
Implementations Supporting Automated Technology Transfer
in MDE as a Service

Fábio Paulo Basso1,2, Elder de Macedo Rodrigues1, Maicon Bernardino1,
Cláudia Maria Lima Werner2, Toacy Cavalcante de Oliveira2

1Laboratory of Empirical Studies in Software Engineering (LESSE),
Federal University of Pampa (UNIPAMPA), Alegrete, RS, Brazil

2Systems Engineering and Computer Science Department,
Federal University of Rio de Janeiro, RJ, Brazil

{fabiobasso,elderrodrigues}@unipampa.edu.br,

bernardino@acm.org, {werner,toacy}@cos.ufrj.br

Abstract. Coopetition characterizes scenarios where competing firms establish
collaborations for some intent. Here applies foundational studies built on soft-
ware reuse and asset standards, such as for OSLC and RAS, asset platforms,
smart contracts and others that are essential for promoting coopetition in the
area. Our contribution is an experience report that provide foundations for
technology transfer to software factory coopetition scenarios. Our goal is to
characterize some coopetition approaches and tool support assisting Software
Engineering (SE) tasks for technology transfer. This paper presents an expe-
rience report analyzing multi-case studies, implemented in local scenarios for
coopetition, characterizing the research area with a summary of the main fin-
dings. The presented results are twofold: 1) With the current tool support in
the state-of-the art, automation of SE tasks for technology transfer is feasible
to local scenarios; and 2) However, global coopetition scenarios impose new
implementation barriers.

1. Introduction

Coopetition is characterized as a mean for competitors increase their business opportu-
nities [Ritala et al. 2014]. Coopetition is a reality to some companies such as Amazon,
but yet few understood when applied to the Software Engineering body of knowledge. To
the Software Engineering (SE) contexts, coopetition could promote services performed
by many professionals with know how in specific software development phases, an in-
teresting research topic debated recently in a round table promoted by the International
Conference on Software Engineering (ICSE) 2017. Coopetition is the mean by which
Software Engineering services could be promoted in blocks [Boehm 2006]. For ins-
tance, some phases can be automated through resources for Model Driven Engineering
(MDE) [Fuggetta and Nitto 2014], which requires the execution of other Software En-
gineering activities to introduce resources such as tools in contexts for adoption [Liebel
et al. 2014]. This execution can be assisted through the implementation of concepts for
“Software Factory”, a term introduced in 2003 by Greenfield [Greenfield and Short 2003]
to classify approaches that compose and adapt these resources.



In previous experiences, blocks supporting the interests from a set of Software
Factories are represented as a domain model. This representation combines structural
features for Model Transformation Chain (MTC), Software Product Lines (SPL) and
Component-Based Development (CBD) [Basso et al. 2017a]. Through the implemen-
tation of these concepts, flexible resources are created, composed and introduced in one
or more contexts for MDE adoption within one or more coopetition blocks. In this sense,
we defined “MDE as a Service” as a Software Engineering that requires the application of
these concepts to promote coopetition through reuse of MDE assets in inter-organizational
contexts [Monteiro et al. 2014, Basso et al. 2013a, Basso et al. 2015, Basso et al. 2016b].
As illustrated in the center of Figure 1, resources (core assets) are used by more than
one target company for MDE adoption (Company A and B). We have implemented and
adopted concepts for Software Factory in real scenarios [Basso et al. 2013a, Basso et al.
2017a, Basso et al. 2006].

In this approach it is also important to consider the know how of teams to support
the design and development tasks, which may imply on the execution of a feasibility study
before introducing MDE in the target context. In [Basso et al. 2015] we discuss how we
applied a feasibility study, adapting model-based tasks according to needs from an agile
software project, which adopted Scrum as reference model for the Software Development
Process (SDP).

This paper reports the implementation of the coopetition in Software Engineering
field, providing a good evidence to the area. However, the new scenario shown in Figure 1
(box 1) is vaguely characterized, thus needing in-depth investigations for emergent sce-
narios. This work contributes for this characterization and it is organized as follows: As
a characterization of experiences, Section 2 introduces emergent coopetition scenarios,
complemented by Section 3 with open research topics and by Section 4 with concluding
remarks.

2. Experiences on Implementations for Emergent Coopetition Scenarios

Through the FOMDA Approach [Basso et al. 2017a], resources developed for MDE
(e.g., model transformations, DSLs and tools) are used by different contexts, i.e. applied
in many domains (or cross-application domains), which characterizes block of local coo-
petition.

This is possible due to the adaptation in existing resources for MDE such as MTCs
and model transformations, delivering at the end a configured tool in conformity with tar-
get context. Our tool support includes the execution of generative and run-time/adaptive
approaches. Three local coopetition blocks are successfully implemented [Basso et al.
2013a, Basso et al. 2017a, Basso et al. 2006], as illustrated by the groups of studies (S01,
S05 and S06) which results in the following three domain models supporting MDE tool-
chain for Software Engineering companies: 1) Block B1 supporting the development of
Web Information Systems; 2) Block B2 supporting the development of Embedded Real-
time Systems; 3) Block B3 supporting the development of Wireless Sensor Networks for
Internet of Things (IoT). What our previous experiences are suggesting is that local coo-
petition in Software Engineering is a reality, which means that we have the minimum tools
and practices that support the implementation of the scenario shown in Figure 1 (box 2
and 3). Although some other examples of local coopetition are found in the literature too,



Figura 1. Contribution Facet of Each Reported Experience in Scenarios for MDE
as a Service.



and considering the surveys in the current body of knowledge [Zakheim 2017, Bounc-
ken et al. 2015], global coopetition in Software Engineering is not a reality yet. In this
sense, starting from the previous experiences in local coopetition to the MDE business,
a recent PhD thesis (S07) investigated whether MDE as a Service could be implemented
considering emergent global scenarios.

This research includes many characterization studies including experience reports,
literature mappings and case studies, through which only recently we achieved a better
understanding. Some of these contributions mapped the research area considering the
state of the practice in MDE as a Service. We found reports suggesting that the MDE as a
Service have been performed manually. Issues reported are associated with needs in tool
support such as flexibility, integration of components, adaptation, test, and others. Thus,
while many tools are available in support for Software Engineering activities associated
with this approach, the state-of-practice execute MDE as a Service manually.

In other studies we focused on the reuse scope shown in Figure 1 (2 and 3), discus-
sing different ways to implement systematic reuse through adaptations to specific contexts
within system engineering (S01, S04, S05 and S06), and process engineering (S03, S05,
and S08) engineering [Basso et al. 2017a, Pillat et al. 2015, Basso et al. 2017b]. For
example, works in [Yie et al. 2012, Cuadrado et al. 2014] suggest the use of DSLs for
MTC, SPL and CBD in order to assist Software Engineering activities, including frag-
mentation, composition, orchestration and test of MDE resources. While the state-of-the-
practice reports the lack of appropriate tool support as an issue for the MDE adoption, the
state-of-the-art presents some alternatives to use in this first scope of MDE as a Service.
Therefore, we have found that the research on the implementation of software factory
concepts for systematic reuse, which is a systematic reuse approach for MDE, is mature.

Recent studies detailed in S07 [Basso 2017] focused on the scope illustrated in
Figure 1 (1): emergent scenarios with opportunities for global coopetition implemented
through opportunistic reuse and design. It includes representations for MDE resources
found in repositories and asset platforms. However, only few contributions are conside-
ring inter-organizational reuse, which imposes limits in approaches for managing coope-
tition scenarios [Bouncken et al. 2015]. So, we have found that the body of knowledge
lacks requirements for implementation of global coopetition in SE. Moreover, although
we have found a good availability of repositories promoting coopetition opportunities, ex-
cept a research scoping collaborative design tools [Franzago et al. 2017], characterizing
collaborative solutions for a totally different intent than the motivated in this paper, we
have not found contributions focused in coopetition through asset engineering, which is
an opportunistic reuse approach.

For this reason, the connection between these two reuse scopes for coopetition,
local promoting systematic reuse and global promoting opportunistic reuse, is not yet
well understood, remaining obfuscated. We found that all the related contributions in
the Software Engineering base of knowledge present representations that can be used in
one or other reuse scope for MDE as a Service. This means that one contribution can
work well for part, but not all, the illustrated scenario in Figure 1. Due to the lack of
a common/pivotal representation language, such scopes are not properly connected in
existing contributions. Therefore, we investigated a novel DSL to solve this limitation, a
differential that connects scopes from Figure 1 (1 and 2) [Basso 2017] through services



built on assets.

In this sense, in [Basso et al. 2016a] we analyzed asset specification languages,
concluding that the Reusable Asset Specification (RAS) is an interesting complement
that can help on the implementation of collaboration through reuse repositories, but it
is limited to provide descriptive information associated with MDE resources. So, we
developed a preliminary version of RAS++ DSL and a tool prototype in [Basso et al.
2013b], adding to RAS metaclasses that we found as a common representation among
many proposals for MTCs [Basso et al. 2014]. Moreover, in [Basso et al. 2013c] we
presented a workflow that includes RAS++ DSL in this context. The implementation
of this workflow will allow to automatically retrieve assets from reuse repositories and
integrate them into the core assets managed by the “Software Factory”.

These gaps derived form previous experiences are necessary to reach criteria to
promote coopetition in Software Engineering and they are missed in the literature of the
area. This limitation in the current wisdom become evident in the recent round-table
promoted by ICSE 2017, where experts agreed that very few is acknowledged to draw any
conclusion. As a long-term goal for the MDE community, some authors suggested that
solutions for MDE should be shared on the web in a Knowledge Base (KB) [Mussbacher
et al. 2014], thus allowing the quick discovery and comprehension of appropriate MDE
resources (model transformations, tools, metamodels, files, etc.).

We then proposed RAS++ [Basso 2017], a DSL for asset engineering that in-
troduces to the MDEaaS scenario the following features: 1) Support for extensibility,
through meta-classes based on UML Profiles (e.g., tags and stereotypes); 2) Support for
representation of MDE Settings for toolchain as blocks of cooperation and coopetition,
through meta-classes for a common representation language between MDE Settings and
reuse repositories (e.g., model typing); 3) Support for distributed/federated MDE Resour-
ces, through meta-classes for distributed information stored on the web (e.g., deployment
descriptors); 4) Support for distributed/federated Assets, through meta-classes for depen-
dency among assets located in different repositories; 5) Support for service instantiation,
through meta-classes for integration of Asset’s content into target environments/DSLs for
MDE Settings.

RAS++ is a DSL built on two standards: the Reusable Asset Specification
(RAS) [Hong-min et al. 2010] and the Asset Management Specification (AMS) [Elaa-
sar and Neal 2013]. RAS is an important standard proposed by the Object Management
Group (OMG) to structure elements for reuse through instructions of integration and clas-
sification of artifacts in repositories and it is by definition a pivotal language for software
component reuse. AMS is the core representation of the Open Services for Lifecycle Col-
laboration (OSLC)1, an industrial standard aiming at provide the means to interoperate
Software Engineering tools on the web through assets and services for toolchain instanti-
ation. Thus, RAS++ is intended to support core service domain representations in MDE
as a Service.

We have also created a base of assets by mining data from the ReMoDD reposi-
tory [France et al. 2007], so that Software Engineers can analyze the best options to satisfy
a customer request. Our intent is to use them for simulation purposes in integration sce-

1OSLC: http://open-services.net/specifications/

http://open-services.net/specifications/


narios of coopetition. For example, Company A may request a DSL that complements
resources used in two configurations shown on the top of Figure 1 (3). With test purpo-
ses, we represented assets in a repository for MDE Resources that serve as complement
to the core assets developed previously with the FOMDA DSL. Next steps is to simulate
integration with the KB we already have for business scoping MDE in Internet of Things
(IoT), Web information systems and Embedded Systems.

The inclusion of the scope shown in Figure 1 (1) in MDE as a Service, requires the
execution of the following opportunistic reuse steps: 1) represent and publish assets desig-
ned with the RAS++ in one or more global repositories; 2) analyze and compare resources
and; 3) download and integrate the selected resources into the core assets illustrated in Fi-
gure 1 (2). These steps are assisted by our Eclipse plugin, which connects these two reuse
scopes and enables Software Engineers to: 1) design, publish and download assets from
repositories, and; 2) through model-to-model (M2M) transformations, transform assets
from RAS++ to the FOMDA DSL. Therefore, through a pivotal language, we started to
implement the overall scenario motivated in Figure 1.

Finally, in order to test implementations for Software Factory concepts, we de-
veloped seven M2M transformations that allows the transformation of RAS++ models to
other integration languages.

3. Lessons Learned
Although we have progressed a little bit in this direction towards coopetition as a sustai-
nable business model for small software houses, similar experiences are scarce and not
appropriately discussed in the literature. Likewise, we can mention several other limitati-
ons hampering the implementation local and global coopetition in Software Engineering
in general including:

Systematic mapping study on settings for toolchain in SE. The lack of this study
hampers the execution of an appropriate comparison of our work with the state of the art.
Besides, it would be benefit for future implementations of coopetition to acknowledge all
the other toolboxes overlapping and complementary for automation of tasks in Software
Engineering, thus characterizing an investigation on the intentions of these approaches
and their properties;

Preliminary engineering phases for toolchain integration. In order to establish
partnership in software process automation, it is important to reach complements for reuse
steps earlier to our experiences, thus in global scales of cooperation. Finding these phases
and develop appropriate toolboxes is of relevance for the execution of preliminary tool
chain [Zakheim 2017], thus focused on the automation of phases of the overall software
development lifecycle;

Increments for the engineering steps in the FOMDA Approach. In special, the
following research topics are imperative:

• Evaluate other usefulness from a business rule system in the context of MDE as a
Service [Pillat et al. 2015], such as allowing the development of block composi-
tion rules for inclusion of coopetition players;

• Application for other coopetition scenarios in MDEaaS [Basso et al. 2017a,Basso
et al. 2015]. For example, conducting new investigations for other Software Engi-



neering needs than toolchain, such as complements for disruptive business models
including smart contracts and blockchain as a services;

• Requirements for Software Engineering technology transfer in MDE as a Service.
So far, few is understood about quality attributes associated with MDE resources,
thus elements for decision making in multi Software Engineering contexts are
important for business [Papatheocharous et al. 2018].

Post engineering phases for MDE resources. We look for new studies focused on
the automatic introduction of MDE features through model transformations, for example,
from FOMDA DSL-compliant assets to various other process modeling / execution DSLs
and their reuse mechanisms [Pillat et al. 2015]. For example, many toolboxes have been
adopted by software development companies, which are potential potential customers
for managing co-constructed services. These add-ons could extend a possible MDEaaS
market, thus opening a window into the investigation of an automatic approach to software
development process automation.

Acquisition of assets. Assets and services are essential for the implementation of
global coopetition in the area. In this sense, work that applies some concepts of asset
acquisition should be investigated, which is promoted through asset platforms [Papatheo-
charous et al. 2018] and, more recently, through distributed services. So an open question
is whether these new approaches are applicable to MDEaaS?

Requirements for MDEaaS. The requirements for these services are not known.
We have made a small contribution in this regard, but to the purely technical elements
involved in these assets. In addition, OSLC is in its infancy and there are also other ap-
proaches to toolchain that should be investigated in this context. Therefore, further studies
characterizing these requirements and applying / testing existing asset specifications are
welcome.

Break away from the traditional way of transferring technology to the market. Past
experience [Basso et al. 2017a] has led to the understanding that small technology transfer
participants have little or no chance to commercialize their assets as Component Of The
Shelves (COTS). One way to break this old paradigm is by implementing MDEaaS as peer
negotiations, which requires a huge effort to connect the aforementioned interdisciplinary
research cooperation.

In this sense, the literature in the area does not identify the main problems that
hinder this type of initiative, which could benefit small businesses. Because each com-
pany may have different contexts (technologies, team configurations, and processes), this
limitation poses several risks in introducing tools and methodologies for Software Engine-
ering [Jacobson et al. 2012]. Most importantly, we missed reports on MDEaaS scenarios,
which could prevent us from pitfalls and facilitate this work by finding new opportunities
and establishing partnerships.

4. Conclusion and Discussion

This paper reports the work done in MDE as a Service, an implementation of coopetition
for Software Engineering contexts that adopt MDE tools for automation of some tasks
on software development. To Software Engineering contexts, coopetition could benefit
companies through automation in technology transfer. However, this is yet to be explo-



red by research and practice. Hence, this is the right moment for foundation studies for
automation in Software Engineering technology transfer on the large through coopetition.

This paper reports some contributions scoping local and global coopetition scena-
rios through two representation languages: FOMDA DSL and RAS++. FOMDA is for
systematic reuse and enables the implementation of Software Factory, applied in local ap-
proaches for MDE as a Service in real settings. RAS++ is a mean to promote integration
in the large in a opportunistic reuse approach. In order to promote automated technology
transfer, RAS++ is a new pivotal representation language in support for services for global
coopetition scenarios. In an ideal stage of research, RAS++ would allow to connect MDE
resources from many providers (centralized or distributed) with support for integration in
toolchain.

MDE resources are agnostic to what software houses adopt for specific applicati-
ons, i.e., independent from the software development process reference model adopted by
a company and also independent from application domains. This means that they must be
combined in theory and practice within a context characterizing coopetition blocks. Our
conclusion is that, considering strictly MDE resources developed in support for MDE to-
olchains, the use of a toolbox that integrates assets and services makes all the sense and
puts at least local coopetition as a reality in Software Engineering.

Referências

[Basso 2017] Basso, F. P. (2017). RAS++: Representing Hybrid Reuse Assets for MDE as
a Service. Av at <www.cos.ufrj.br/uploadfile/publicacao/2811.pdf>. PhD thesis.

[Basso et al. 2006] Basso, F. P., Becker, L. B., and Oliveira, T. C. (2006). Using the fomda
approach to support object-oriented real-time systems development. In Ninth IEEE
International Symposium on Object and Component-Oriented Real-Time Distributed
Computing, ISORC 2006, pages 374–381.

[Basso et al. 2017a] Basso, F. P., Oliveira, T. C., Werner, C. M., and Becker, L. B. (2017a).
Building the foundations for ’mde as service’. IET Software, 11:195–206(11).

[Basso et al. 2016a] Basso, F. P., Oliveira, T. C., Werner, C. M. L., and Frantz, R. Z.
(2016a). Analysis of asset specification languages for representation of descriptive data
from mde artifacts. In International Conference on {ENTERprise} Information Sys-
tems/International Conference on Project MANagement/International Conference on
Health and Social Care Information Systems and Technologies, CENTERIS/ProjMAN
/ {HCist} 2016, October 5-7, CENTERIS’16.

[Basso et al. 2013a] Basso, F. P., Pillat, R. M., Oliveira, T. C., and Becker, L. B. (2013a).
Supporting large scale model transformation reuse. In 12th International Conference
on Generative Programming: Concepts & Experiences., GPCE’13, pages 169–178.

[Basso et al. 2016b] Basso, F. P., Pillat, R. M., Oliveira, T. C., Roos-Frantz, F., and Frantz,
R. Z. (2016b). Automated design of multi-layered web information systems. Journal
of Systems and Software, 117:612 – 637.

[Basso et al. 2015] Basso, F. P., Pillat, R. M., Roos-Frantz, F., and Frantz, R. Z. (2015).
Combining mde and scrum on the rapid prototyping of web information systems. In-
ternational Journal of Web Engineering and Technology, 10(3):214–244.



[Basso et al. 2017b] Basso, F. P., Werner, C. M. L., and de Oliveira, T. C. (2017b). Automa-
ted approach for asset integration in eclipse IDE. In 2017 IEEE/ACM Joint 5th Interna-
tional Workshop on Software Engineering for Systems-of-Systems and 11th Workshop
on Distributed Software Development, Software Ecosystems and Systems-of-Systems,
JSOSICSE, Buenos Aires, Argentina, May 23, 2017, pages 34–40.

[Basso et al. 2014] Basso, F. P., Werner, C. M. L., and Oliveira, T. C. (2014). Towards
facilities to introduce solutions for mde in development environments with reusable
assets. In Int. Conf. on Information Reuse and Integration, pages 195–202.

[Basso et al. 2013b] Basso, F. P., Werner, C. M. L., Pillat, R. M., and Oliveira, T. C. (2013b).
A common representation for reuse assistants. In 13th International Conference on
Software Reuse, ICSR’13, pages 283–288.

[Basso et al. 2013c] Basso, F. P., Werner, C. M. L., Pillat, R. M., and Oliveira, T. C. (2013c).
How do you execute reuse tasks among tools? a ras based approach to interoperate
reuse assistants. In 25th International Conference on Software Engineering and Kno-
wledge Engineering, pages 721–726.

[Boehm 2006] Boehm, B. (2006). A view of 20th and 21st century software engineering.
In 28th International Conference on Software Engineering, ICSE ’06, pages 12–29.

[Bouncken et al. 2015] Bouncken, R. B., Gast, J., Kraus, S., and Bogers, M. (2015). Co-
opetition: a systematic review, synthesis, and future research directions. Review of
Managerial Science, 9(3):577–601.

[Cuadrado et al. 2014] Cuadrado, J. S., Guerra, E., and Lara, J. D. (2014). A compo-
nent model for model transformations. IEEE Transactions on Software Engineering,
40(11):1042–1060.

[Elaasar and Neal 2013] Elaasar, M. and Neal, A. (2013). Integrating modeling tools in the
development lifecycle with oslc: A case study. In 16th International Conference on
Model Driven Engineering Languages and Systems, MODELS’13, pages 154–169.

[France et al. 2007] France, R., Bieman, J., and Cheng, B. (2007). Repository for model
driven development (remodd). In Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
4364 LNCS, pages 311–317.

[Franzago et al. 2017] Franzago, M., Ruscio, D. D., Malavolta, I., and Muccini, H. (2017).
Collaborative model-driven software engineering: a classification framework and a
research map. IEEE Transactions on Software Engineering, pages 1–1.

[Fuggetta and Nitto 2014] Fuggetta, A. and Nitto, E. D. (2014). Software process. In 36th
International Conference on Software Engineering, ICSE ’14, pages 1–12.

[Greenfield and Short 2003] Greenfield, J. and Short, K. (2003). Software factories: Assem-
bling applications with patterns, models, frameworks and tools. In Companion of the
18th Annual ACM SIGPLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications, OOPSLA ’03, pages 16–27.

[Hong-min et al. 2010] Hong-min, R., Jin, L., and Jing-zhou, Z. (2010). Software asset
repository open framework supporting customizable faceted classification. In IEEE



International Conference on Software Engineering and Service Sciences (ICSESS),
16-18 July, 2010, pages 1–4.

[Jacobson et al. 2012] Jacobson, I., Ng, P.-W., McMahon, P. E., Spence, I., and Lidman, S.
(2012). The essence of software engineering: The semat kernel. a thinking framework
in the form of an actionable kernel. ACMQUEUE. Development, 10(10):1–12.

[Liebel et al. 2014] Liebel, G., Marko, N., Tichy, M., Leitner, A., and Hansson, J. (2014).
Assessing the state-of-practice of model-based engineering in the embedded systems
domain. In Model-Driven Engineering Languages and Systems, pages 166–182.

[Monteiro et al. 2014] Monteiro, R., Assumpcao Pinel, R., Zimbrao, G., and Moreira de
Souza, J. (2014). The mdarte experience: Organizational aspects acquired from a
successful partnership between government and academia using model-driven deve-
lopment. In International Conference on Model-Driven Engineering and Software
Development (MODELSWARD), pages 575–586.

[Mussbacher et al. 2014] Mussbacher, G., Amyot, D., Breu, R., Bruel, J.-M., Cheng, B. H.,
Collet, P., Combemale, B., France, R. B., Heldal, R., Hill, J., Kienzle, J., Schöttle,
M., Steimann, F., Stikkolorum, D., and Whittle, J. (2014). The relevance of model-
driven engineering thirty years from now. In Model-Driven Engineering Languages
and Systems, pages 183–200.

[Papatheocharous et al. 2018] Papatheocharous, E., Wnuk, K., Petersen, K., Sentilles, S.,
Cicchetti, A., Gorschek, T., and Shah, S. M. A. (2018). The grade taxonomy for sup-
porting decision-making of asset selection in software-intensive system development.
Information and Software Technology, 100:1 – 17.

[Pillat et al. 2015] Pillat, R. M., Oliveira, T. C., Alencar, P. S., and Cowan, D. D. (2015).
BPMNt: A BPMN extension for specifying software process tailoring. Information
and Software Technology, 57(0):95 – 115.

[Ritala et al. 2014] Ritala, P., Golnam, A., and Wegmann, A. (2014). Coopetition-based bu-
siness models: The case of amazon.com. Industrial Marketing Management, 43(2):236
– 249.

[Yie et al. 2012] Yie, A., Casallas, R., Deridder, D., and Wagelaar, D. (2012). Realizing
model transformation chain interoperability. Software & Systems Modeling, 11(1):55–
75.

[Zakheim 2017] Zakheim, B. (2017). How difficult can it be to integrate software develop-
ment tools? the hard truth. InfoQ.


	Introduction
	Experiences on Implementations for Emergent Coopetition Scenarios
	Lessons Learned
	Conclusion and Discussion

