

Tracking Events as an Add-On Functionality of

the Routed DEVS Formalism

Maria J. Blas1,2, Mateo Toniolo2, Silvio Gonnet1,2

1Instituto de Desarrollo y Diseño INGAR – CONICET & UTN

Avellaneda 3657 – Santa Fe – CP 3000 – Argentina

2Facultad Regional Santa Fe – Universidad Tecnológica Nacional (UTN)

Lavaisse 610 – Santa Fe – CP 3000 – Argentina

mariajuliablas@santafe-conicet.gov.ar, mtoniolo@frsf.utn.edu.ar,

sgonnet@santafe-conicet.gov.ar

Abstract. The Routed DEVS (RDEVS) models improve traditional discrete-

event models by enhancing the development of routing processes over

predefined behaviors. This paper provides a novel solution for tracking events

flowing in such routing processes as a new functionality of the RDEVS

formalism. Such functionality is given by redesigning the original formalism

following the “Decorator” pattern. An implementation of the redesign is

developed as part of the RDEVS Java Library. As a result, we provide a

solution that allows getting structured data from RDEVS models at execution

time without changing their expected behavior or the simulator engine.

1. Introduction

The Discrete-Event System Specification (DEVS) is a popular formalism for modeling

complex dynamic systems using a discrete-event abstraction [Zeigler et al. 2018]. A

DEVS extension frequently suggests a direction in which Modeling and Simulation -

M&S- (as a general field) and DEVS formalism (as a particular specification) can be

enhanced. That is the case of Routed DEVS (RDEVS), an extension that promotes the

M&S of routing processes over DEVS models through a new modeling level: routing

behavior [Blas et al. 2022]. DEVS and RDEVS models can be combined to define

multi-formalism models executed with any DEVS abstract simulator. The data collected

from such execution will be DEVS-based. Hence, to monitor the main features of

RDEVS models at execution time, a distinct approach is required.

 In this paper, we show how a software engineering design pattern can be applied

over the RDEVS formalism design to include event tracking into the models without

changing the expected behavior of the formalism. We aim to create a flexible alternative

to subclassing the original formalism with new functionality without altering what the

formalism already does. Based on the Decorator pattern [Gamma et al. 1994], we

preserve the routing functionality embedded in the models and the suitability of DEVS

simulators as execution engines. Moreover, we allow models to collect event flow data

dynamically. Given that when collecting data, it is better to do it using a structured

format [Sagiroglu and Sinanc 2013], we propose a solution for collecting structured data

from RDEVS models at execution time as a new type of functional (not behavioral)

responsibility. Such a solution is implemented as a Java package attached to the RDEVS

Library. The main contributions are i) from the M&S theory, the conceptualization of

add-on functionalities as part of DEVS-based formalisms using a design pattern;

specifically, an add-on definition for RDEVS models to store the data collected during

the simulation in a structured Object-Oriented form, and ii) from the M&S practical

field, implementation of such a conceptualization as a Java package attached to the

RDEVS Library that records data in JavaScript Object Notation (JSON).

 The remainder of this paper is organized as follows. Section 2 introduces the

foundations of RDEVS centered on how event tracking data is attached to simulation

engines. Section 3 presents the tracking proposal as an add-on functionality to the

RDEVS conceptualization. A discussion regarding the results is presented in Section 4.

Finally, Section 5 is devoted to conclusions and future work.

2. Background

The RDEVS formalism reduces the modeling effort when routing processes are defined

over DEVS models by introducing a new modeling level: the routing behavior [Blas et

al. 2022]. In an RDEVS-based solution, the modeler employs three distinct models: i)

the essential model defines the discrete-event behavior of a component used in a routing

node, ii) the routing model defines a routing node by relating an essential model

description with a routing policy through a precise behavioral definition of how event

routing should be performed, and iii) the network model defines the routing process

scenario by coupling a set of routing models using all-to-all connections (leaving the

routing task to node policies). According to [Zeigler et al. 2018], RDEVS acts as a

“layer” above DEVS providing routing functionality without requiring the user to “dip

down” to DEVS itself for any functions. To do this, by using the models described

above, RDEVS divides the behavioral modeling level of DEVS into two types: domain

behavior and routing behavior. Hence, the flat behavior used in DEVS is replaced with a

two-level structure, where the routing behavior is abstracted in the routing model

specification using a routing policy as part of the acceptance/rejection process.

 The RDEVS formalism is closed under coupling [Blas et al. 2022]. Zeigler

(2018) considers that two questions arise for the closure under coupling of DEVS-based

formalisms: 1) are they subsets of DEVS, behaviorally equivalent to DEVS but more

expressive or convenient, or bring new functionality to DEVS? and 2) have simulators

been provided for them to enable verification and implementation? The answers to these

questions for RDEVS formalism are the following:

1. The embedding of the essential model in the routing model definition and the

use of routing policies over the well-defined structure of the network model are

the main features of RDEVS improving the DEVS formalism. By isolating the

routing behavior from the domain-specific behavior, routing processes are built

with a strict separation of concerns.

2. Even when some DEVS-based extensions have required new simulators to

improve the execution of the proposed models, for RDEVS models, any

simulator implementing the DEVS abstract simulator can be used (that is due to

the equivalence shown by closure under coupling).

 Even when RDEVS models can be run with DEVS simulators, the data obtained

from such a process will be DEVS-based. Such data is acceptable to analyze simulation

results related to DEVS basic behaviors. However, when monitoring RDEVS models, it

is essential to be able to track the flow of events between different models, always

considering their routing policies. This data cannot be obtained from a DEVS simulator.

 RDEVS models are allowed to send (receive) output (input) events selectively.

Depending on the case, these models must: i) add routing information to all events

produced (i.e., output events) combining the routing policy and output function, and ii)

decide whether to accept/reject each event received (i.e., input event) using the event

routing data, the current state of the model, and the routing policy attached to the node.

Hence, when studying the dynamic of RDEVS models, the following questions arise:

How many events were accepted/rejected in a routing node? How many events were

sent? What types of events were accepted/rejected by a particular node? Under which

state conditions? How many times have models produced output events

accepted/rejected by all the destination models? Getting data to answer these questions

becomes an issue to be solved as part of the RDEVS formalism.

 There are two high-level solutions to this problem: i) improve the design of

RDEVS formalism through a redesign process allowing to collect RDEVS-based data

directly from models, and ii) redefine the DEVS abstract simulator to manage new types

of components for collecting both DEVS-based and RDEVS-based data. As evident,

each solution is closely related to 1) and 2), respectively. To maintain the suitability of

DEVS simulators as support of RDEVS models (i.e., to maintain a multi-formalism

simulation approach), in Section 3, we introduce a suitable conceptual modeling-based

solution for getting (structured) data from RDEVS simulations using event trackers (i.e.,

the solution i)). Such a modeling-based solution is centered on the Decorator pattern as

a means to add responsibilities to the well-defined conceptualization of RDEVS

simulation models defined in [Blas et al. 2022] without altering its behavior.

 At this point, two remarks are critical for understanding our proposal. First, we

do not want to introduce new functionality to the RDEVS formalism. By restructuring

the foundational design, we want to show that it is possible to “decorate” formal models

without changing their external behavior. The conceptual model (Section 3.1) is used to

rebuild the existing RDEVS Java library (Section 3.2). Second, we do not want to track

the simulation itself. We want to capture the event flow data produced during the

simulation in response to the accept/reject actions taken by the routing behavior of

nodes (i.e., routing models). As previously detailed, instead of handling regular DEVS

events, RDEVS models use events surrounded by routing data. Then, at simulation

time, a model can receive an event that will not be processed by its domain behavior

because it has been rejected by its routing behavior (placed at a higher decision level as

explained in Appendix A). Indeed, we want to track events processed by the domain

behavior of both sides (source and destination) because of routing policies.

3. RDEVS with the Tracker Add-On Functionality

3.1. Redesign at Conceptual Modeling Level

The Decorator design pattern is one of the twenty-three well-known design patterns

proposed by Gamma et al. (1994). Such a structural pattern defines a flexible approach

to enclosing a component in another object that adds a "border" with the intent of

attaching an additional responsibility dynamically. The enclosed object is called a

“decorator” that, following the interface of the component, decorates such a component

so that its presence is transparent to the component’s client.

 From the UML class diagram described as a metamodel of the RDEVS

specification (proposed in [Blas et el. 2021]), Figure 1(a) shows how the pattern has

been applied to support event trackers. Due to space reasons, the formal definition of the

conceptualization in the mathematical form of RDEVS models is omitted. On the other

hand, Figure 1(b) shows the conceptualization used for trackers to maintain data related

to the attached RDEVS model (i.e., the RDEVS Component).

(a)

(b)

Figure 1. (a) UML class diagram of the RDEVS metamodel taken from [Blas et
al. 2021] updated with the event trackers. New classes are the ones highlighted
in gray. (b) UML class diagram of the conceptual model used to structure the
trackers definition.

 Figure 1(a) shows the structure of RDEVS models, how these models are related

to DEVS Simulator Components, and how Tracker Decorators were added to the

conceptualization. When DEVS abstract simulator is used to execute RDEVS

models i) routing models are executed by a DEVS Simulator, and ii) network models are

performed by a DEVS Coordinator. That is defined through the execute operation

placed at each type of DEVS Simulator Component. The RDEVS Component is

introduced to abstract RDEVS models and the Tracker Decorator concept. The

expectedBehavior operation is used to define how models should work. Then, the

Tracker Decorator defines its expectedBehavior as the one described in the RDEVS

model attached (i.e., the RDEVS Component aggregated). Each specific type of tracker

includes its own tracking operation (see Section 3.2).

 In Figure 1(b), compositions are used to relate ports with trackers. A Routing

Model with Tracker is composed of an Input Port (identified as entrance) and an Output

Port (identified as exit). A Network Model with Tracker is composed of an External

Input Port and an External Output Port. Couplings between ports are also defined as

Internal Coupling, External Coupling, External Input Coupling, and External Output

Coupling to describe the model structure. Events are represented in the Event concept.

Each Event is defined by a type and a high-level type. The type refers to how it is

distinguished in the network model. An event is set as External when it is received/sent

by the network. Instead, an event is set as Internal when it is exchanged between

routing models composing the network model. On the other hand, the high-level type

refers to the content of the event. Such content is defined by the modeler in the RDEVS

simulation model that produces the Event. Each port registers the events that have been

sent/received. In this way, for each event, the conceptual model describes which is the

routing model that sends/receives an event through its output/input port. For example: i)

an Event can be sent by an Output Port (source) to an Input Port (destination), ii) an

Event can be sent by an External Input Port (defined as source) to an Input Port

(destination), or iii) an Event can be sent by an Output Port (source) to an External

Output Port (destination). Then, i) represents an Event with type = Internal, while ii)

and iii) refer to an Event with type = External (an external input event in ii) and an

external output event in iii)). The Concrete Event is used to denote that an Event has

been accepted in a model due to the routing policy.

3.2. Implementation in the RDEVS Java Library

To update the existing implementation of RDEVS models with event trackers, we

perform a refactoring of the RDEVS Java Library [Espertino et al. 2022] following the

conceptualizations previously described. Such models were implemented as a new Java

project related to the existing implementation.

 At the beginning of each simulation, the trackers attached to the models are

automatically created through the initialization process. During this step, the data

related to the model structure (i.e., static data) is collected in each tracker (e.g., for the

routing model tracker: identifier, name, input port names, output port names, and so

on). On the other hand, the data related to the simulation execution (i.e., dynamic data)

is obtained during the simulation process (once the models are initialized). Such data is

produced by the identified events exchanged among routing models. For each exchange,

the following data is collected in an Event: highLevelType, type (Internal or External),

source (output port from which it has been sent), and destination (input ports to which it

was intended). Then, a list of Events is dynamically built in the trackers representing

each port from which identified events depart (Output Port for an Event with type =

Internal or External Input Port for an Event with type = External). The same strategy is

used on the trackers representing ports on which events are attempted to be sent.

 When a routing model accepts an event (i.e., the routing policy allows the model

to execute its domain behavior), a Concrete Event is created. Such a Concrete Event is

attached to the original Event produced by the sender through the accepted association.

Moreover, it is attached to the Routing Model tracker related to the model that accepted

it through the executed association. In this way, an Event collects all instances accepted

by destinations at the accepted association (as a list of Concrete Event elements) and all

intended targets at the destination association (as the list of ports that contain the Event).

 Once the simulation ends, all the dynamic data related to event exchange is

available as part of the tracker model’s structure. Hence, to store such data, a JSON file

is created. JSON is a lightweight data-interchange format defined as plain text written in

JavaScript object notation. To get the JSON file, we add the tag “@Expose” to a

predefined navigation among the Java classes implemented. This navigation is designed

to store the minimum set of data required to rebuild the model.

 Having data formatted in JSON allows us to use other software tools to study

RDEVS models. For example, we can now design specific visualizations to improve the

understanding of the routing process described in the RDEVS simulation. Vernon-Bido

et al. (2015) identify four types of visualization for M&S: 1) concept and diagram

visualization, 2) quantitative visualization, 3) seek and find visualization, and 4) pattern

and flow visualization. We are interested in quantitative visualization (i.e., the static and

semi-static graphs and time-series plots associated with M&S results and statistics).

3.3. Tracking a Routing Process: An Example

To show how the data collection process works, we propose a three-node example.

Let’s assume that a routing process is defined using three nodes: SELECTION,

REPAIR, and PACKAGING1. Such nodes are connected to process distinct types of

containers (A, B, or C). If the process of SELECTION succeeds, the container selected

goes to PACKAGING. Otherwise, the container goes to REPAIR. After repair, the

container goes directly to PACKAGING. Routing policies are defined as follows: i)

SELECTION can accept all types of containers, ii) REPAIR can only fix containers of

type C, and iii) PACKAGING can only process containers of types B and C. Hence, as

evident, some events will not be processed in the nodes due to their routing policies.

That is how RDEVS models will work during simulation.

 Following this structure, Figure 2 shows the part of the JSON file obtained as

output data of the routing model attached to the REPAIR node when performing a

simulation. As expected, Figure 2 shows a set of events related to the entrance in line

207 (i.e., the Input Port attached to the Routing Model Tracker with id = 2 and name =

“REPAIR”). Since the REPAIR node only receives containers after the SELECTION

node has processed them, all events received in the routing model are Internal (lines

210, 215, 220, 225, 230, and 235). Distinct types of containers are received

(highLevelType). However, only the ones accepted by the routing policy (i.e., the ones

with highLevelType = “C”) are marked as concreteAccepted = true (lines 217 and 232).

That means these events are the only ones processed by the domain behavior of the

1 The example is part of the scenario proposed by Toniolo (2021).

routing model. The output events produced by the routing model during the simulation

are captured at the exit property (i.e., the OutputPort attached to the model). As the

highlighted box shows, all these events are set as highLevelType = “C” (lines 427 and

432) and concreteAccepted = true (lines 428 and 433). The former is due to the

REPAIR acceptance policy. Only containers of type C are processed before passing to

the PACKAGING node. The latter is due to the PACKAGING node always can accept

containers of type C.

Figure 2. Part of the structured data available in the JSON file for the routing
model with id = 2 and name = REPAIR (i.e., the routing model attached to the
REPAIR node).

 As an example of quantitative visualization of the collected data, a Sankey

diagram (i.e., a flow diagram that depicts nodes linked by flows) is presented in Figure

3. The quantity of each flow is represented as its width. This diagram is best used to

show multiple paths through a set of stages. It helps to locate dominant contributions to

an overall flow. For RDEVS models, we represent routing models as nodes and the

number of events exchanged following routing policies as the width of the flows. We

also include event information (e.g., type and highLevelType). Hence, the diagram helps

to understand how RDEVS models have accepted/rejected events.

Figure 3. A Sankey diagram. Flow color is used to denote different paths. INPUT
and OUTPUT are nodes denoting external input and output flows from/to the
network model to/from routing models.

 The diagram depicted in Figure 3 was built using the data recovered from the

simulation as input for our graphical application. Such an application generates the

diagram using the JSON file and produces an HTML file that contains the Sankey. The

diagram is directly visualized in the browser to allow a more accurate visualization. For

space reasons, details regarding the application development are not presented here.

 Our intention in presenting this example is to show how trackers work starting

from the conceptualization defined. Any case study where RDEVS models can be used

(so far, RDEVS was used to simulate network protocols, software architectures, and

electric power systems) will be enhanced with this additional feature since it allows to

characterize event flows without extra effort.

4. Discussion

Collecting data is the pivotal step in the data processing of a model. For discrete-event

models, the data is related mainly to events. Over the years, several researchers

proposed trackers attached to DEVS models. A great example is DEVS Suite [Kim et al.

2009]. It was presented in 2009 as “a new generation of the DEVS Tracking

Environment”. In DEVS Tracking Environment [Sarjoughian and Singh 2004], a basic

tracking environment was proposed allowing the execution of simulation experiments.

In DEVS Suite, the data generated by the simulation models is collected dynamically

and displayed as time-based trajectories.

 From a different perspective, more recently, the authors Dahmani et al. (2020)

have proposed a vocabulary of DEVS defined through an XML schema and an XML

abstract simulator. The simulation is executed with XSLT transformations that generate

an XML simulation tree at each event occurrence. In this case, XML is used as a meta-

language that provides a standard for information exchange to encourage sharing

models from different DEVS implementations. Given that an XML schema describes

the structure of an XML document, documents produced following this approach can be

considered structured data.

 Our solution improves the understanding of the RDEVS formalism as an

alternative conceptualization of DEVS models executed over DEVS simulators. As in

[Dahmani et al. 2020], we get structured data stored in a well-known format that

facilitates further analysis. Moreover, in all cases, tracing mechanisms are hidden from

the modeler. In our case, it is also hidden from the simulator (maintaining the separation

of concerns defined in the M&S Framework proposed with DEVS). To make the

simulator aware of the trackers we should let it know detailed information regarding the

decisions taken by models at both routing and behavioral levels. Likely, we should also

modify the message exchange protocol of DEVS simulators introducing new messages

to capture such behaviors.

 By deploying trackers as part of the RDEVS library (supported by DEVSJAVA

[Sarjoughian and Zeigler 1998]), DEVS Suite can be used to get DEVS-based results.

Global reporting using both types of results could be produced without much effort.

5. Conclusions and Future Work

We have designed and implemented a conceptual modeling solution to the problem of

tracking the event flow in RDEVS models. Our alternative solution provides an accurate

separation of concerns that allows maintaining the advantages of using DEVS

simulators for executing RDEVS models while collecting structured data regarding how

routing policies (at a higher decision level) are allowing/blocking the domain processing

at the lower operational level.

 Besides allowing to collect RDEVS-based data with the tracking, we expect to

improve the extensibility, maintainability, and readability of RDEVS models. The

DEVS-based data gathered by the DEVS simulator can be followed with the RDEVS-

based structured data obtained from our trackers to allow a complete analysis of the

simulation models. Since our data is structured, the processing to get information is less

complex. Moreover, such processing can be developed using a general-purpose

programming language or some specific software tool with JSON processing

functionality. We are now working on the development of a web application that will

allow practitioners to upload JSON files and get charts and tables with the processed

data (i.e., information). That is the final goal of our research project at this stage. We

already have developed an application for obtaining Sankey diagrams directly from the

JSON file obtained from trackers to analyze the event flow among routing models.

 Tracing simulation experiments is usually computation and data intensive. Still,

it is noticeable that the solution presented is described as an add-on responsibility of the

RDEVS models themselves. Performance analyses are not applicable at this stage.

 We strongly believe that the solution presented to the problem of gathering

structured data from RDEVS models might apply to other DEVS extensions. Moreover,

the properties enjoyed by the solution are valuable from a software engineering point of

view to be used to incorporate other functionalities to the simulation models as add-on

responsibilities. In the future, we are planning to include more add-on functionalities in

our proposal. Other design patterns will be explored.

Appendix A. How are Events Routed in RDEVS Models?

Let N be a RDEVS network model representing a system over which a routing process

should be solved. When a value x (with x ∈ X) arrives at N, the input translation

function Tin is executed to get an identified event x'. With the extra routing information

added (i.e., destination models), the event x' is sent to all Rd routing models composing

N. Each Rd model determines how to handle x' following its routing policy.

 When a routing model M (that embeds an essential model E) receives an input

event x', it executes the external transition function δext,M. Such a function has two

distinct behaviors as follows. If the event should be accepted due to the routing policy,

the model evolves to the next state by executing δext,E. Otherwise, the model remains in

the current state (i.e., the event x' is ignored). If no external event occurs during a state

s, an internal transition will take place when the time (in s) expires. Such a transition is

defined by δint,M and produces a state change in the model. Before changing the state,

the output function λM is executed to produce the identified output event y’. To get y’,

the model combines the result of λE with its routing policy. Once the output event is

released, the state changes following the internal transition function based on δint,E (to

perform the domain behavior).

 If at any time, an event y’ has no internal destination in N, y’ should be sent

outside N. Then, the network model executes the output translation function Tout to get

an event y (with y ∈ Y) from the identified event y’. Such a function removes the routing

information attached to y’ propagating outside the related value as y.

References

Blas, M. J. and Gonnet, S. (2021). Computer-aided design for building multipurpose

routing processes in discrete event simulation models. Engineering Science and

Technology, an International Journal, 24(1):22–34.

Blas, M. J., Leone, H., and Gonnet, S. (2022). DEVS-based formalism for the modeling

of routing processes. Software and Systems Modeling, 21(3):1179–1208.

Dahmani, Y., Ali, H. and Boubekeur, A. (2020). XML-based DEVS modelling and

simulation tracking. Inter. Journal of Simulation and Proc. Modelling, 15:155-169.

Espertino, C., Blas, M., and Gonnet, S. (2022). Developing RDEVS Simulation Models

from Textual Specifications. In Anais do IV Workshop em Modelagem e Simulação

de Sistemas Intensivos em Software, pages 41–50, Uberlândia, MG, Brasil. SBC.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design patterns: elements

of reusable object-oriented software. Addison-Wesley.

Kim, S., H. S. Sarjoughian, and Elamvazhuthi, V. (2009). DEVS-Suite: A simulator

supporting visual experimentation design and behavior monitoring. In Proceedings

of the 2009 Spring Simulation Multiconference, pages 1-7, Times Square, New York

City. ACM.

Sagiroglu, S., and Sinanc, D. (2013). Big data: A review. In Proceedings of the 2013

International Conference on Collaboration Technologies and Systems, pages 42-47,

Piscataway, New Jersey. IEEE.

Sarjoughian, H. S. and Zeigler, B. P. (1998). DEVSJAVA: Basis for a DEVS-based

Collaborative M&S Environment. Simulation Series, 30:29-36.

Sarjoughian, H. S. and Singh, R. (2004). Building simulation modeling environments

using systems theory and software architecture principles. In Proceedings of the

2004 Advanced Simulation Technology Conference, pages 99-104.

Toniolo, M. (2021). Desarrollo de una herramienta de software basada en Java para la

captura de eventos en la simulación de modelos RDEVS. In Actas de las Jornadas

Argentinas de Informática e Investigación Operativa 2021, pages 32-41, Buenos

Aires, Argentina. SADIO.

Vernon-Bido, D., Collins, A., and Sokolowski, J. (2015). Effective visualization in

modeling & simulation. In Proceedings of the 2015 Spring Simulation

Multiconference, pages 33-40, Times Square, New York City. ACM.

Zeigler, B. P. (2018). Closure Under Coupling: Concept, Proofs, DEVS Recent

Examples. In Proceedings of the 2018 ACM International Conference of Computing

for Engineering and Sciences, pages 1-6, Times Square, New York City. ACM.

Zeigler, B. P., Muzy, A., and Kofman, E. (2018). Theory of modeling and simulation:

discrete event & iterative system computational foundations. Academic press.

