.com/yuryalencar/Teasy
4Link of the project: https://github.com/yuryalencar/ReactJSCalculator



5. Study Results and Discussion
In this section we present a summary of the data extracted from the PoC. In addition
to that, we present a discussion related to Teasy performance on finding faults in real
applications.

5.1. Quantitative analysis of results

To present the quantitative result, we created the Table 15. The table contains a component
name and its respective modification to make the “Mutant project”. The aforementioned
table also contains the result of the executed test scripts generated by Teasy. The result
was that the testing scenario we created from Teasy found 11 (eleven) of the 14 (four-
teen) mutants created, which represents 78.57% of accuracy regarding the given testing
scenario for this web application.

Component Mutant Operator Result Project Name
Calculator Local/ Global Variable Pass Mutant1
Calculator Local/ Global Variable Pass Mutant2

Display Local/ Global Variable Pass Mutant3
Display Dom Fail Mutant4
Button Dom Fail Mutant5
Button Local/ Global Variable Fail Mutant6
Button Return Statement Pass Mutant7

Calculator Conditional Statement Pass Mutant8
Calculator Conditional Statement Pass Mutant9
Calculator Local/ Global Variable Pass Mutant10
Calculator Conditional Statement Pass Mutant11
Calculator Local/ Global Variable Pass Mutant12
Calculator Dom Pass Mutant13
Calculator Local/ Global Variable Pass Mutant14

Table 1. Results of the run test scripts generated by Teasy

5.2. Subjective analysis of results and answers to RQs

Regarding the PoC’s goal, the Teasy performance on detecting functional errors in web
applications was satisfactory. The analysis of these results was simple to extract because
the test scripts generated by Teasy create an HTML report with screenshots. Even though
the scripts did not detect three of the mutants (project with some know seeded faults), the
results are significant because mutants 4, 5, and 6, not present functional errors. Through
a manual analysis of these case, we noticed these mutants changed the visual (appearance)
of the application and the test scenarios were not created for detecting these problems.

Then, it is possible to mention that in this PoC, all of the possible-“tangible”
faulty projects were detected through testing scenarios designed using Teasy. In addition
to that, after performing all os the steps in Subsection 4.2 and analysing the special cases,
we figured the following responses of the RQs: RQ01: the question has been answered
completely: Teasy promote the creation of effective testing scenarios including adequate
test cases; and RQ02: the question was answered completely and even the Teasy did not
show 100% accuracy in the PoC’s scenarios with the selected subject application, it is

5Link of the google sheets with a completes analysis: https://shorturl.at/evBNW



possible to identify functional failures. Regarding the undetected mutants, we noticed
that they did not have any functional failures.

5.3. Threats to validity
Below we present the threats of this study on four different perspectives:

1. Internal validity: the PoC designed was exploratory and it focused on well
defined research questions. The study provide evidences to answer the research ques-
tion, then, we consider our internal validity high. 2. External validity: our study evaluate
the effectiveness of Teasy regarding usability and effectiveness to apply MBT in real–
world applications. However we have used only a single small web application, then
we can claim moderate external validity. Further work is required including larger ap-
plications and considering other testing aspects. 3. Construct validity: once the concept
of MBT, associated to mutation test is general to all applications, our construct validity
is high. 4. Conclusion validity: our study presented a well-defined methodology and a
step-by-step validation. All of the code generated and the screenshot are online e avail-
able. The, we can claim high conclusion validity.

6. Related Work
Among the related studies, we can highlight the following languages: (i) PARADIGM
[Nabuco and Paiva 2014]; (ii) MIDAS [Herbold et al. 2015]; and (iii) WebSpec
[Luna et al. 2011]. Considering a complete analysis regarding test data execution, re-
port generation, user interaction modeling, among others, these languages are similar to
Teasy. However, these languages are graphical, presenting the creation of automated test-
ing scenarios using only graphic elements. Teasys advantage is due that textual languages
are more productive in the test development scenario [Törsel 2013],

Among the existing textual languages, Gherkin [Wynne et al. 2017] and Legend
[King et al. 2014] are the state-of-the-art. However, these languages do not have opti-
mizations or abstraction of the test code. Thus, the tester still needs knowledge related to
a programming language that will be used for automation.

7. Final Remarks
Due to the manual implementation and, mainly, the maintenance of automated tests, Teasy
was proposed as an alternative to reduce the complexity and effort needed to perform
automated functional tests for web applications. Through the PoC performed, we could
verify its effectiveness in finding functional errors in a real application, based on these
results we have evidence that the language can reduce the time in creating tests, but for a
more assertive conclusion a greater number of subjects performing the PoC. In addition,
Teasy’s testing process allows for reporting with screenshots that make it easy to detect
defective designs. As Teasy was designed using concepts related to the MBT approach, in
future efforts we will use the pages and actions inserted in Teasy to perform an automatic
sequence generation. Based on the expected results, we believe that the maturation of the
Teasy project will allow the technological transfer from academia to industry.

References
Bertolino, A. (2007). Software testing research: Achievements, challenges, dreams. In

Future of Software Engineering (FOSE ’07), pages 85–103.



Bisht, S. (2013). Robot framework test automation. Packt Publishing Ltd.

Delamaro, M., Jino, M., and Maldonado, J. (2013). Introdução ao teste de software.
Elsevier Brasil.

Fedosejev, A. (2015). React. js essentials. Packt Publishing Ltd.

Fowler, M. (2010). Domain-specific languages. Pearson Education.

Herbold, S., De Francesco, A., Grabowski, J., Harms, P., Hillah, L. M., Kordon, F., Mae-
sano, A.-P., Maesano, L., Di Napoli, C., De Rosa, F., et al. (2015). The midas cloud
platform for testing soa applications. In 2015 IEEE 8th International Conference on
Software Testing, Verification and Validation (ICST), pages 1–8. IEEE.

King, T. M., Nunez, G., Santiago, D., Cando, A., and Mack, C. (2014). Legend: an
agile dsl toolset for web acceptance testing. In Proceedings of the 2014 International
Symposium on Software Testing and Analysis, pages 409–412. ACM.

Luna, E. R., Rossi, G., and Garrigós, I. (2011). Webspec: a visual language for specifying
interaction and navigation requirements in web applications. Requirements Engineer-
ing, 16(4):297.

Mernik, M., Heering, J., and Sloane, A. M. (2005). When and how to develop domain-
specifi c languages. ACM computing surveys (CSUR), 37(4):316–344.

Mirshokraie, S., Mesbah, A., and Pattabiraman, K. (2015). Guided mutation testing for
javascript web applications. IEEE Transactions on Software Engineering, 41(05):429–
444.

Nabuco, M. and Paiva, A. C. (2014). Model-based test case generation for web appli-
cations. In International Conference on Computational Science and Its Applications,
pages 248–262. Springer.

Pressman, R. (2010). Software Engineering: A Practitioner’s Approach. McGraw-Hill
higher education. McGraw-Hill Education.

Sommerville, I. (2010). Software Engineering. Addison-Wesley, Harlow, England, 9
edition.

Törsel, A.-M. (2013). A testing tool for web applications using a domain-specific mod-
elling language and the nusmv model checker. In 2013 IEEE Sixth International Con-
ference on Software Testing, Verification and Validation, pages 383–390. IEEE.

Utting, M. and Legeard, B. (2010). Practical model-based testing: a tools approach.
Elsevier.

Vani, B., Deepalakshmi, R., and Suriya, S. (2013). Web based testing — an optimal
solution to handle peak load. In 2013 International Conference on Pattern Recognition,
Informatics and Mobile Engineering, pages 5–10.

Wynne, M., Hellesoy, A., and Tooke, S. (2017). The cucumber book: behaviour-driven
development for testers and developers. Pragmatic Bookshelf.

Živanov, Ž., Rakić, P., and Hajduković, M. (2008). Using code generation approach in
developing kiosk applications. Computer Science and Information Systems, 5(1):41–
59.


