
A Proposal for Sharing Software Process Provenance Data in

Heterogeneous Environments

Gabriella Costa1, Eldânae Nogueira Teixeira2, Cláudia Werner2, Regina Braga3

1Computer and Mechanics Department

Federal Center for Technological Education of Minas Gerais (CEFET-MG)

36700-001 - Leopoldina - MG - Brazil

2COPPE - Systems Engineering and Computer Science Department

Federal University of Rio de Janeiro (UFRJ) - 21945-970 - Rio de Janeiro - RJ - Brazil

3Computer Science Department

Federal University of Juiz de Fora (UFJF) - 36036-900 - Juiz de Fora - MG - Brazil

gabriella@cefetmg.br, {danny, werner}@cos.ufrj.br, regina.braga@ufjf.edu.br

Abstract. Software development practices have evolved, and new approaches

have emerged, like Global Software Development (GSD). In addition, software

development companies started to adopt data-driven practices in parts of their

business. However, using and sharing software process data in a distributed and

heterogeneous environment, like the GSD context, could be a challenging topic

for many software engineers. In this paper, we present a proposal for sharing

software process provenance data using a model that extends PROV, the PROV-

SwProcess model. An example of applying this model using a process from the

industry that deals with error handling and the implementation of new features

in an Enterprise Resource Planning system is presented and explains how the

model allows sharing software process provenance data, in addition to

providing inferences and insights about these data.

1. Introduction

In recent years, software development practices have evolved, bringing new ways to

develop software [JANSEN, 2020]. New approaches to software development have

emerged, such as Global Software Development (GSD) also known as Global Software

Engineering (GSE) [HERBSLEB, 2007], and, more recently, Software Ecosystems

(SECO) [JANSEN, 2020]. These paradigms aim to reduce software development costs

and time through factors such as reusing artifacts developed by third parties, workload

distribution, and knowledge sharing, in a distributed scenario. Industry 4.0 solutions

consider a complex system of interconnected digital technologies, information systems,

and processing technologies that demand high interdependency of competencies and

technological complementarity. Then, GSD is inserted in the context of Industry 4.0 and

can support its development using various digital technologies such as Cloud Computing,

Big Data and Artificial Intelligence.

Software development companies started to adopt data-driven practices in parts

of their business over time [JANSEN, 2020]. In this new scenario, companies need to use

 Open peer review artifacts for this paper are available at

https://zenodo.org/communities/opensciense2021

https://zenodo.org/communities/opensciense2021

data in accounting, marketing, and sales for calculating various performance indicators

(such as return on investment for accounting, errors found in deployed products, and

defect management). In addition to the use of data-driven practices, software process (SP)

is a critical factor for developing quality software products. However, using and sharing

SP data in a distributed and heterogeneous environment, could be a challenging topic for

many software engineers. Besides that, “sharing data and models is not a simple matter”

[MENZIES et al., 2014]. We claim that the use of an adequate data provenance model

could support and standardize this activity. In this vein, the main goal of this paper is to

present a proposal for sharing software process provenance data in heterogeneous

environments, such as the GSD context, using a model that extends PROV [GROTH and

MOREAU, 2013], the W3C recommended standard.

The remainder of this paper is organized as follows: Section 2 presents the main

definitions necessary to understand the approach, as well as works related to the topics

involved. Section 3 details PROV-SwProcess, a PROV extension data model for SP, the

basis of our proposal. Section 4 describes an example of applying this model using a

process from the industry. Finally, Section 5 presents the final remarks and future work.

2. Background

Software process is “a complex endeavor involving professionals, organizations,

company policies, tools, and support environments” [LEE et al., 2020]. Software

processes are represented by process models. A process model “reflects an organization’s

know-how regarding software development” including practical experience [MÜNCH et

al., 2012] [EISTY et al., 2019]. These models can be prescriptive (describing how

something should be done) or descriptive (describing how something is done in reality -

process execution data). They can reflect different types of information and different

process data sources, ending in heterogeneous data. In this vein, it is important to

emphasize that “Software engineering process data is a valuable source of information

regarding the history and evolution of a software project” [BACHMANN and

BERNSTEIN, 2009] and “Effective management planning, decision-making, and

learning processes rely on a spectrum of data, information, and knowledge to be

successful” [BASILI et al., 2007]. However, data-driven practices have challenges

involving a cycle of activities to prepare the data to be used. This cycle includes strategies

for data collection, data storage, data representation, data integration, data sharing, and

data maintenance. A first step to appropriately apply this cycle is to understand the

possible process elements to be treated, used, and shared. Also, some unified

representation of these elements is important to support data collection in GSD,

considering multiple sources and maintaining the track to these sources. However, “until

now, a single commonly accepted process schema for SP has not been established”

[MÜNCH et al., 2012] and “many organizations and projects possess insufficient or

poorly organized data collection and analysis mechanisms that result in limited,

inaccurate, or untimely feedback to managers and developers” [BASILI et al., 2007].

One possible way to support SP reproducibility, sharing, consensual

understanding in a distributed and heterogeneous scenario and reduce the possibility of

repeating failed executions is by using provenance. Data provenance can be defined as

the description of the origins of a piece of data and the process by which it arrived in a

database [BUNEMAN et al., 2001]. Provenance can be divided into two types: (i)

prospective provenance that captures a computational task’s specification and

corresponds to the steps that must be followed to generate a data product, and (ii)

retrospective provenance that captures the steps executed as well as information about the

environment used to derive a specific data product [FREIRE et al., 2008]. Tracking

provenance enables sharing, discovering, and reusing data, simplifying collaborative

activities in a GSD scenario, in addition to reproducing how something like a build failure

was generated, for example [BOSE et al., 2019]. Besides that, a provenance model

enables “inter-operable interchange of provenance information in heterogeneous

environments such as the Web” [GROTH and MOREAU, 2013].

3. A PROV Extension Data Model for Software Processes

Considering that PROV [GROTH and MOREAU, 2013] does not capture the specificities

of a SP model, extensions must be done to capture provenance data from SP and also to

provide a standard model that helps in the sharing and understanding of SP data in a GSD

context. Therefore, the PROV-SwProcess1 was proposed as a PROV standard extension

for SP provenance representation. PROV-SwProcess covers prospective (standard

process and intended process) and retrospective provenance (executed process). Besides

that, includes the essential aspects of SP: activities, stakeholder, resource, procedure, and

artifact, as proposed in SPO [FALBO and BERTOLLO, 2009]. It is divided into (i)

associations (or relations), (ii) classes, and (iii) specific inference rules. Figures 1 shows

part of the model and the following remarks about the meaning of the used symbols

should be considered: (i) constructs and associations presented between “<<>>” were

derived from PROV; (ii) elements in yellow ellipses are specializations of the Entity

PROV type and elements in orange pentagons are specializations of the Agent PROV

type; (iii) associations with black solid lines are used to capture Retrospective

Provenance, and associations with red dashed lines can be inferred by PROV-SwProcess

and their respective provenance rules, that is, they do not necessarily need to be captured

or informed in the SP provenance data.

Figure 1. Part of PROV-SwProcess Conceptual Model

4. Sharing Software Process Provenance Data

PROV-SwProcess model works as a standard for sharing information from SP and can be

used and understood by globally distributed teams. In addition, the model helps in

1 The complete ontology of this model version can be found in https://doi.org/10.5281/zenodo.5222104

and its details and reviews are available in http://www.gabriellacastro.com.br/provswprocess/

https://doi.org/10.5281/zenodo.5222104
http://www.gabriellacastro.com.br/provswprocess/

understanding and tracking changes, all in a uniform way, even considering the

heterogeneity of the processes. In order to apply/use the model, the following steps are

suggested: (1) Capture/store SP execution data, such as: (i) executed processes with their

name and responsible (a Stakeholder); (ii) performed activities of each process, with their

name, start, and end time; (iii) Stakeholders associated with the performed activity

(mandatory) and their specific role (optional); (iv) Artifacts changed, used, or generated

by the performed activity; (v) Procedures adopted for the execution of the performed

activity (optional); (vi) Hardware and/or Software resources used by the performed

activity (optional); (vii) Responsibility among stakeholders (optional); (viii) Process

standard model and process intended model definition, in order to allow process

prospective provenance capture and analysis. If the data captured in the first activity are

not previously organized according to the PROV-SwProcess model, they must be

manipulated and organized/stored according to this model. To make it possible, a generic

wrapper should be specialized and configured to make the necessary conversions between

different data formats. Therefore, the effort to instantiate the model will depend on how

the data coming from the software processes are captured. In this sense, it is necessary to

use a wrapper to convert existing data to the structures/constructions proposed by the

PROV-SwProcess. Considering that there are several tools for the creation and execution

of software processes throughout its lifecycle, the use of a wrapper for this conversion of

the stored/captured data to the proposed model is essential. For example, we have

wrappers configured for Mantis, for a proprietary version control system, and other that

allows converting specific .csv files according to PROV-SwProcess. After storing the SP

data in a relational database, modeled according to PROV-SwProcess constructs and

relations (e.g., we have tables to store activities, artifacts, stakeholders,

wasAssociatedWith relation – which relates activities with the stakeholders who have

performed them, etc), an ontology is populated, and an inference machine is executed.

Lastly, SPPV (Software Process Provenance Visualization) tool provides two types of

visualization (graphs and tables) [COSTA et al., 2016] using all the data and new inferred

information, helping in understanding and tracking SP provenance data.

 As an example of using PROV-SwProcess model to achieve the goal proposed in

this paper, a SP from industry that deals with error handling and the implementation of

new features in an Enterprise Resource Planning system was chosen. It is from a medium-

size company that acts in the software development context for more than thirty years,

specifically in creation/maintenance of accounting systems, and all its employees work

in home-office and are divided in distributed teams, dealing with different SP. We selected

ten executed instances of the SP and they were performed by six different roles (Client,

Test Team, Support, Support Manager, Development Manager, and Programmer). Figure

2 shows an example of a generated visualization using SPPV and the provided SP data. It

supports in understanding of a shared information about all the stakeholders that act as

Programmer, Support or Client in the SP. The group of roles in the lower corner of the

figure corresponds to the three roles informed in the process model that had no associated

stakeholder (based on the provided execution data). According to this figure, we can also

see that the most versatile stakeholder is Person_1, who acts as Programmer and Support,

according to the process provenance data. As an insight, in a next instantiation of this

process, if the process manager needs to allocate a Programmer or a Support person in a

specific activity, he/she knows who can perform these roles, based on previous execution

data. This analysis was performed by one of the provenance model’s authors, but she did

not participate in the SP. She knew only the basic information about the SP. When this

analysis was presented to the SP manager, the following feedback was obtained: (i) the

analysis presented before is correct; however, it is not common during the process

execution that a stakeholder assumes both a Support and a Programmer role; besides that,

he agreed that this occurred in one of the analyzed instances; (ii) this analysis can assist

in the proposed decision-making; (iii) he cannot obtain this analysis using his current

process management tool; (iv) the information provided by this visualization is somewhat

relevant to support in analysis and decision-making processes2.

Figure 2. Visualization of SP Provenance Data using SPPV.

5. Final Remarks

In this paper, we present and use a model that can be applied for sharing SP provenance

data in heterogeneous environments, such as the GSD context. It works as a standard for

sharing information from SP and can be used and understood by globally distributed

teams. A SP from the industry is presented and explains that the model allows sharing SP

provenance data, in addition to providing inferences and insights about these data. The

applicability of the PROV-SwProcess model in sharing SP provenance data can also be

validated as presented by Bose et al. [2019]. This related work presents BLINKER, an

extensible framework that implements/uses the PROV-SwProcess model in a blockchain-

based conceptual framework for capturing, storing, exploring, and analyzing software

provenance data. On the other hand, the limitation of our proposal as a whole (and not of

the model itself) is the need to use a wrapper, as mentioned in Section 4.

 As future work, considering the validation and evolution of this proposal, despite

presenting an example of using the model in a real scenario, we must apply it to share and

analyze the interlacing of data from various projects and processes, considering that it can

bring important knowledge and insights about GSD, besides performing a more in-depth

empirical evaluation. Considering the PROV-SwProcess model, the following

possibilities can be raised: (i) Explore other possibilities of stakeholder relationships (not

just acted on behalf of) that could be captured during SP, e.g. collaborative relationships

between two or more stakeholders; (ii) check the possibility of deriving new relationships

that can be established and/or inferred across the model process levels.

2 A detailed discussion about all the questions that PROV-SwProcess can answer about the presented

example is listed on https://doi.org/10.5281/zenodo.5257245

https://doi.org/10.5281/zenodo.5257245

REFERENCES

BACHMANN, A., BERNSTEIN, A. “Software process data quality and characteristics -

a historical view on open and closed source projects”. In: Proceedings of the joint

international and annual ERCIM workshops on Principles of software evolution

(IWPSE) and software evolution (Evol) workshops, Amsterdam, The Netherlands,

August 2009, pp. 119-128, 2009.

BASILI, V., ROMBACH, D., SCHNEIDER, K., KITCHENHAM, B., PFAHL, D.,

SELBY, R. (Eds.). Empirical Software Engineering Issues. Critical Assessment and

Future Directions: International Workshop, Dagstuhl Castle, Germany, June 26-30,

2006, Revised Papers (Vol. 4336). Springer. 2007.

BOSE, R.J.C., PHOKELA, K.K., KAULGUD, V., PODDER, S. Blinker: A blockchain-

enabled framework for software provenance. In: 26th Asia-Pacific Software

Engineering Conference (APSEC). IEEE, pp. 1-8, December 2019.

BUNEMAN, P., KHANNA, S., TAN, W.C. Why and where: A characterization of data

provenance. In: 8th International Conference on Database Theory, London. pp. 4-6,

2001.

COSTA, G. C. B., SCHOTS, M., OLIVEIRA, W. E. B., DALPRA, H. L. O., WERNER,

C. M. L., BRAGA, R., DAVID, J. M. N., MIGUEL, M. A., STROELE, V., CAMPOS,

F. SPPV: Visualizing Software Process Provenance Data. In: IV Workshop on Software

Visualization, Evolution and Maintenance - VII Brazilian Congress on Software:

Theory and Practice (CBSoft 2016), pp. 49-56, 2016.

EISTY, Nasir U.; THIRUVATHUKAL, George K.; CARVER, Jeffrey C. Use of software

process in research software development: a survey. In: Proceedings of the Evaluation

and Assessment on Software Engineering, pp. 276-282, 2019.

FALBO, R. A., BERTOLLO, G. “A software process ontology as a common vocabulary

about software processes”. International Journal of Business Process Integration and

Management, v. 4, n. 4, pp. 239-250, 2009.

FREIRE, J., KOOP, D., SANTOS, E., SILVA, C. T. Provenance for Computational Tasks:

A Survey. Computing in Science and Engineering, vol. 10, no. 3, pp. 11-21, 2008.

GROTH, P., MOREAU, L. “PROV-Overview”, 2013. Available at:

<https://www.w3.org/TR/prov-overview/>. Accessed on: jul 2021.

HERBSLEB, J. D. Global software engineering: The future of socio-technical

coordination. In: Future of Software Engineering, pp. 188-198. IEEE, 2007.

JANSEN, S., A focus area maturity model for software ecosystem governance,

Information and Software Technology, vol. 118, ISSN 0950-5849, 2020.

LEE, J. C., CHEN, C. Y. Exploring the team dynamic learning process in software process

tailoring performance: A theoretical perspective. Journal of Enterprise Information

Management, vol. 33, no. 3, pp. 502-518, 2020.

MENZIES, T., KOCAGUNELI, E., MINKU L., PETERS, F., TURHAN, B. Sharing data

and models in software engineering. Morgan Kaufmann, 2014.

MÜNCH, J., ARMBRUST, O., KOWALCZYK, M., SOTÓ, M. Software process

definition and management. Springer Science & Business Media, 2012.

