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Abstract. Service-Oriented Architectures facilitate high modularity and
reusability. In this context, service discovery is crucial in identifying new servers
that meet the desired client requirements. Although this approach may seem
ideal, it is not enough in some situations. For example, in the case of different ar-
tifact repositories, they may rely on specific services to adequately adapt to their
unique requirements and evolve accordingly. Even considering the availability
of common standards for metadata, storing beyond basic metadata and sup-
porting data interchange often requires the development of specific systems. In
this paper, we present an architecture for a completely dynamic service-oriented
system and use it to implement a prototype of an artifact repository server capa-
ble of using different protocols and schemas and reloading new configurations
while running. This capability is made possible through an innovative combi-
nation of service-oriented architecture, models at run-time, code interpretation,
and code generation with just-in-time compiling. This dynamic nature enables
the deployment of new configurations on demand without requiring a restart
while also facilitating the execution of data processing tasks for various pur-
poses, such as data analysis, in a seamless manner. A working prototype using
multiple configurations is used to attest the feasibility of the architecture. We
conclude that the solution is viable, but we point to possible scalability and
security concerns and how to tackle them.

1. Introduction
Artifact repositories are good examples of service-oriented architecture systems that are
constantly requiring adaptation and evolution. These repositories are developed to facil-
itate the storage and retrieval of artifacts, including software, scientific studies, data, and
metadata. Different standards were proposed to structure the data and metadata of the
stored artifacts, as well as how to allow them to become machine-readable. For exam-
ple, the Reusable Asset Specification1 (RAS) was published as a schema for metadata of
reusable software artifacts.In the context of open data and open science, there are several
different specifications, standards, schemas, and metadata formats that are better suited
for each case [S Nair and Jeevan 2004]. The standards themselves also face revisions that

1http://www.omg.org/spec/RAS/2.2/
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depend on a large workload to update the systems and migrate the data. The Digital Cu-
ration Centre of The University of Edinburgh maintains a compiled list of several known
metadata format standards grouped by disciplines2.

Many implementations of artifact and metadata repositories provide a program-
ming interface for accessing data via WS (Web Service), which are systems developed to
allow the machine to machine communication by using common protocols and formats3.
However, knowing whether the repository system is actually able to take advantage of the
machine-readable principles for metadata depends on each implementation. Therefore,
two options are often employed: i) to support a predefined set of metadata formats rec-
ommended by the repository to effectively parse their contents according to their machine
readability; or ii) to transmit the metadata without marshaling their contents.

In this work, we present a solution that pushes beyond these options through an
architecture that we devised to rapidly adapt to the required formats and marshaling needs,
without requiring to restart the service. In addition, we added a data processing module
capable of running code for the marshaled data for a myriad of applications, e.g., analyses
and statistics. We also conclude how each option could be achieved and comment on the
required efforts to run and adapt a given WS server at runtime.

The remainder of this paper is structured as follows: In Section 2, we cite and
compare related works. Section 3 includes the architecture description of the runtime
framework along with use cases. In Section 4, we present the developed prototype that
meets the requirements. In Section 5, case studies are presented. In Section 6, we present
the final conclusions and plans for future works.

2. Related Work
As our work involves repository systems, it is worth mentioning that there are several con-
solidated platforms for artifact and data sharing, e.g. Mendeley Data4 (Elsevier), Zenodo5

(OpenAire), etc. Even GitHub6 has been successfully employed as a data-sharing plat-
form. Our architecture was not planned to compete with any of these well-consolidated
platforms focused on sharing files and/or tabular data. Indeed, our approach does not in-
volve providing a predefined format for data sharing. Instead, our focus is to address the
challenge of adapting to diverse schemas and accommodating various data processing re-
quirements. To accomplish this, we propose a framework incorporating a runtime system
capable of rapidly adapting to these schemas and data processing needs.

The earliest examples of dynamic SOA systems using model-driven tools were
created by generating J2EE code. Modeling tools allow developers to model the dy-
namicity of the SOA system before compile-time [Kenzi et al. 2009]. The compile-time
requirement encouraged us to focus on the run-time to properly study its challenges and
advantages.

In a secondary study describing the state of dynamic SOA with dynamic adapta-
tion targetting Systems-of-Systems, it is discussed that there are several moments when

2https://www.dcc.ac.uk/guidance/standards/metadata
3http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
4https://www.mendeley.com
5https://zenodo.org
6https://github.com/topics/datasharing
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each task carried by the dynamic system could be performed [Mutanu and Kotonya 2019].
In our work, we focus entirely on the run-time, which poses the biggest challenge
among all options. During the development of our approach, we admit that the se-
curity concern was not thoroughly explored. Therefore, it is worth citing a secu-
rity framework for dynamic SOA systems, in which the authors focus on this concern
[Kołaczek and Mizera-Pietraszko 2018].

The Arrowhead Approach for SOA Application Development is also a valu-
able reference of a framework for rapidly constructing service-based applications
[Blomstedt et al. 2014]. This approach has been employed in several more recent works,
usually focusing on Systems-of-Systems on an industrial context [Kulcsár et al. 2020]. In
comparison to our approach, the Arrowhead is a robust framework while our major goal
is to present a feasible approach to provide a repository service framework capable of
being adapted to different schemas and interfaces at runtime, which was not foreseen by
the authors of Arrowhead.

3. The proposed SOA architecture

This paper presents an architecture of a repository system accessible via Web services and
a prototype that implements such architecture. Then, we use this prototype in case studies
to validate its feasibility. From the perspective of the end user, or the connecting client
machine, the prototype behaves just like any other repository system accessible via Web
services: client machines submit requests to be responded to by the service server while
the interface is well-known and can be shared via service discovery. Although this might
seem redundant with existing WS approaches, the novelty value of our architecture relies
on the means used to achieve this behavior, as explained in the following.

3.1. Requirements

The proposed architecture involves client and server roles and the information that flows
between them. We restrict the roles to dynamic server with static client and dynamic
client with static server. The dynamicity revolves around adapting to new information at
run-time. Before run-time, there are three different possible unknown information cate-
gories: unknown schema, unknown interface, and unknown processing code. Therefore,
this approach encompasses at least six distinct use cases. It is noteworthy that more com-
binations are theoretically possible, however, in the case of both clients and servers being
dynamic, each information category must be previously known by either peer, which is
presented as an extra use case.

Considering both client and server roles and that each of them can be either static
or dynamic, any of these may connect to each other. In Table 1, we present the possible
connections between clients and servers. We refer to traditional clients and servers as
both static, but we are aware that this definition may be confusing since the intent of many
services is to provide dynamic responses; in this case, we are referring to the implemented
contract: traditionally, clients and servers are implemented according to a predetermined
contract. In case the contract changes, the software must undergo modifications. If either
the client or the server is dynamic, the dynamic part must adapt to the static part. Finally,
when both clients and servers are dynamic, they are expected to implement a contract
interpreter.



Table 1. Role Combinations

Part Static Client Dynamic Client
Static Server Traditional SOA System Client adapts to Server

Dynamic Server Server adapts to Client Both implement Model Contract

Table 2. Known and Unknown Information Categories

Part Information Category Required-Unknown Non-Existing
Client Schema Ask Server Blob Client

Interface Ask Server Default Access Proxy
Processing Performed by Server None

Server Schema Adapted on demand Blob Server
Interface Adapted on demand Default Access Services

Processing Adapted on demand Blob Server

Each information category may be known by the part (client or server), unknown
or even non-existing. The case of known categories is covered by traditional client-server
applications. In Table 2, Part indicates whether the part is a client or server; Information
Category lists the previously described categories; Required-Unknown contains descrip-
tions for the cases where the part has this requirement, but this information is unknown at
runtime. For example, if the Client requires a Schema but it is unknown, it asks the server;
and Non-Existing involves the cases where this information is not required at all. For ex-
ample, if the client has no interface, a default access proxy is used. A further description
involving the execution is provided as use cases.

3.1.1. Artifact Types

Three different kinds of artifacts are present in our approach to create a fully dynamic
SOA application: WS Definition, Contract Model, and Application code. As illustrated
in Figure 1, these artifacts have different forms of representation. Traditionally, the WS
Definition may represent the schema and interfaces but not the data processing functions.
The advantage of this definition is that existing protocols reference it (e.g., SOAP), al-
lowing the dynamic parts to access the definition even when connecting to static parts.
To add further representativity to the definition, we created a new artifact: the contract
model. With this model, we can generalize different WS protocols and add custom inter-
faces for handling concerns specific to dynamic services. It is also supposed to be able to
embed application code to be used by the service to process the data. Finally, the appli-
cation code is the actual implementation of the application, which may be composed of
different parts, i.e., client and server. There are four different transformations represented
between the artifact types and named as α, β, γ and δ, respectively: from WS Definition
to Contract Model; from Contract Model to Application Code; from Application code
to Contract Model; from Contract Model to WS Definition. These transformations al-
low generating artifacts using the contract model as a common language, which is further
described in each use case.
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Figure 1. Involved Artifact Types and Transformations

In Table 3, we map the possible artifacts used as a reference for adaptation when
the client (or the server) has partial information. We added None as a possible category
for completeness. If the system requires an information category, the dynamic part should
adapt according to the other static or dynamic part. This is made possible by referencing
the WS description or the contract model.

Table 3. Artifacts for partial known information categories

Client
Server None Schema Interface Processing
None traditional definition definition contract

Schema definition blob only definition contract
Interface definition definition default if. contract

Processing contract contract contract no processing

3.1.2. Dynamic Server

The dynamic server responds to service calls according to a predefined WS protocol.
Every client request is performed by providing a previously existing service contract
model. This contract is represented by a DSM (Domain Specific Model) that is trans-
latable to a service specification, e.g., WADL7 or WSDL8 Compared to its counterparts
WADL/WSDL, this translatable model has enhanced semantic capabilities as it can ef-
fectively represent all information categories encompassing the schema, interface, and
processing code. To achieve full dynamicity without requiring new server deployment,
the server should adapt to the requested DSM at runtime without creating a new instance.

Although the DSM has the capacity to encompass up to three distinct information
categories, it is important to note that these categories are not obligatory. In scenarios
where certain information is missing, it is crucial for the server to implement a grace-
ful degradation routine that can compensate for the absence by utilizing default values.
However, it is important to acknowledge that relying solely on default values may not be
optimal. This requirement was established to simplify the migration process for binary
resource repository servers.

In this scenario, each request must be sent to a preexisting service port. If the
request header sent by the client has a compatible WS definition, the server must reply
accordingly, as expected. However, if it is a non-existing schema, the server assumes that

7https://www.w3.org/Submission/wadl/
8https://www.w3.org/TR/wsdl/
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the data is returned as binary or text, depending on the request headers. If the interface
is non-existing, the server assumes that there are basic resource access methods. If the
schema or the interface is provided but unknown by the server, the server must perform
the α and β transformations to deploy a new port and then redirect the client to a newly
created port. Creating a new port lets the client know that the port was created specifically
for their request. This avoids an issue we have detected: excessive transparency may cause
each client to be oblivious to whether they are using the same service as others. The HTTP
protocol, commonly used for implementing WS, already includes response headers that
enable the client to receive redirection information. This allows for automatic redirection,
if necessary, without causing any inconvenience to end-users. Finally, if the processing
code is non-existing, the server assumes that the received data must be untouched.

In case all the information categories are already known, the server must behave
according to the contract, and it must reply to clients’ requests exactly as a static server
would. In addition to the aforementioned scenarios, we introduce the concept of a dy-
namic client that can request a server to implement a specific dynamic contract. Instead
of submitting a traditional request header using a WS Definition reference, the client can
provide a contract model to specify its requirements. Therefore, by receiving the contract
model, the server would be able to perform the β and γ transformations, making both
the new ports available and hosting a WS Definition generated according to the provided
contract.

3.1.3. Dynamic Client

A dynamic client must accept contract models at runtime and must be able to invoke ser-
vices programmatically at runtime according to the contract. Therefore, a dynamic client
depends either on the WS definition or the contract model. The end-user or a dynamic
endpoint server may provide this, i.e., if the client knows that the endpoint server is also
dynamic according to our approach, it should be able to request the contract model. In
this case, the client should perform the β transformation to create a service proxy. How-
ever, detecting the implemented service by probing a running non-dynamic WS server
(or legacy) is not trivial. Despite the availability of the contract model, this model may
omit information categories. If the contract does not provide the schema, the client must
assume that the server replies using text or binary, according to the contract. If the con-
tract does not provide the interface, the client must assume that the server implements
basic resource access methods. If all the information categories are already known, the
client will behave exactly as a static client. This is common when the processing code is
unknown because it is a server-side definition.

3.1.4. Extra: Both Dynamic

Considering both sides as dynamic, we assume that they are both implemented using
our architecture and framework. In this particular scenario, the client has made multiple
attempts to locate a suitable server through service discovery but has been unsuccessful.
In our framework, we included an extra preliminary handshake sequence executed upon
the client’s request. The handshake sequence starts with the client submitting the desired



port and the expected contract. If it is feasible to generate a new service based on the
requested contract, the server will respond to the client by providing an available port
that implements the specified contract. Following the deployment of a new service port,
the client may now submit requests similarly to the workflow specified in the previous
subsections.

4. Working Prototype
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Figure 2. Component diagram for the prototype of the dynamic service-oriented
architecture.

For achieving dynamic reconfiguration, our approach combines models at runtime
[Bennaceur et al. 2014] with model-driven engineering [France and Rumpe 2007] using
just-in-time compilation [Aycock 2003] plus code interpretation [McCarthy 1960].

In Figure 2, a component diagram illustrates the modules that compose our proto-
type. A message is represented as a class between the server part (left side) and the client
part (right side). This message is transferred using standard WS protocols, allowing dy-
namic parts to connect to standard ones. Whenever a message is sent using a declared
schema or style sheet, this is used to identify if a homonym contract is available, other-
wise, a new contract model is generated according to the provided schema. The contract
is used by both parts as the metadata specification, according to the requirements.

The server part is composed of the dynamic server environment, which contains
the service implementation and employs a WS Framework to host service-based con-
nections; and an interpreter capable of running generated code on demand. The code
generation is made possible by the Code Generator module, which uses the Modeling
Framework to decode contract models. The Data Processing module is specific to the
server part. It is a custom module created to manage data on the server side and can in-
voke data manipulation functions specified by the contract. It has also been used to store
data because we have not created a robust data persistence layer for this prototype.

On the client part, the dynamic client environment employs the very same WS
Framework, now used to connect to a server. The client works similarly to the server and
is composed of a Code Generator module, which uses the Modeling Framework. How-
ever, the generated code needs to be suitable for the client; therefore, the code generation
template is different from the server’s.

We have implemented a functional prototype that meets the requirements exposed
in Section 3.1. While selecting the technologies, the primary goal was to integrate them
into a robust existing runtime system that supports all the required libraries. We combined
different programming languages and executed it on a JVM (Java Virtual Machine).



For implementing the WS subsystem, we employed Apache CXF9, because it im-
plements both JAX-WS and JAX-RS. We started by extending an existing dynamic client
example using CXF with Java runtime plus its use of Google Guava10. Then, to add con-
tract model parsing and code generation, we also had to integrate with model-based code
generators, so we selected EMF (Eclipse Modeling Framework) tools. Fortunately, many
libraries and frameworks are available in repositories accessible via Apache Maven and
Leiningen. However, since their original purpose was different than required by our pro-
totype, we have implemented façade code to allow the parts to invoke the code generator
on demand. Then, along with EMF, we were able to include MOFM2T11 (MOF Model
to Text Transformation Language) implemented by Acceleo12. MOFM2T is a template-
based text generation language that generates source code based on input models. Un-
fortunately, the requirements for using interpreted code were not adequate to be written
purely in Java. In this sense, we elected Clojure13 as the main programming language for
the dynamic parts because its runtime is based on JVM and can compile and execute code
on demand, more specifically: deploy web services invoking CXF code, dispatch code
generators from Eclipse to generate new code on demand, and finally, run the generated
source, compiling just in time whenever possible. The server completely performs this at
runtime without restarting.

Another issue had to be dealt with at this point. There are limitations to which
code can be executed at runtime: while combining all those technologies might sound
simple, generating and running Clojure code at runtime by the same application process
required new specific automatic semantic validation and code weaving. In special, it was
necessary to replace named class generation using anonymous classes on demand.

5. Case Study

We have conducted case studies with the intent of validating the feasibility of the ap-
proach. The case studies include connections and data transmissions between parts
(clients and servers), combining dynamic and static parts. These transmissions were care-
fully planned with the intention of creating realistic data transfers, similar to those carried
out by established repository servers that are accessed via WS.

The case studies were executed, and their outcomes were verified both for each
module and as a whole, i.e. unit testing and integration testing. All reported studies
were executed successfully according to the requirements, as described in Table 4. Notice
that the S, I, and T columns indicate whether the schema, interface, or processing code,
respectively, are known. Other use cases that were planned for our approach but could not
be successfully tested are listed as part of future works.

This study involved executing the prototype according to predetermined use cases.
Its major intent was to determine the viability of the overall approach. Different case
studies involved mixing both dynamic parts and static parts. It was possible to investigate
how the dynamic part was capable to adapt according to new contracts at runtime.

9http://cxf.apache.org/
10https://guava.dev/
11http://www.omg.org/spec/MOFM2T/1.0/
12https://eclipse.org/acceleo
13https://clojure.org
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Table 4. Successful Test Cases

Description Client Server S I P
Traditional WS Test Static Static K K K
Server adapts to Client’s Schema Static Dynamic U U U
Server adapts to Client’s WS Definition Static Dynamic K U U
Server receives contract, generates and runs code Dynamic Dynamic K K U
Client receives anonymous objects and adapts Dynamic Static U K U
Client receives contract and generates code to adapt Dynamic Dynamic K K K

The result of this work may be affected by some threats to validity, classified ac-
cording to [Wohlin et al. 2012]. Internal validity: There is a possibility that the case
studies were not correctly performed according to their requirements. This threat was
eliminated by performing unit and integration testing to ensure that the use cases were
executed correctly from start to finish. External validity: There is a risk that the exe-
cuted use cases do not represent realistic use cases. Indeed, our prototype has a small
scale compared to real repository systems. Yet, we managed to implement functional
repository services that would be useful in real-life applications, however, we did not fo-
cus on scalability and vulnerability issues that will certainly arise from our approach. We
intend to evaluate these issues as part of future works. Conclusion validity: The num-
ber of contracts and schemas may not be enough to conclude if the prototype is adaptive
so as to cover all possible repository formats and interfaces. Perfecting the adaptability
of our approach was not the goal of this case study, which should be analyzed in future
works. In conclusion, comparative studies could be performed to create a selective guide-
line for choosing the best option, while our approach could be used to fill the gap of
non-consolidated services, redirecting to existing ones when relevant.

6. Conclusion and Future Works
In this paper, we presented an architecture for developing a completely dynamic SOA
system. Following these requirements, a prototype was built and then used in case studies.
The motivation for creating a dynamic SOA system was to quickly deploy repository
systems that adapt to different schemas and interfaces. Moreover, it was possible to push
beyond this initial requirement to create completely dynamic SOA systems that adapt to
different contracts on demand.

The implemented prototype combines different technologies to generate or trans-
fer contracts, read these contracts, generate code based on contracts and finally, execute
the code without restarting the involved parts. The prototype system was composed of
two parts: client and server. According to the conducted case studies, the server was suc-
cessfully used to adapt to clients upon request, regardless of whether the client was also
implemented according to our requirements. The client was capable of connecting to the
server and redirecting to the new port whenever required.

The conducted case studies involved different scenarios where the client con-
nected to a dynamic server. Our plan is to continue testing the prototype with addi-
tional use cases and then provide the corresponding sources 14. Although the case studies

14https://anonymous.4open.science/r/dynamic-soa
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demonstrate the feasibility of the approach, we acknowledge that this viability may not be
realistic or sufficient to address certain scalability issues. We are also aware that several
vulnerabilities may arise from running new code on demand for clients. The prototype is
still in an early stage of development, and the current studies have primarily focused on
the server aspect rather than the client side. Indeed, the server required further efforts to
meet the requirements, while the client portion benefited from the preexisting capability
provided by Apache CXF and Google Guava. We are working to improve the client part
to study how other interpreted languages (e.g. Javascript) could be employed to load dy-
namic code based on contracts, including support for parsing stored source code, as well
as hosting the prototype to implement a well-defined repository system service.
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