
TVTAT - A Real Time Camera Imaging Testing Tool for Smart TVs:
Preliminary Results

Carlos Alberto Hagge da
Cunha Filho

SIDIA Institute of Technology
Manaus, Amazonas, Brazil
carlos.cunha@sidia.com

Hugo Abreu Mendes
SIDIA Institute of Technology
Manaus, Amazonas, Brazil
hugo.mendes@sidia.com

Adriano Rodrigues de Paula
SIDIA Institute of Technology
Manaus, Amazonas, Brazil
adriano.paula@sidia.com

Ravi Barreto Doria Figueiredo
SIDIA Institute of Technology
Manaus, Amazonas, Brazil
ravi.figueiredo@sidia.com

Jessamine Maria de Lima
Azevedo*
IAV do Brasil

São Paulo, São Paulo, Brazil
jessamine.azevedo@sidia.com

ABSTRACT
Test automation tools that can accurately control a smart TV device
are rare to be found. The difficulty of creating a system that is able
to control such a device generates specific needs. In addition, the
Brazilian digital television system supports DTVPlay, a middleware
that provides the ability to broadcast interactive applications writ-
ten in HTML5, NCL and Lua, that must be fully implemented on
at least 90% of televisions manufactured in Brazil. Thus, there is
a standard to be followed and a set of tests that need to be per-
formed with each new middleware release. This work presents an
automation tool called TV Test Automation Tool (TVTAT), that per-
forms non-invasive tests on smart TVs, mainly but not restricted to
DTVPlay tests. TVTAT uses real-time computer vision techniques
such as optical character recognition, image pattern matching and
color verification to assert that the middleware’s implementation is
according to the published specification. The results of some test
scenarios are presented, demonstrating that there are trends that
can be found either in application performance situations or in tests
of availability of transmitted applications that depend on DTVPlay.

KEYWORDS
Testing Tools, Software Testing, Smart TV Testing, DTVPlay, Digital
Television

1 INTRODUCTION
Smart TVs and their ecosystem are becoming increasingly more
complex, this fact and the demands for quality in tech products
means that assuring this quality through testing is becoming a more
difficult. Testing smart TV products, its features, native applica-
tions, and its use as a platform for third-party applications presents
distinguished challenges to be overcome by an automated test tool,
however it is an indispensable part of its development. When field
tests are not correctly conducted, the final user’s experience may
be negative, in addition to it, fixes for issues found on software
and hardware already in production are much more expensive to
deploy.

*Former employee that can be contated through the email jes-
samine.azevedo@gmail.com.

In a test environment, to ensure the precise measurement and
identification of a process or service event, one has a few options:;

• Create an externally visible code checkpoint, e.g. a log event
written to a serial port in the smart TV’s internal software
routines;

• Observe an event displayed on the smart TV display.
Today, both methods of measurement are used to perform evalu-

ations during a test. However, there are still challenges related to
the second method. The observation of a given visual event could
be done in two ways:

• Human verification;
• Automated verification using image processing or computer
vision techniques.

Automatic testing systems can assist testers so they perform
fewer repetitive tasks, freeing them time to focus onmore analytical
activities. Those tools rely on computer vision to mimic/improve
human visual analysis of events displayed by the system under
test. Some automatic testing systems were already a known and
useful solution for non-smart TVs [18, 21]. With the release of
new, more complex operating systems for smart TVs and their
increasing number of embedded applications from third parties,
the automation of this type of system test is an area of growing
importance [2, 5, 9, 11, 19].

The TVTAT automates the testing of smart TV in order to ensure
their quality, functionality and performance. Figure 1 presents a
comparison of a hypothetical test case tested manually and with
TVTAT. The Test Case Data is responsible to generate a set of the
instructions to simulate interactions with the TV through infrared
blaster commands or power cords turning off. TVTAT is responsi-
ble to execute those instructions and verify if they were executed
correctly using computer-vision techniques.

In this work, two experimental applications of the tool are pre-
sented. The first application generates a set of results when testing
the TizenOS implementation of the Integrated Services Digital
Broadcasting (ISDB-Tb) used by the Brazilian Digital Television
System (SBTVD). It provides a middleware for interactivity features
named DTVPlay, previously known as Ginga [6, 15], focusing on
the features used to implement Nested Context Language (NCL)
and HyperText Markup Language Version 5 (HTML5) applications.

https://orcid.org/1234-5678-9012
https://orcid.org/1234-5678-9012


CBSoft, September 30th to October 04th, 2024, Curitiba,PR Cunha Filho et al.

Figure 1: Overview of the proposed tool. In (A), the manual
test loop of a hypothetical test case being performed by a
tester is shown. In (B), the testing process is automated using
TVTAT and the repetitive test loop of commands and asser-
tions is handled by TVTAT using hardware devices.

The second application is a benchmark among different TV models
to measure performance of content availability in a video stream-
ing app. The goal of this work is to automate the tests that are
made manually and guarantee the robustness and performance,
diminishing the time of the realization of the tests.

The remaining of this paper is organized as follows: Section 2
summarizes the related works in the literature about automated
tests in smart TV. Section 3 gives a brief Introduction on DTV-
Play. Section 4 explains the materials and methods, the algorithms
used by the tool and how a tester can create test scripts that can
be executed by the tool. In Section 5, experiments and results on
benchmarks, the data collected by the tool when executing a DTV-
Play test suite and performance tests of a smart TV application
are presented and analysed. Finaly, the conclusion is presented in
Section 6.

2 RELATEDWORKS
Yeh presents in [28] a tool called Sikuli, which uses a visual ap-
proach to automate graphical user interfaces using computer vision
methods on screenshots. It provides a visual scripting Application
Programming Interface (API) for automating Graphical User In-
terface (GUI) interactions, using patterns on the screen to direct
mouse and keyboard events. Some scripts are presented on the
work, that automate some suitable tasks, such as map navigation
and bus tracking.

In [10] there is a focus on automating the generation of test cases
for web applications, based on a Markov reward process with the
reward being modeled by a function dependent on the number of
asserts failed, code failure and timeout. The experiment shows a
significant improvement on the defect detection capability of test
cases generated through Markov reward process. It also presents
an automated framework to test the smart TV apps.

In [1] it is shown that there is an intrinsic challenge in auto-
matic testing of smart TV software with open problems related to
algorithms for test case generation. It shows that one of the most
crucial problem to be solved is the test generation strategy, and
presents an automated framework to test the smart TV apps. It also
presents an algorithm called EvoCreeper that detects all necessary
view needed in the model for test generation.

Maia et al [20] presents a methodology for automatically test-
ing the module Ginga CC Webservices, using DTV receivers that
include the DTVPlay middleware. Maia shows an improvement by
a factor of three, e.g. from 395 minutes using a manual approach to
131 minutes using an automated approach.

The approach used in TVTAT distinguishes itself from the state
of the art by providing a unique set of features: support for any
device that has a display and an IR receiver, and assertions that
are non-invasive and real-time. This set of features enables it to
better simulate the way the end user interacts with the device.
The methodology presented in [20] is the one that most closely
resembles the one used by TVTAT, however a major difference is
the camera usage. In [20], the camera’s main and only duty is to
capture image evidences, but assertions are done using the images.

3 DTVPLAY
Ginga is an interoperability layer of the Brazilian digital TV system
capable of decoding interactive applications sent by broadcasters.
Interactive applications allow TV users to interoperate with the
digital TV context. DTVPlay is the new generation of Ginga that
integrates the broadcaster with internet services creating a Hybrid
TV concept.

The DTVPlay architecture is composed of multiple subsystems
that decode broadcaster apps at Digital Television (DTV) receiver,
control app life cycle, perform media playback and monitor broad-
cast events. Among the supported DTVPlay applications are NCL,
Lua, HTML5, etc.

DTVPlay’s specifications are defined by several technical stan-
dards published by the Brazilian Association of Technical Standards
(ABNT), the list can be found in [14] and is composed of the Ginga
Common Core (Ginga-CC) subsystem, supporting NCL and HTML5
applications [24]. These specifications form the basis of one the test
suites presented in this work.

DTVPlay NCL features are based on the principle of closed loop
information that allows the user, or the terminal, to send infor-
mation back to the broadcaster via Transmission Control Protocol
(TCP) [8]. Therefore, Testing DTVPlay is a necessity to assert that
all features work as expected and are ready for the broadcasters to
make applications based on this system available [3, 27]. Recent
works demonstrate the challenges around middleware testing, as
the lack of regulation about its implementation can lead to stan-
dardization issues [12].



TVTAT - A Real Time Camera Imaging Testing Tool for Smart TVs: Preliminary Results CBSoft, September 30th to October 04th, 2024, Curitiba,PR

4 MATERIALS AND METHODS

Figure 2: Flow of data between the tool’s modules during the
execution of an assertion defined in test script.

The system’s architecture and its flow of information are shown
in Figure 2, separated into three main modules: (a) script interpreter;
(b) image processing and verification; and (c) hardware controller.
The script interpreter controls the execution process, by reading
the test case scripts, executing the commands and assertions in
them. Verification tasks are delegated to the image processing and
verification module, that uses the images collected by the camera’s
video stream to assert that the state of the Device under Test (DuT) is
the one expected by the test case. The hardware controller module is
tasked with sending inputs to the DuT, simulating user interactions
defined by the test case.

In Figure 3, the connections of the TVTAT with front-end, back-
end and controlled devices are shown. The web front-end consist
of a page whose main role is to make the live video being recorded
by the tool to be more accessible to multiple remote users while
the devices are in the testing process. The HTML5 page with static
components is served by an HTTP server, that contains dynamic
components rendered and made interactive by JavaScript compo-
nents. The back-end is responsible for starting the Flask (HTTP)
server and the JavaScript application that reads the local FFmpeg
video stream, encodes it to MPEG-2 and pushes the encoded video
data to the client using a websocket.

The desktop GUI is based on Tkinter, the GUI framework from
Python’s standard library, and is the main GUI used by the testers.
Their features include a built-in text editor for writing automation
scripts, camera configuration screens, homography settings, man-
ual testing and management of the automated test case execution
sequence.

Still on the back-end, there is the portion of the TVTAT, in which
frame preprocessing and frame verification for test case events are
carried out. The back-end is also responsible for recording the test
case video using FFmpeg, which can be used for verifications after
those performed automatically. In addition, TVTAT exposes an API
that can be used to control Transport Stream files that are trans-
mitted by a modulator device, using the command line program

Figure 3: Flow of data between the tool, controlled devices
and front-ends

DtPlay [4]. Also, the API allows the use of the Arduino device to
control TV navigation through infrared commands, capture logs
and control TV via serial interface.

4.1 Test case scripting
Test tools can be classified as scripted or scriptless [7], the first
reads a set of already predefined instructions created either by the
tool developers or a test case creator. Scriptless test tools try to
navigate through the functionalities of the system under test using
some Action Selection Mechanism (ASM) [7].

In TVTAT, the test case scenarios are already pregenerated, and
their behavior is well-defined by the DTVPlay specification. For
storing the execution sequence of the sets of test cases that compose
a scenario, TVTAT uses a file format based on JavaScript Object
Notation (JSON) format. These files are created and edited by the
user through TVTAT’s GUI.

The test scripts can be written in two languages: a TVTAT
domain-specific language, called TV Test Automation Tool Script
(TVTATScript), or Python 3. TVTATScript files are parsed and inter-
preted by the TVTAT application, while the Python scripts call the
application’s classes and procedures directly. The diagram shown
in Figure 4 describes some steps executed by the script interpreter
in an example test case:
(A) The expected user input to the TV is read from the script

and sent using external hardware;
(B) an expected response is read from the script, in this case a

QR code with a specific value should be displayed at some
position on the screen. The tool then verifies this in real time,
reading the camera’s video stream;

(C) the expected and actual result are stored and afterwards
written to a test report that is visible to the user.

Using the test scripts, the tester can control the TV through
an infrared blaster that emulates a user’s remote control, and tog-
gle the TV’s power supply by sending commands to an Arduino
electrical relay connected to the TV’s power line. Additionally, the
user can create assertions using verification methods that act upon
the frames captured by the connected camera, collect evidence as
video recordings and screenshots, call other TVTAT scripts, and
implement basic logic using conditionals and counter statements.



CBSoft, September 30th to October 04th, 2024, Curitiba,PR Cunha Filho et al.

Figure 4: Overview of interactions between the DuT and test
script commands being executed by the test tool, where each
of the steps is sequential in time.

Two examples of test case scripts are shown below in the form of
pseudocode. In Pseudocode 1, the test involves reading a QR code
that marks the start of the test case, indicated in line 5 of the script.
If the QR code is read correctly, line 7, it performs color verification,
line 8. Otherwise, it performs a screen capture, line 10. Then, the
expected result is printed and the artifacts are saved.

Pseudocode 1: Example TVTATScript language with QR code
reader and color verification

1 PRINT(" Test_Example_1 ")

2
3 CALL_SCRIPT ()

4
5 QR_CODE_RESULT = QRCODE_READER(qr code location)

6
7 IF QR_CODE_RESULT is TRUE:

8 COLOR_VERIFY(color hex code; image slice location)

9 ELSE:

10 SCREEN_SHOT ()

11
12 SECONDS_SLEEP (1)

13
14 PRINT (""" Expected Result: The rectangle with "blue"

color and with "fill" mode must be displayed on left

and top of the screen .""")

In the second script represented by the Pseudocode 2, the process
is analogous to the first, but instead of a color verification, it expects
the detection of an object dynamically generated by the test and
rendered by DTVPlay on the TV’s screen, the tests consists in trying
getting text content with Optical Character Recognition (OCR), line
7, then, a template match is executed, line 8.

Pseudocode 2: Example TVTAT language with OCR and tem-
plate match

1 PRINT(" Test_Example_2 ")

2 CALL_SCRIPT ()

3
4 QR_CODE_RESULT = QRCODE_READER(qr code location)

5
6 IF QR_CODE_RESULT is TRUE:

7 OCR_RUN(expected string;image slice to be read)

8 TEMPLATE_MATCH(expected picture sample;image portion

to be read)

9 ELSE:

10 SCREEN_SHOT ()

11
12 SECONDS_SLEEP (1)

13
14 PRINT (""" Expected Result: The media must have one

rectangle and two texts. The rectangle must be

displayed on next right and next bottom of the

screen with "black" border. It must contain two

texts: the horizontal text must be displayed on next

right and next top of the screen. The vertical text

must be displayed on next left and next bottom of

the screen .""")

4.2 Image processing
TVTAT makes use of different image processing techniques to
improve its assertion capability. Figure 5 demonstrates the frame
flux for user visualization and processing for tests verification. The
tool implements different types of verification methods, the main
ones being: QR code reader, template matching, color verification
and OCR, that defines which frame processing algorithm will be
used for validation. The QR code assertion command uses the QR
code detection method from OpenCV, the picture command uses
the OpenCV template match method, following this logic, for color
verification and optical character recognition, the Python colormath
library and Tesseract OCR were used, respectively.

The main preprocessing done to the captured video frames is
homography and perspective transformation, to enable flexibility in
the camera positions and angles used in the test bed setup [16]. To
set up the homography, the tester can use a graphical user interface
window. There, the correct camera can be selected on a menu and
the homography coordinates can be set by dragging the edges of
the homography polygon to match the edges of the TV display that
is shown in a live video stream from the selected camera. Finally,
the user will save the configuration by clicking on the save button.
The result is that the processed frames contain only the TV image
as a rectangle, with the background and perspective removed.

The homography plus the perspective correction runs for every
frame, the user is capable of checking the raw and post homography
videos to check whether the quality is sufficient before starting
recording the test cases. Test cases written from multiple camera
angles can be executed, reused and mixed due to this feature.

Most verification methods also crop a region of interest from the
frame before processing to reduce the required processing require-
ments. This region is user-defined during the writing of the test
case script.

4.2.1 Optical Character Recognition. The OCR method used in
TVTAT is provided by the pytesseract package, a wrapper for the
Tesseract-OCR Engine [25]. By default, Tesseract is set to use Brazil-
ian Portuguese and English dictionaries for detection, but additional



TVTAT - A Real Time Camera Imaging Testing Tool for Smart TVs: Preliminary Results CBSoft, September 30th to October 04th, 2024, Curitiba,PR

Figure 5: Image processing overview

languages can be installed. The string capture on the images by
the OCR is triggered for specific frames, when is expected to find
specific text on frames.

4.2.2 Template match. Asserts that a rectangular area captured by
the tester is similar to the defined area in the frames of the captured
video, in a given location. Before the template match function is
executed, the passed frame region is converted from the default
BGR (blue, green, red) color format to grayscale. A user-defined
tolerance parameter is also used to adjust the similarity required
between the expected and actual samples to pass the assertion. The
template match method used is from the Python OpenCV library,
with the normalized correlation coefficient operation [16].

4.2.3 Color Verification. Color assertions are made using color
comparisons between the captured pixels and an RGB value de-
fined in the test case script, with an additional tolerance value.
The color comparison uses the CIE 2000 color difference formula,
that returns a numeric value corresponding to the difference be-
tween the two given colors. Its implementation is provided by the
colormath package [26], that attempts to account for differences
in human color perception. The dominant colors from cropped
from ROI images are calculated using the Kmeans method with the
centers initialized in random positions. The Kmeans algorithm is
performed to get clusters of colors, with the centroid of each cluster
being the most relevant colors for that image [16].

4.3 DTVPlay Test Suite Metrics
The manual execution of the test cases using DTVPlay test suite
will be compared to the proposed tool. A subset of the test suite
will be manually executed, while the automated test suite will run
completely. Time efficiency of both methods will be compared.

Identifying the test cases that are flaky [22] is crucial for the
tester and the development team, because failed tests scenarios

can lead to unwanted and unnecessary troubleshooting work. To
help identify types of tests cases automated by the TVTAT that
have unpredictable behavior, the Recursive Feature Elimination
(RFE) algorithm was used with Gradient Boosting Classifier (GBC)
[13, 17].

This algorithm tests a classification model with each of the fea-
tures separately and then selects the features that lead to a more
accurate model. The parameters chosen as inputs to the RFE were:
the feature tested by the test case, the verification type, the execu-
tion time and whether the assertion passed or not, in other words,
how flaky the test case is. The output of the algorithm is subjected
to an ordinal ranking system based on how correlated each feature
is with the success or failure of the test cases, a low ranking is
associated with uncorrelated test case behavior.

To make this evaluation, two experiments were made, both with
a loop of 30 evaluations, wherein executed with the RFE and GBC,
the parameters of the GBC were set to randomly vary as follows
[23]:

• learning rate - Any random float number from 0 to 0.1. The
contribution of each tree decreases as learning rate increases.
Between learning rate and number of estimators, there is a
trade-off. Values must fall between the [0.0,∞] range.

• subsample - Any random float number bellow than 1.0. The
percentage of samples that will be utilized to suit each base
learner individually. Stochastic Gradient Boosting is the re-
sult if the value is less than 1.0. number of estimators is
a parameter that is affected by subsample. A reduction in
variance and an increase in bias result from selecting a sub-
sample size of 1.0. Values must fall within the [(0.0, 1.0]
range.

• number of estimators - Any random item number from 10 to
300. The quantity of boosting steps to take. A large number



CBSoft, September 30th to October 04th, 2024, Curitiba,PR Cunha Filho et al.

typically yields better performance because gradient boost-
ing is fairly resistant to over-fitting. Values must fall within
the [1,∞] range.

4.4 Application Benchmarking Approach
To validate the usefulness of TVTAT when interacting with het-
erogeneous devices, the same smart TV application was tested in
different models and brands of smart TV devices. The application
has similar GUI in all devices. TVTAT interacts in the same way
as an end user, by using the basic input and outputs of the device.
These are the display for output and the IR receiver for input. This
enables TVTAT to test different devices without modifications to
the test script.

This benchmarking provides data about the application’s perfor-
mance among environments. This enables the testers of the appli-
cation to identify performance differences and trends of the tested
application in different devices. To analyse these trends, simple
linear regression is performed on the resulting data points.

5 EXPERIMENTS AND RESULTS
5.1 Testbed Setup
The Hardware used to perform the experiments is summarized
below:

• High Definition Webcam connected at the host desktop;
• USB-Serial converter;
• Infrared (IR) sender device driven by microcontroller;
• Microcontroller to drive relay module;
• Transport Stream Modulator.

The TV is the device tested by TVTAT, and the Windows desk-
top is where TVTAT is installed and executed. The interactions
between the TVTAT service and the TV happen through periph-
eral devices attached to the desktop: the IR sender, power relay,
modulator and serial connection. On its usual configuration, the IR
sender microcontroller and power relay are both Arduino modules.
All verification procedures are performed using image processing,
using the connected webcam as the source of frames.

5.2 DTVPlay Manual Test Suite
To establish a baseline to be compared to the results of the auto-
mated tests, a set of manual tests was done. A team of 3 testers was
assembled, and a set of test cases was selected. This set was com-
posed of 20 randomly selected test cases for each NCL functional
area in Table 1, for a total 0f 220 test cases.

The testers operated the TV and made visual assertions as speci-
fied by the test scripts. The time taken for each test was recorded.
In this manual test experiment, each test case took an average of
100 seconds to be completed.

5.3 DTVPlay Automated Test Suite
In this experiment, the tool is used to test a set of features offered
by DTVPlay. The connected modulator device is used to transmit a
digital television signal to the TV over a coaxial cable. These signal
streams are stored in MPEG Transport Stream (TS) files inside the
Windows file system, where each TS file corresponds to a DTVPlay
test case. Embedded in these TS files are the test NCL scripts that

Table 1: NCL functional areas tested andnumber of assertions

Functional Area Assert. Functional Area Assert.
Component 2243 Presentation Control 157
Presentation 1208 Linking 130
Interface 1159 Animation 102
Connectors 572 Transition 80
Layout 341 Structure 60
Reuse 256 — —

should trigger behaviors visible in the TV’s display, drawn over the
digital TV transmission by DTVPlay.

The testing of the features offered by NCL is split into 11 sets
of test cases, where each evaluates one of the functional areas of
NCL, as shown in Table 1. Additionally, some functional areas are
currently not tested by the tool, these areas are Components Con-
text, Persistent, Transitions Effects, Settings and Canvas. Assertions
are classified based on the type of verification used, which can be
Screenshot, QR Code, Template Match, Color Verify, or OCR.

TVTAT generates a report file for each test cycle, containing
actual and expected results, execution time and the success status
of the test, which may be unsuccessful due to failures or deficien-
cies of the tool and environment, or a DTVPlay implementation
problem for this test case. The set of results assessed by this work
corresponds to a total of 3049 executed tests cases. Each test case
has a varying number of assertions, for a total of 7669. Of this total,
6308 assertions are classified by the functional area they test, ac-
cording to Table 1. An additional 1361 assertions are not classified.
For this result the test suite was executed three times: on the first
execution, all of its test case were executed. On the second cycle
only the failing test cases from the first cycle were executed again.
So, the third cycle only the failing test cases from the second cycle
were executed again.

5.3.1 Result Analysis. The boxplots of the features tested by the
test suite were generated and are displayed on Figure 6. Those
plots display the dynamic of each feature on the overall test case
execution. It is visible that there are notable differences of execution
time between successful and failed test cases, and the tendency that
failed test cases almost certainly will present a longer execution
time than successful test cases. This is due to the way the tool
works, it generates failures when a timeout is reached without the
expected event being found, but generates successes at the moment
the event is found, skipping the timeout. For some cases, it can
be seen that the samples correspond only to outliers, meanwhile
other cases shows that there a tiny number of samples for compute
the boxplot, that is the case for the Transition and Reuse function
areas.

The experiment differs on the presence of the execution time as
input for the RFE to process. The result is shown in Figure 7. The
bar plots use the mean ranking for each feature with an error bar
delimiting the 95% confidence interval for each rank. The result of
the first Figure 7a and second Figure 7b demonstrate how the influ-
ence of execution time changes the perception of most important
feature for classification, the Reuse functional area is shifted to the
first place when execution time is not taken into account by the



TVTAT - A Real Time Camera Imaging Testing Tool for Smart TVs: Preliminary Results CBSoft, September 30th to October 04th, 2024, Curitiba,PR

Figure 6: Boxplot of first set features based on the result and execution time: Structure, Layout, Component and Interface;
Presentation Specification, Linking, Connectors and Presentation Control; Reuse, Animation and Transition.

GBC. The other features have an error bar varying from 1 to 3 in
ranking.

5.4 Application Performance Benchmarks
In this experiment, the tool was deployed to execute benchmark
performance tests on different TV models. In this benchmark, the
performance of a generic streaming application installed on all
the TVs was measured. The common procedure consisted of defin-
ing start and finish points, measuring the time at each point and
computing the time difference between the points, resulting in
the execution time for the test case scenario. Based on the com-
mon procedure, two test case scenarios were defined. These two
scenarios collect four different time measurements, 𝑡1, 𝑡2, 𝑡3, and
𝑡4. Diagrams of the steps in each scenario are shown in Figure 8

and Figure 9, and their executions are described in the following
paragraphs.

5.4.1 Content Load Tests. In the content load scenario, tool mea-
sures the time between when the user sees the application’s home
screen, START, and when any video content starts being displayed,
END. There are two variations for this scenario: loading a video
content 𝑡1, and loading live-streamed content 𝑡2.

The steps shown in the block diagram in Figure 8 are enumerated
and detailed below:

(1) the application is at the home screen, the test tool records
the time;

(2) IR commands are sent to navigate the home screen and open
a video or a live stream;



CBSoft, September 30th to October 04th, 2024, Curitiba,PR Cunha Filho et al.

(a) without execution time on the experiment.

(b) with execution time on the experiment.

Figure 7: Mean ranking of the features using RFE.

Figure 8: Block diagram of the content load application per-
formance benchmark scenario.

(3) the test tool waits for the first chunk of the stream to load
and be displayed, then records the time;

(4) back to 1.

5.4.2 Cold Boot Tests. In the cold boot scenario, the TV starts
in a powered off state, with the relay where its power supply is
connected toggled off. When the test tool sends the command to
toggle on the relay, the first time measurement, START, is taken.
The TV boots up due to the toggling of its power, while the test tool
waits for a valid template match of the TV home screen. When the
home screen is found, it navigates to the application and launches
it, waiting again for a successful template match against a sample
of the application home screen. When the application home screen
is found. The second time measurement,MIDDLE, is made. The
tool navigates to a video content, opens it and waits for the content
to start being loaded and displayed on the screen. Then, it measures
the time again, END. From this scenario, two different times are
derived: the time between START andMIDDLE, measuring the
time 𝑡3 between the TV being powered on and the application home
screen being displayed, and the time between START and END,
measuring the time 𝑡4 between the TV being powered on and a
video content inside the application being displayed.

Figure 9: Block diagram of the cold boot application perfor-
mance benchmark scenario.

The steps shown in the block diagram in Figure 9 are enumerated
and detailed below:

(1) the TV has its power supply turned off;
(2) the power supply is turned on by toggling a relay, the test

tool records the time;
(3) the test tool waits for the TV home screen to load;
(4) IR commands are sent to navigate the home screen and open

the application;
(5) the test tool waits for the application’s home screen to load,

then records the time;
(6) the test tool navigates to open a video content;
(7) the test tool waits for the first chunk of the video to load and

be displayed, then records the time;
(8) back to 1.

5.4.3 Result Analysis. All test scenario variations ran in a loop,
31 repetitions were performed for each one of them. Figure 10
shows the performance trends in the loading times for all scenarios.
The confidence intervals, and error bar are shown in the plots for
every experiment. This graph creates an average every 5 samples,



TVTAT - A Real Time Camera Imaging Testing Tool for Smart TVs: Preliminary Results CBSoft, September 30th to October 04th, 2024, Curitiba,PR

generates an error bar, and uses these sample averages as stakes
that summarize the experiment up to that point.

Figure 10a and Figure 10b present the measured times for the
video and live stream load test cases. In Figure 10a, certain models
tend to lose performance over time, such as models A, E and D in
the static content test, and only model D in the case of live content.
One of the models has a tendency to improve performance, model
C in Figure 10a. In the remaining cases, the models tend to have
stable content availability times.

Figure 10d and Figure 10c present the measured times for the cold
boot performance test cases. It is possible to see that certain models
are considerably faster than others, and no trend is noticeable as
the experiment continued.

6 CONCLUSION
In this work a test automation tool called TVTAT is presented, that
provides tools and graphical interfaces that assist in creating smart
TV test cases and organizing them into scenarios consisting of test
case sequences. Its test script runner enables offloading the massive
work of testing all aspects of DTVPlay with the automation tool.

From the obtained results, and the methodology presented, it
is possible to identify the intrinsic characteristics and challenges
present in smart TV testing using real-time image validation with
cameras. The tests examined in this work include DTVPlay middle-
ware and streaming applications. TVTAT speeds up the process of
these tests, e.g., for a test with the manual execution time of 100
seconds, it is reduced to 86.23 seconds, with no human interven-
tion, freeing many man-hours of repetitive tasks. The fact that the
execution time of a test is correlated with its failure rate means that
the real-time capture process could have a more accurate reactivity
during tests in order to detect more quickly that a test scenario is
failing, therefore opening up the possibility for future performance
improvements.

The use of TVTAT smart TV automation is very promising, the
tool avoids invasive control of the TV and is able to perform the ex-
act same test on multiple smart TV models. Future work is expected
to add tests for the HTML5 feature of DTVPlay, optimize the image
preprocessing to have a faster and more efficient execution of each
type of command, and improve the performance and stability of
TVTAT.

7 ACKNOWLEDGEMENT
This work is the result of a PD&I project Autotest Contex Learn-
ing, realized by Sidia Institute of Science and Technology with
partnership with Samsung Eletrônica da Amazônia Ltda, using the
funding’s of the federal law nº 8.387/1991, its dissemination and
advertising being in accordance with the provisions of article 39 of
Decree No. 10.521/2020.

REFERENCES
[1] Bestoun S. Ahmed and Miroslav Bures. 2019. Testing of smart TV applications:

Key ingredients, challenges and proposed solutions. In Proceedings of the Future
Technologies Conference (FTC) 2018: Volume 1. Springer, 241–256.

[2] Bestoun S. Ahmed, Angelo Gargantini, and Miroslav Bures. 2020. An Automated
Testing Framework For Smart TV apps Based on Model Separation. In 2020 IEEE
International Conference on Software Testing, Verification and ValidationWorkshops
(ICSTW). IEEE, 62–73.

[3] Gabriella Alves, Rennan Barbosa, Raoni Kulesza, and Guido L.S. Filho. 2015. A
Software Testing Process for Ginga Products. In Applications and Usability of
Interactive TV: Third Iberoamerican Conference, jAUTI 2014, and Third Workshop
on Interactive Digital TV, Held as Part of Webmedia 2014, João Pessoa, PB, Brazil,
November 18-21, 2014. Revised Selected Papers 3. Springer, 61–73.

[4] Gleb Avdeyenko and Teodor Narytnik. 2021. Hardware and Software Complex for
Digital Television Signals Generation and Research. In 2021 IEEE 8th International
Conference on Problems of Infocommunications, Science and Technology (PIC S&T).
IEEE, 7–12.

[5] Mohammad Yusaf Azimi, Celal Cagin Elgun, Atil Firat, Ferhat Erata, and Cemal
Yilmaz. 2023. AdapTV: A Model-Based Test Adaptation Approach for End-to-End
User Interface Testing of Smart TVs. IEEE Access 11 (2023), 32095–32118.

[6] Gabriel Baum and Luiz Fernando G. Soares. 2012. Ginga middleware and digital
TV in Latin America. IT Professional 14, 4 (2012), 59–61.

[7] Axel Bons, Beatriz Marín, Pekka Aho, and Tanja E.J. Vos. 2023. Scripted and
scriptless GUI testing for web applications: An industrial case. Information and
Software Technology 158 (2023), 107172.

[8] Rodrigo Braga, Volnei Klehm, Lauro Gama, Michael Mello, Taynara Paiva, Dina
Nogueira, Ruddá Beltrão, Addison Lima, Leonardo Santana, Lois Nascimento,
et al. 2019. NuGingaJS: a full portable ITU-T H. 761 Ginga middleware for DTV
and IPTV. In Proceedings of the 25th Brazillian Symposium on Multimedia and the
Web. 257–264.

[9] Miroslav Bures, MiroslavMacik, Bestoun S Ahmed, Vaclav Rechtberger, and Pavel
Slavik. 2020. Testing the usability and accessibility of smart tv applications using
an automated model-based approach. IEEE transactions on consumer electronics
66, 2 (2020), 134–143.

[10] Jing Cao, Xiaoqiang Liu, Hui Guo, Lizhi Cai, and Yun Hu. 2021. Test case genera-
tion for web application based on markov reward process. In Journal of Physics:
Conference Series, Vol. 1792. IOP Publishing, 012039.

[11] Khasim Vali Dudekula, Hussain Syed, Mohamed Iqbal Mahaboob Basha, Sud-
hakar Ilango Swamykan, Purna Prakash Kasaraneni, Yellapragada Venkata Pa-
van Kumar, Aymen Flah, and Ahmad Taher Azar. 2023. Convolutional Neural
Network-Based Personalized Program Recommendation System for Smart Tele-
vision Users. Sustainability 15, 3 (2023), 2206.

[12] Bruno Farias, Ivo Machado, Eddie B de Lima Filho, Cláudio Pinheiro, Petrina
Kimura, Leonardo Cordeiro, and Daniel Xavier. 2022. A Methodology for Emulat-
ing, Developing, and Testing the Middleware DTV Play in Personal Computers.
In 2022 IEEE International Conference on Consumer Electronics (ICCE). IEEE, 1–6.

[13] Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting
machine. Annals of statistics (2001), 1189–1232.

[14] Fórum SBTVD [n. d.]. Normas Técnicas Sistema Brasileiro de TV Digital Ter-
restre. https://forumsbtvd.org.br/legislacao-e-normas-tecnicas/normas-tecnicas-
da-tv-digital/portugues/. Accessed: 2023-05-25.

[15] Ginga website [n. d.]. Ginga Kernel Description. http://ginga.org.br/en.html.
Accessed: 2023-05-25.

[16] Itseez. 2015. Open Source Computer Vision Library. https://github.com/itseez/
opencv.

[17] Hyelynn Jeon and Sejong Oh. 2020. Hybrid-recursive feature elimination for
efficient feature selection. Applied Sciences 10, 9 (2020), 3211.

[18] Mihajlo Katona, Ivan Kastelan, Vukota Pekovic, Nikola Teslic, and Tarkan Tekcan.
2011. Automatic black box testing of television systems on the final production
line. IEEE Transactions on Consumer Electronics 57, 1 (2011), 224–231.

[19] Mumtaz Khan, Shah Khusro, Iftikhar Alam, Shaukat Ali, Inayat Khan, et al. 2022.
Perspectives on the design, challenges, and evaluation of smart TV user interfaces.
Scientific Programming 2022 (2022).

[20] Orlewilson B. Maia, Andre R. da Silva Conceição, Manoel J. de Souza Júnior,
Fabrício Izumi, Eddie B. de Lima Filho, and Paulo Corrêa. 2022. A Real-Time
Analyzer for Testing DTV Play. In 2022 IEEE International Conference on Consumer
Electronics (ICCE). 01–05. https://doi.org/10.1109/ICCE53296.2022.9730583

[21] Dusica Marijan, Vladimir Zlokolica, Nikola Teslic, Vukota Pekovic, and Tarkan
Tekcan. 2010. Automatic functional TV set failure detection system. IEEE Trans-
actions on Consumer Electronics 56, 1 (2010), 125–133.

[22] Owain Parry, Gregory M. Kapfhammer, Michael Hilton, and Phil McMinn. 2021.
A Survey of Flaky Tests. ACM Trans. Softw. Eng. Methodol. 31, 1, Article 17 (oct
2021), 74 pages. https://doi.org/10.1145/3476105

[23] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the
Journal of machine Learning research 12 (2011), 2825–2830.

[24] Jônatas Rech, Vinícius Freitas, Bruno Farias, Eddie B de Lima Filho, Jeferson
Costa, Ivo Machado, Xianpan Chen, Cláudio Pinheiro, and Daniel Xavier. 2021.
A methodology for providing encrypted-content decoding in dtv play. In 2021
IEEE International Conference on Consumer Electronics (ICCE). IEEE, 1–6.

[25] Ray Smith. 2007. An overview of the Tesseract OCR engine. In Ninth international
conference on document analysis and recognition (ICDAR 2007), Vol. 2. IEEE, 629–
633.

[26] Greg Taylor. 2017. python-colormath Documentation. (2017).

https://forumsbtvd.org.br/legislacao-e-normas-tecnicas/normas-tecnicas-da-tv-digital/portugues/
https://forumsbtvd.org.br/legislacao-e-normas-tecnicas/normas-tecnicas-da-tv-digital/portugues/
http://ginga.org.br/en.html
https://github.com/itseez/opencv
https://github.com/itseez/opencv
https://doi.org/10.1109/ICCE53296.2022.9730583
https://doi.org/10.1145/3476105


CBSoft, September 30th to October 04th, 2024, Curitiba,PR Cunha Filho et al.

(a) Show App content per repetition. (b) Show App Live content per repetition.

(c) Launch App per repetition after Cold Booting with Relay.
(d) Launch App and show content per repetition after Cold Booting
with Relay.

Figure 10: Binned Scatter plot of Time Performance Metric for Generic Streaming App with confidence interval and error bar.

[27] Tiago H Trojahn, Juliano L Goncalves, Julio CB Mattos, Luciano V Agostini,
and Leomar S Rosa. 2011. Tests and performance analysis of media processing
implementations for the middleware of Brazilian Digital TV system using dif-
ferent scenarios. In 2011 Fifth FTRA International Conference on Multimedia and

Ubiquitous Engineering. IEEE, 95–100.
[28] Tom Yeh, Tsung-Hsiang Chang, and Robert C Miller. 2009. Sikuli: using GUI

screenshots for search and automation. In Proceedings of the 22nd annual ACM
symposium on User interface software and technology. 183–192.


	Abstract
	1 Introduction
	2 Related Works
	3 DTVPlay
	4 Materials and Methods
	4.1 Test case scripting
	4.2 Image processing
	4.3 DTVPlay Test Suite Metrics
	4.4 Application Benchmarking Approach

	5 Experiments and Results
	5.1 Testbed Setup
	5.2 DTVPlay Manual Test Suite
	5.3 DTVPlay Automated Test Suite
	5.4 Application Performance Benchmarks

	6 Conclusion
	7 Acknowledgement
	References

