
Exploring Tools for Flaky Test Detection, Correction, and
Mitigation: A Systematic Mapping Study

Pedro Anderson Costa Martins
Federal University of Ceará (UFC)

Quixadá, Ceará, Brazil
pedroanderson10@gmail.com

Victor Anthony Alves
Federal University of Ceará (UFC)

Quixadá, Ceará, Brazil
victorpa@alu.ufc.br

Iraneide Lima
Federal University of Ceará (UFC)

Quixadá, Ceará, Brazil
IraneideLima

Carla Bezerra
Federal University of Ceará (UFC)

Quixadá, Ceará, Brazil
carlailane@ufc.br

Ivan Machado
Federal University of Bahia (UFBA)

Salvador, Bahia, Brazil
ivan.machado@ufba.br

ABSTRACT
Flaky tests, characterized by their non-deterministic behavior, present
significant challenges in software testing. These tests exhibit uncer-
tain results, even when executed on unchanged code. In the context
of industrial projects that widely adopt continuous integration, the
impact of flaky tests becomes critical. With thousands of tests, a
single flaky test can disrupt the entire build and release process,
leading to delays in software deliveries. In our study, we conducted
a systematic mapping to investigate tools related to flaky tests.
From a pool of 37 research papers, we identified 30 tools specifi-
cally designed for detecting, mitigating, and repairing flakiness in
automated tests. Our analysis provides an overview of these tools,
highlighting their objectives, techniques, and approaches. Addition-
ally, we delve into the highest-level characteristics of these tools,
including the causes they address. Notably, approximately 46% of
the tools focus on tackling test order dependency issues, while a
substantial majority (70%) of the tools are analyzed in the context of
the Java programming language. These findings serve as valuable
insights for two key groups of stakeholders: (Software Testing Com-
munity:) Researchers and practitioners can leverage this knowledge
to enhance their understanding of flaky tests and explore effective
mitigation strategies; (Tool Developers:) The compilation of avail-
able tools offers a centralized resource for selecting appropriate
solutions based on specific needs. By addressing flakiness, we aim
to improve the reliability of automated testing, streamline develop-
ment processes, and foster confidence in software quality.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; • General and reference→ Surveys and overviews.

KEYWORDS
Flaky tests, tools, systematic mapping.

1 INTRODUCTION
The software testing process constitutes an important stage in
software development. With shorter cycles and faster and more
continuous deliveries in the agile development process, implement-
ing automated tests has become essential for providing quicker
feedback [33]. However, the reliability of this feedback may come
into question due to the history of testing with ambiguous and

uncertain results [34]. Tests with inconsistent results, commonly
referred to as flaky tests, are tests that can pass or fail when run
on the same version of the software, even without changes to the
code [34, 38].

Several studies offer insights into the significant problems caused
by flaky tests [11]. Failures in test suites due to flaky tests can oc-
cur frequently in software development, leading to issues such as
delayed product delivery or decreased reliability of automated tests
[5]. For instance, Luo et al. [31] conducted a study covering 51 open-
source projects and analyzing 201 commits. They found that flaky
tests accounted for 73 thousand out of 1.6 million (4.6%) instances
of test failure in the Google TAP system. Studying the causes and
detection strategies for flaky tests presents a significant challenge
due to their non-deterministic nature, and it has become an increas-
ingly active area of research [27]. According to Luo et al. [31], the
primary causes of flaky tests include asynchronous waiting, concur-
rency, and order-dependent tests [25]. Other causes identified over
time by [11], such as test case timeout and platform dependence,
have been recognized. Flaky tests resulting from order dependence
are often distinguished from those caused by other factors, leading
to two main categories: order-dependent and non-order-dependent
flaky tests [17].

Among the detection strategies, re-execution of tests is the most
commonly used. However, this technique can be time-consuming,
particularly with many tests. Alternative approaches have been
proposed, including identifying flaky tests based on differences in
coverage between consecutive software versions and monitoring
[5, 34]. By understanding the primary causes and detection strate-
gies for flaky tests, efforts can be directed towards identifying and
selecting tools that can efficiently and automatically detect these
issues [17, 34]. Several tools, as highlighted by Parry et al. [34]
and Gruber et al. [17], are available for the test re-execution pro-
cess or for identifying flaky tests, particularly in order-dependent
scenarios.

This work aims to identify and analyze a selection of tools de-
signed for detecting, mitigating, and correcting flaky tests, provid-
ing a comprehensive overview of their main characteristics. To
achieve this objective, we conducted a systematic mapping study
to understand better flaky test detection, mitigation, and repair
tools. Through this study, we compare these tools and delve into
the techniques and approaches they employ. By synthesizing the
findings of our study, we aim to offer professionals a framework of



SAST 2024, September 30th to October 04th, 2024, Curitiba, Brazil Sousa, et al.

flaky testing tools, facilitating the selection of the most suitable tool
for their specific needs and circumstances. This framework will
enable professionals to make informed decisions when addressing
flaky tests within their software development and testing processes.

2 BACKGROUND AND RELATEDWORK
2.1 Flaky tests
Flaky Tests behave non-deterministically, meaning they can pass or
fail when executed repeatedly on the same code under test [15]. One
of the pioneering empirical studies conducted on flaky tests by [31]
examined 201 commits in open-source projects to address flaky tests.
This investigation identified and classified several general causes of
flaky tests. Asynchronous Wait, Concurrency, and Test Order
Dependencywere identified in 125 out of the 201 inspected commits,
accounting for approximately 62% of the commits. Consequently,
these factors are considered the primary causes of flaky tests.

Flaky tests, like bugs, are recognized as issues that cannot be
entirely eliminated from software. Consequently, numerous studies
have introduced and assessed various mitigation strategies and
techniques to manage this problem [34].

Gruber and Fraser [15] highlighted several approaches proposed
to mitigate flaky tests, including: re-executing tests: Rerunning
tests that previously exhibited flakiness issues; Disabling Tests:
Temporarily disabling tests that consistently demonstrate flakiness;
Automated Test Re-execution: Automatically rerunning tests
using annotations or scripts; and Utilizing Automated Detection
Tools: Employing tools specifically designed for the automatic
detection of flaky tests.

While completely eliminating flaky tests may not be feasible,
developers employ various techniques to address their causes in
different scenarios and specific situations. Table 1 presents some of
these corrective techniques, as indicated by the study conducted
by Luo et al. [31]. These are just a few examples of the methods
employed to address flaky tests effectively. Each approach has its
advantages and limitations, and the choice of mitigation strategy
may vary depending on the specific context and requirements of
the software project.

Table 1: Techniques for correcting flaky tests across main
categories [31]

Categories Type of Correction

Async wait
Add/modify waitFor
Add/modify sleep
Reorder execution

Concurrency

Block atomic operation
Make it deterministic
Change condition
Change assertion

Test Order Dependency
Configure/change status
Remove dependency
Merge tests

2.2 Related work
In their study, Lam et al. [25] investigated the complete lifecycle of
flaky tests across six extensive Microsoft projects, shedding light on
these tests’ detrimental effects on such projects. Through an analy-
sis of the implemented solutions, the authors identified the most
prevalent category of flaky tests in the examined projects as the

Async Wait category, which encompasses tests making asynchro-
nous calls without waiting for the call’s return. Consequently, the
authors confirmed that categorizations of flaky tests proposed in
prior studies, as applied to open-source projects, are also applicable
to the proprietary Microsoft projects under study.

Parry et al. [34] examined a wide range of studies focusing on
the origins, consequences, detection, mitigation, and repair of flaky
tests. Analyzing a total of 76 studies, the authors identified 18 flaky
test tools as a partial outcome of their investigation. However,
it’s worth noting that these tools were not thoroughly analyzed
according to their specific characteristics.

Gruber and Fraser [16] engaged 335 software developers and
testers across various domains to gain insights into how developers
perceive flaky tests, their prevalence, their impact on daily routines,
and expectations from academia regarding this issue. The survey
revealed that developers consider flaky tests to be a widespread and
significant problem. Their primary concern is losing confidence
in test results rather than the computational costs associated with
rerunning unstable tests. Additionally, developers wanted plugins to
identify problematic code sections directly within their Integrated
Development Environments (IDEs). They also emphasized the need
for more training and information regarding flaky tests.

Parry et al. [36] explored developers’ experiences with flaky
tests through a multi-source approach, incorporating numerical
and thematic analyses of surveys with developers and an exami-
nation of threads from StackOverflow. The findings offer valuable
insights into various aspects of flaky tests, including their defini-
tions, significant impacts, common causes, and the actions taken
by developers to mitigate them. Furthermore, the study provides
actionable recommendations for developers and researchers to en-
hance understanding and address the issue of flaky tests within the
software industry.

Tahir et al. [44] undertook a multivocal review of the litera-
ture on flaky tests, combining insights from academic and gray
literature to offer a comprehensive understanding of the state of
practice in this domain. The research summarizes existing work,
detection methods, strategies for preventing and eliminating flaky
tests, and their impact. Furthermore, the authors identify prevailing
challenges and propose future research directions.

In summary, while several studies have explored various aspects
of flaky tests, including their definitions, impacts, and developers’
perceptions, none of the reviewed papers provided an in-depth
analysis of flaky test detection tools. Despite addressing important
facets of the issue, such as prevention, impacts, and developers’
experiences, none of the studies dedicated a specific section to
thoroughly examining the available tools for detecting flaky tests.

3 SYSTEMATIC MAPPING
This study aims to explore flaky test detection, mitigation, and
correction tools available in both the market and literature through
systematic mapping. The systematic mapping approach adopted in
this work draws inspiration from the processes outlined by Petersen
et al. [37] and Keele et al. [23]. Additionally, we employed the
backward snowballing technique as outlined by Wohlin [47]. To
achieve our objective, we have formulated the following research
questions (RQs):



Exploring Tools for Flaky Test Detection, Correction, and Mitigation: A Systematic Mapping Study SAST 2024, September 30th to October 04th, 2024, Curitiba, Brazil

RQ1: What are the objectives of flaky test tools, and what tech-
niques do they employ? This question seeks to clarify the specific
functions of each collected tool, including the flaky testing contexts
in which they operate and the techniques they utilize. Furthermore,
it aims to compare tools with similar functionalities.

RQ2: What are the main characteristics of flaky test tools, and
which detection causes do they address? This RQ aims to compile
a comprehensive list of all the tools and their key characteristics.
Additionally, it aims to identify the causes of flaky tests targeted by
each tool, providing researchers and professionals in the field with
an overview of current tools to facilitate their selection process.

3.1 Search strategy
For conducting the systematic mapping, we utilized the Parsif.al
tool.1 Initially, we conducted a pilot search in the IEEE and ACM
digital libraries. During this manual process, publications that con-
tained the terms flaky test or flaky tests in their title or abstract
were examined to identify relevant words and terms.

Following the pilot search, we identified the following keywords:
Flaky Test, Flaky Tests, Flakiness, Test Tool, and Test Code. These
keywords were used to construct a search string for the primary
search, which was applied exclusively to the title and abstract of
publications to minimize the risk of false positive results.

Title:(“flaky test” OR “flaky tests” OR “flakiness”) AND Abstract:(“flaky
test” OR “flaky tests” OR “flakiness” OR “test tool” OR “test code”)

In addition, to IEEE and ACM, we selected other digital libraries
with publications in Software Engineering and Computer Science
for the primary research. The final step in this stage involved us-
ing the defined search string to gather the publications used for
mapping. Afterward, the string was applied to five libraries: ACM2,
SpringerLink3, IEEE Xplore4, ScienceDirect5, and Scopus6.

3.2 Selection
Following the results obtained in the selection process, we applied
four additional filtering steps during the mapping execution:

• Step 1 - Removal of Duplicate Publications: Initially, we
removed all duplicate publications from the list;

• Step 2 - Application of Inclusion and Exclusion Cri-
teria: Next, we filtered further based on defined inclusion
and exclusion criteria, aiming to exclude studies irrelevant
to addressing the previously defined research questions;

• Step 3 - Reading of Filtered Articles: Afterward, each pub-
lication underwent a comprehensive assessment to ensure
its content provided relevant information for the study;

• Step 4 - Application of the Snowballing Technique: Fi-
nally, we implemented the Backward Snowballing technique.
This involved reviewing the reference lists of collected pub-
lications, selecting papers meeting the basic inclusion and

1https://parsif.al/
2https://dl.acm.org/
3https://link.springer.com/
4https://ieeexplore.ieee.org/
5https://www.sciencedirect.com/
6https://www.scopus.com/

exclusion criteria, and identifying new publications that may
not have been initially found [22]. By the end of this stage, we
expected to reduce the number of publications, containing
only those studies contributing to the subject of the work.

Library paper selection took place from February 11 to March 26,
2023. Initially, 341 papers were identified across the five libraries.
During Step 1, 95 duplicate papers were detected and removed.
After removing duplicates, 246 papers remained for analysis in the
subsequent steps. In Step 2, we conducted amanual filtering process
to identify publications that best aligned with the objectives of the
proposed work. Inclusion and exclusion criteria were established
for this purpose, which can be viewed in detail in Table 2.

Table 2: Criteria for inclusion and exclusion

The paper proposes, mentions or uses a tool for detecting flaky tests
The abstract cites detection, mitigation or correction of the flaky testInclusion
The abstract cites some tool for detecting flaky tests
Paper outside the scope of flaky test detection
Paper of less than two pages
Paper not in English
Websites, books, pamphlets and gray literature
Full text not available online

Exclusion

Paper that do not cite flaky test detection tools

During this activity, the criteria were applied to the abstract
and body of publications. As a result, 173 papers were removed,
leaving us with 73 papers for use in the next filtering process.
During Step 3, a more detailed reading process was conducted
on the remaining 73 papers to ascertain whether they presented
relevant information. Subsequently, 44 publications were removed,
leaving 29 papers for further analysis. In Step 4, the Backward
Snowballing technique was applied to the remaining 29 papers to
uncover additional references not identified during the previous
stages. As a result of this step, eight new papers were selected,
bringing the total number of valid papers for data extraction during
the systematic mapping analysis stage to 37. The execution stage
started with 341 papers and concluded with a pool of 37 primary
studies, comprising 29 obtained from the automated search, and
another eight from the snowballing process (see Figure 1).

In Table 3, it is possible to observe the number of publications
filtered by the digital library at each step of the selection process.
Following the final filtering of studies, all 37 publications were
reviewed to gather information about flaky test detection tools.
Subsequently, data were extracted to address the research questions
defined earlier. The selected papers were mapped in Table 4.

Table 3: Filtering by digital library

Library Papers Step 1 Step 2 Step 3 Step 4
ACM Library 49 10 0 0 7
SpringerLink 151 139 1 0 0
IEEE Xplore 45 5 2 1 2
ScienceDirect 3 3 1 0 0
Scopus 93 89 69 28 28
Total 341 246 73 29 37

https://parsif.al/
https://dl.acm.org/
https://link.springer.com/
https://ieeexplore.ieee.org/
https://www.sciencedirect.com/
https://www.scopus.com/


SAST 2024, September 30th to October 04th, 2024, Curitiba, Brazil Sousa, et al.

Table 4: Final set of papers

ID Title Reference
S1 DeFlaker: Automatically Detecting Flaky Tests Bell et al. [5]
S2 FlakeFlagger: Predicting Flakiness Without Rerunning Tests Alshammari et al. [2]
S3 Shake It! Detecting Flaky Tests Caused by Concurrency with Shaker Silva et al. [43]
S4 Detecting Flaky Tests in Probabilistic and Machine Learning Applications Dutta et al. [10]
S5 Detecting Assumptions on Deterministic Implementations of Non-deterministic Specifications Shi et al. [41]
S6 Know You Neighbor: Fast Static Prediction of Test Flakiness Verdecchia et al. [45]
S7 Flakify: A Black-Box, Language Model-Based Predictor for Flaky Tests Fatima et al. [12]
S8 Peeler: Learning to Effectively Predict Flakiness without Running Tests Qin et al. [40]
S9 A Multi-factor Approach for Flaky Test Detection and Automated Root Cause Analysis Ahmad et al. [1]
S10 iDFlakies: A Framework for Detecting and Partially Classifying Flaky Tests Lam et al. [26]
S11 Practical Test Dependency Detection Gambi et al. [14]
S12 Efficient dependency detection for safe Java test acceleration Bell et al. [4]
S13 Empirically revisiting the test independence assumption Zhang et al. [49]
S14 Reliable Testing: Detecting State-Polluting Tests to Prevent Test Dependency Gyori et al. [19]
S15 Evaluating Features for Machine Learning Detection of Order- and Non-Order-Dependent Flaky Tests Parry et al. [35]
S16 Flaky Test Detection in Android via Event Order Exploration Dong et al. [9]
S17 Improving Oracle Quality by Detecting Brittle Assertions and Unused Inputs in Tests Huo and Clause [21]
S18 iPFlakies: A Framework for Detecting and Fixing Python Order-Dependent Flaky Tests Wang et al. [46]
S19 Web Test Dependency Detection Biagiola et al. [6]
S20 Evolution-Aware Detection of Order-Dependent Flaky Tests Li and Shi [29]
S21 FlakiMe: Laboratory-Controlled Test Flakiness Impact Assessment Cordy et al. [8]
S22 Unit Test Virtualization with VMVM Bell and Kaiser [3]
S23 FlakyLoc: Flakiness Localization for Reliable Test Suites in Web Applications Morán Barbón et al. [32]
S24 A Framework for Automated Test Mocking of Mobile Apps Fazzini et al. [13]
S25 Root causing flaky tests in a large-scale industrial setting Lam et al. [24]
S26 A Study on the Lifecycle of Flaky Tests Lam et al. [25]
S27 IFixFlakies: A framework for automatically fixing order-dependent flaky tests Shi et al. [42]
S28 Domain-specific fixes for flaky tests with wrong assumptions on underdetermined specifications Zhang et al. [48]
S29 FlakeRepro: Automated and Efficient Reproduction of Concurrency-Related Flaky Tests Leesatapornwongsa et al. [28]
S30 Repairing order-dependent flaky tests via test generation Li et al. [30]
S31 Shaker: A Tool for Detecting More Flaky Tests Faster Cordeiro et al. [7]
S32 NonDex: A Tool for Detecting and Debugging Wrong Assumptions on Java API Specifications Gyori et al. [18]
S33 A Large-Scale Longitudinal Study of Flaky Tests Lam et al. [27]
S34 A Survey of Flaky Tests Parry et al. [34]
S35 Root causing, detecting, and fixing flaky tests: state of the art and future roadmap Zolfaghari et al. [50]
S36 Static test flakiness prediction Pontillo [39]
S37 A Qualitative Study on the Sources, Impacts, and Mitigation Strategies of Flaky Tests Habchi et al. [20]

Figure 1: Filtering of papers during the execution stage

4 RESULTS AND DISCUSSIONS
4.1 RQ1: Objectives and techniques of flaky

testing tools
The first RQ aims to provide an overview of the tools identified in
the 37 selected primary studies. This overview covers the objectives,
techniques, approaches, and the study from which each tool was

collected. We found 30 tools with their respective articles published
between 2014 and 2022 (Table 10).

The test re-execution technique involves running the test suite
one or more times to determine whether the tests pass or fail and
to pinpoint any inconsistencies in the results. This approach repre-
sents a traditional method for identifying faulty tests. This study
found that 25 out of 30 tools employ this technique.

The next subsections will provide an overview of various tools
categorized based on their functions concerning flaky tests: de-
tection, mitigation, and repair. Certain studies highlight tools that
focus specifically on detecting flaky tests in order-dependent scenar-
ios, a significant cause of test flakiness. Consequently, these tools
will receive dedicated explanations within their own subsection.

Table 5: Flaky tests detection tools

Tool Techniques / Approach Study ID

DeFlaker Differential coverage
Re-execution Bell et al. [5] S1

FlakeFlagger Machine learning in detection Alshammari et al. [2] S2

Shaker Stressful Execution Environment
Re-execution

Silva et al. [43]
Cordeiro et al. [7]

S3
S31

FLASH Machine learning in detection
Re-execution Dutta et al. [10] S4

NonDex Nondeterministic specifications
Re-execution

Shi et al. [41]
Gyori et al. [18]

S5
S32

FLAST Machine Learning in detection Verdecchia et al. [45] S6
Flakify Applying prediction to source code Fatima et al. [12] S7
PEELER Machine learning in detection Qin et al. [40] S8
MDFlaker Differential coverage Ahmad et al. [1] S9

4.1.1 Tools and techniques to detect flaky tests. We identified nine
tools for detecting flaky tests in the primary studies we analyzed,
as indicated in Table 5. They are next summarized.



Exploring Tools for Flaky Test Detection, Correction, and Mitigation: A Systematic Mapping Study SAST 2024, September 30th to October 04th, 2024, Curitiba, Brazil

(1) DeFlaker (S1): Employs the differential coverage technique
to detect flaky tests. This method involves examining the
modified code based on the version control system. If the
test outcome changes without covering any altered code
following a new software version or commit, it flags the test
as flaky.

(2) MDFlaker (S9): Similarly to the previous one, this tool also
utilizes the differential coverage technique but with a dis-
tinguishing feature. Unlike DeFlaker, MDFlaker does not
demand re-running the tests, saving testing time and costs.

(3) FlakeFlagger (S2): It adopts a machine learning approach
for flaky test detection. It gathers dynamic and static fea-
tures, such as line coverage and source code, and leverages
these to predict tests likely to exhibit flakiness. This predic-
tion is based on similarities in behavior observed across the
collected features.

(4) PEELER (S8): It also utilizes machine learning for detection
but takes a fully static approach. It collects test failure logs
and compares them with the values involved in the test
assertion statements to identify potential flaky tests.

(5) FLAST (S6): It employs a machine learning model to classify
tests as flaky or not, relying solely on static resources. Its ob-
jective is to detect flaky tests before execution, emphasizing
proactive identification.

(6) FLASH (S4): It combines test re-execution with machine
learning. This tool executes tests multiple times with differ-
ent random inputs, resulting in varying sequences of results.
By comparing the expected values with the outcomes of
these random test executions, FLASH identifies flaky tests.

(7) NonDex (S5, S32): It employs a unique approach to de-
tection by exploiting non-deterministic implementations. It
achieves this by randomly exploring various behaviors of un-
derdetermined APIs during test execution. When a test fails
during this exploration, NonDex identifies the specific API
invocation instance responsible for the failure. For instance,
consider a scenario where the iteration order of a sorting
algorithm is underdetermined, and the test code assumes
a specific implementation-specific iteration order. NonDex
systematically explores different iteration orders, and if a
test fails during this exploration, it indicates that the code
relies on incorrect assumptions. This failure pinpointed by
NonDex highlights potential issues stemming from reliance
on implementation-specific behaviors.

(8) Flakify (S7): Offers a novel approach to predicting flaky test
cases. It uses a black box solution, analyzing only the source
code of the test cases rather than the system under test.
Moreover, Flakify does not require multiple re-executions of
test cases. This approach simplifies the detection process by
focusing solely on the test code itself.

(9) Shaker (S3, S31): This tool aims to enhance the efficiency
of test re-execution. It achieves this by introducing stress
tasks that compete for CPU or memory resources while
the test suite is re-executed. This strategy aims to increase
the likelihood of revealing flaky tests caused by asynchro-
nous waiting and concurrency issues. The rationale behind
Shaker’s approach lies in the observation that simultaneity
is a significant source of instability in tests. By introducing

stress into the testing environment, Shaker disrupts the or-
dering of events, potentially influencing test outcomes and
revealing flakiness that might otherwise remain hidden.

4.1.2 Tools and techniques to detect flaky tests in order-dependent
tests. The tools identified in Table 6 focus on detecting flaky tests
in order-dependent scenarios, where factors like shared datasets
or states can lead to test instability. This subsection outlines their
objectives, techniques, and approaches, with all tools utilizing test
re-execution as a fundamental method.

Table 6: Flaky tests detection tools in order-dependent tests

Tool Techniques / Approach Study ID

iDFlakies Repeating failed tests
Re-execution Lam et al. [26] S10

PraDet Dependency validation
Re-execution Gambi et al. [14] S11

ElectricTest Dependency validation
Re-execution Bell et al. [4] S12

DTDetector Dependency validation
Re-execution Zhang et al. [49] S13

PolDet Test pollution
Re-execution Gyori et al. [19] S14

FLAKE16 Machine Learning Applications
Re-execution Parry et al. [35] S15

FlakeScanner Repeating failed tests
Re-execution Dong et al. [9] S16

OrcalePolish Weak assertions
Re-execution Huo and Clause [21] S17

iPFlakies Repeating failed tests
Re-execution Wang et al. [46] S18

TEDD Dependency validation
Re-execution Biagiola et al. [6] S19

IncIDFlakies Repeating failed tests
Re-execution Li and Shi [29] S20

(1) OraclePolish (S17): It uses an approach focused on detect-
ing fragile assertions, which are defined as assertions that
depend on values derived from inputs that are not initially
controlled and inputs provided by the test that are not veri-
fied by an assertion. Therefore, weak assertions can create
an opportunity for order-dependent testing to occur, as they
cause a test result to depend on inputs that it does not control
but which can be previously defined by another test.

(2) PraDet (S11): It uses the same approach as the other two
tools mentioned above but combines the accuracy of DTDe-
tector and the speed of ElectricTest. It monitors the access
patterns of objects in memory between test executions to
identify instances of possible test order dependencies. In
other words, it manages to identify the tests involved in
this order dependency. Then it runs them out of order to
try to discover the dependencies that are manifest, reduc-
ing the number of test runs needed to expose the manifest
dependencies.

(3) iDFlakies (S10): It classifies tests into order-dependent
or not, according to the comparison of the results of re-
executions of failed tests in an order of tests that has been
modified from the original order. The tool re-executes the
original order of tests several times to check if the result of
any test changes. This way, if any test passes and fails on the
same code version in the same test order, it is considered a
non-order-dependent flaky test. Failed tests are re-executed
and if they fail again in the failed order and pass again in the
original order, they will be considered as an order-dependent
flaky test.



SAST 2024, September 30th to October 04th, 2024, Curitiba, Brazil Sousa, et al.

(4) iPFlakies (S18): It aims to classify and categorize order-
dependent tests by repeating failed tests in projects devel-
oped in Python, unlike iDFlakies which focuses on Java
projects. iPFlakies is categorized as a tool focused on detect-
ing flaky tests in order-dependent tests and the context of
repairing flaky tests since it is composed of the functional-
ities of the iDFlakies and iFixFlakies tools. iFixFlakies tool
will be explained in subsection 4.1.4.

(5) FlakeScanner (S16): It uses the technique of repeating failed
tests to identify concurrency flaky tests in Android appli-
cations. The technique explores possible event execution
orders in failed asynchronous tests, so each test run explores
a different event execution order. This way, the tool aims to
detect flaky tests in a few test executions.

(6) IncIDFlakies (S20): It uses a technique to detect order-
dependent flaky tests that have been newly introduced after
a code change. Built on top of iDFlakies by detecting newly
introduced order-dependent flaky tests after code changes.
However, IncIDFlakies has also considered code changes
since the last time IncIDFlakies was run, executing test orders
that belong only to the subset of tests that can become order-
dependent flaky tests after the code change.

(7) TEDD (S19): It aims to detect flaky tests by validating test
dependencies present in interface test suites. The tool detects
order-dependent tests in web applications by considering
dependencies facilitated by persistent data stored on the
server side, rather than internal dependencies such as PraDet,
which monitors the access patterns of objects in memory.

(8) FLAKE16 (S15): It presents a detection technique that uses
machine learning to categorize the flaky tests detected. The
tool installs the project in a virtual environment and cre-
ates an instance for each run of the test suite. If the tests
show inconsistent results during executions in a consistent
order, they are considered non-order-dependent flaky tests.
Otherwise, they are considered order-dependent flaky tests.

Table 7: Flaky tests mitigation tools

Tool Techniques / Approach Study ID

FlakiMe Automatic test generation
Re-execution Cordy et al. [8] S21

VmVm
Automatic test generaion
Order dependent tests
Re-execution

Bell and Kaiser [3] S22

FlakyLoc UI testing
Re-execution Morán Barbón et al. [32] S23

4.1.3 Tools and techniques to mitigate flaky tests. In addition to
detection, some tools focus on mitigating flaky tests’ costs and
negative impacts (see Table 7).

(1) VmVm (S22): It presents an approach to mitigating order-
dependent testing. It executes test cases in isolation, each
within its own process. In this way, it manages to prevent
any side-effects based on the state of each test case executed
from affecting subsequent tests, eliminating test order de-
pendencies that usually occur due to shared resources in
memory. The tool reinitializes classes containing static fields
that can facilitate side effects based on each test case’s state.

In short, the tool generates a new state for the tests at run-
time, reducing the chances of a possible flaky test occurring.

(2) FlakiMe (S21): It aims to provide developers with ways to
simulate a set of scenarios and conditions for the occurrence
of flaky tests. The tool allows exceptions to be generated
during the compilation of test cases so that it is possible to
predict whether the test in question will fail or not, helping
to predict whether the test might trigger a flaky test.

(3) FlakyLoc (S23): It aims to identify the root cause of failures
in web applications. To do this, it re-executes tests focused
on the user interface differently, based on combinatorial tests,
and analyzes the test execution using different classification
metrics. The tests are performed by changing the environ-
ment, such as CPU cores, amount of RAM, web browser and
screen resolution.

Table 8: Flaky tests repair tools

Tool Techniques / Approach Study ID

MOKA
Automatic approaches to generating
or improving repairs
Re-execution

Fazzini et al. [13] S24

RootFinder Identifying root causes to aid repair
Re-execution Lam et al. [24] S25

FaTB
Automatic approaches to generating
or improving repairs
Re-execution

Lam et al. [25] S26

iFixFlakies
Automatic approaches to generating
or improving repairs
Re-execution

Shi et al. [42] S27

DexFix
Automatic approaches to generating
or improving repairs
Re-execution

Zhang et al. [48] S28

iPFlakies
Automatic approaches to generating
or improving repairs
Re-execution

Wang et al. [46] S18

FlakeRepro Identifying root causes to aid repair
Re-execution Leesatapornwongsa et al. [28] S29

ODRepair
Automatic approaches to generating
or improving repairs
Re-execution

Li et al. [30] S30

4.1.4 Tools and techniques to repair flaky tests. Instead of using
techniques to help mitigate flaky tests, some tools have been devel-
oped that use techniques to support developers in removing flaky
tests from their project’s test suite. We identified eight tools fo-
cused on repairing flaky tests, offering techniques and approaches
to assist developers in removing flakiness from their project’s test
suite. They are listed in Table 8 and summarized next.

(1) MOKA (S24): It is a technique that provides automatic gen-
eration of test mocks in mobile applications. The tool collects
data used in test executions. Then, it generates test simula-
tions from this data, replacing the real interactions between
the application and its environment, such as the camera, mi-
crophone, and GPS. With each re-execution, the tool adds
new simulated data, helping, for example, to run the test
with new inputs, which can reduce or indicate the flaky tests
in the test suite.

(2) FaTB (S26): Aims to alleviate the negative impact of asyn-
chronous wait tests by providing automatic fixes for develop-
ers. During test re-execution, the tool identifies the method
calls in the code that are related to timeouts or waits and
then calculates how often the inconsistent test might fail.
Based on this frequency, FaTB will try to repair the test with



Exploring Tools for Flaky Test Detection, Correction, and Mitigation: A Systematic Mapping Study SAST 2024, September 30th to October 04th, 2024, Curitiba, Brazil

several different time values and then provide developers
with the minimum time they should use.

(3) DexFix (S28): Intends to automatically provide corrections
for implementation-dependen flaky tests. The tool was cre-
ated to be used with the NonDex tool, as explained earlier in
subsection 4.1.1. The input to DexFix consists of identifying
the project’s source code and receiving the test that has in-
consistencies, which NonDex previously detected. After this
process, DexFix is applied to fix the source code, and then
the test must pass when NonDex is run again.

(4) iFixFlakies (S27): It automatically indicates to developers
corrections for an order-dependent test based on the dec-
larations of other tests in the test suite. After running the
tests in isolation, they are classified according to the result
obtained, the first being tests that pass even when run in
isolation but fail when run with some other tests, and the
second being tests that fail when run in isolation but pass
when run with other tests. There is a third type of test, called
auxiliary tests, where the logic of these tests can define or
redefine the state of the environment in such a way that
order-dependent tests pass. The tool then indicates the cor-
rection to be implemented, resulting in the tests passing even
in previously failed orders.

(5) iPFlakies (S18): Considered a tool that acts in the context of
repair, it is also composed of the functionalities of iFixFlakies,
in addition to the order-dependent test detection techniques
of iDFlakies. The difference is that iPFlakies is applied to
Python projects, unlike iFixFlakies on Java projects.

(6) ODRepair (S30): Aims to repair order-dependent tests au-
tomatically, but without requiring the logic that defines or
redefines the state of the environment to be implemented.
Firstly, ODRepair identifies the polluted state of the envi-
ronment between test executions and then automatically
generates a fix that calls the methods that modify the state,
redefining the environment for order-dependent tests.

(7) RootFinder (S25): Aims to identify the possible causes of
flaky tests and then help the developer repair them. The
tool analyzes the execution logs of passed and failed tests
of the same test to suggest which method calls are possibly
responsible for the failure. The tool takes as input the name
of a method that is probably the cause of the failure and
observes the method’s behavior at runtime.

(8) FlakeRepro (S29): It also aims to help the developer repair
by identifying the root cause. FlakeRepro seeks to analyze
the logs with detailed messages about the error location and
then reproduce the test in the same way as it failed, without
relying on randomness, helping the developer to fix the error
within that scenario.

Implications of RQ.1: Our findings indicate a growing interest
and development of flaky testing tools, reflected by the significant
increase in publications, especially in 2022. The technique of re-
executing tests is predominant for the detection, mitigation and
repair of flaky tests, highlighting that most tools seek to identify
inconsistent tests that fail intermittently. These tools are mainly
focused on detecting and repairing flaky tests already present in
projects, with the aim of resolving inconsistencies that impact

current quality. Therefore, the future of test tool development needs
to integrate techniques that not only deal with flaky tests after they
occur, but also include preventive practices to reduce the incidence
of these problems from the outset.

4.2 RQ2: Characteristics and causes of flaky
testing tools

RQ2 aims to provide a catalog with the highest level characteristics
of flaky test detection, mitigation, and repair tools collected after
analyzing the primary studies. Table 10 shows the catalog with all
the collected tools and their respective characteristics. In addition
to the objectives and techniques of each flaky test detection tool
explained during RQ1, there is other pertinent information that the
work proposed here will provide to centralize the data on the tools
collected. While analyzing the tools, we organized their character-
istics into the topics of each column of Table 10, which are detailed
next.

• Tool: The names of the collected tools.
• Implementation Language: This column provides the list
of one or more programming languages in which the tool
has been or can be implemented.

• Analysis Language: This column provides the program-
ming language in which the tool was implemented and ana-
lyzed during the study.

• Framework: This column lists one ormore test development
frameworks for the tool in question.

• Context: This column provides the context in which the
tool acts, whether detection, mitigation, or repair. Detection
tools. OD was abbreviated.

• Interface: This column indicates how developers can inter-
act with the tool. The options were CLI, pipeline and plugin.

• Documentation: This column indicates whether any exter-
nal documentation about the tool is available online, be it a
guide, application repository, plugin page, etc.

• URL: This column provides one or more links to the types
of documentation for the tool if it has one.

If any column in Table 10 was not discovered during the analysis,
it will be filled with UNK, indicating that it is unknown. Out of
the 30 tools collected, 70% of them target Java implementations.
Consequently, the most used support frameworks are JUnit7 and
Maven 8 since they were specifically built to integrate with Java.
Next, the most analyzed languages were Python, with 20%, and C#,
with 6.6%. Only the FlakyLoc tool did not have information about
its acquired analysis language.

Twenty-two tools have some form of documentation available,
often linking to external URLs such as the tool’s repository. Some
tools provide users with a guide, while others do not, and primary
studies frequently serve as overviews of the tools. Among the col-
lected tools, 20 focus on detecting flaky tests, with 11 specifically
targeting order-dependent tests. In contrast, only three tools are
designed for mitigation, and eight are geared towards repair. It
is worth noting that the iPFlakies tool is categorized as both an
order-dependent test detection and repair tool.

7https://junit.org
8https://maven.apache.org

https://junit.org
https://maven.apache.org


SAST 2024, September 30th to October 04th, 2024, Curitiba, Brazil Sousa, et al.

Table 9 shows the causes of flaky tests each tool addresses. While
tools operate within specific contexts, such as detection, order-
dependent test detection, mitigation, or repair, not all tools address
a single cause. For instance, detection tools generally focus on
identifying flaky tests by recognizing patterns of inconsistencies.
However, there are exceptions, such as the Shaker tools (S3) and
NonDex (S5), which specifically tackle issues related to asynchro-
nous wait, concurrency, and implementation dependency.

Table 9: Causes of flaky tests addressed by tools

Causes Studies
Async Wait S3, S16, S26
Concurrency S3, S11, S16, S17, S22
Test Order Dependency S10, S11, S12, S13, S14, S15, S16, S17, S18, S19, S20, S22, S27, S30
External Data Dependency S23, S24
Implementation Dependency S5, S27, S28

All tools that target flaky tests in order-dependent scenarios
implicitly address Test Order Dependency, as previously discussed,
given its direct correlation with flakiness. For instance, issues arise
when tests share data or states, leading to unpredictable outcomes.
Out of the 30 tools analyzed, 14, or 46%, specifically tackle test
order dependency. Mitigation and repair tools share a common goal:
resolving flakiness by minimizing its effects, providing guidance to
developers on how to resolve it, or automatically fixing the issue.
While not every tool targets a specific cause, collectively, all causes
are addressed by at least one tool within these contexts.

Implications of RQ.2: Our findings indicate that the Java lan-
guage, with its JUnit and Maven frameworks, dominates the devel-
opment of tools for detecting, mitigating and repairing flaky tests,
reflecting greater support and maturity in the Java ecosystem. This
implies that other languages and their development communities
need to invest more in flaky testing tools to achieve the same level
of support and maturity seen in Java. Furthermore, the prevalence
of tools that deal with Test Order Dependency suggests that this
type of cause of flaky tests is a significant concern for developers,
influencing the focus of tools developed in this context.

5 DISCUSSION
The 30 flaky test detection tools extracted were categorized based
on their operational context: nine detection tools, eleven order-
dependent test detection tools, three mitigation tools, and eight
repair tools. Some tools can operate in both order-dependent test
detection and repair. However, treating flaky tests after they have
already caused problems does not proactively solve the underlying
problem. Therefore, the future of tool development needs to inte-
grate techniques that include preventive practices to avoid flaky
tests before they compromise software quality.

Upon analyzing these tools, we could observe that 83% of them
employ the re-execution technique to aid in flaky test detection,
often combined with other techniques. Re-execution emerges as
a prevalent method, constituting the most commonly used tech-
nique among the sampled tools. Additionally, 70% of the tools were
predominantly analyzed in projects utilizing Java, which indicates
greater support for detecting and repairing flaky tests in this lan-
guage. This concentration highlights a potential gap in other lan-
guages that may not have the same level of support.

Despite operating within distinct contexts — detection, order-
dependent test detection, mitigation, or repair — not all tools explic-
itly target specific causes of flakiness. For instance, many detection
tools focus on identifying flaky tests broadly without specifically
addressing underlying causes. However, it is noteworthy that 46%
of the tools specifically tackle the issue of test order dependency.
Moreover, when consideringmitigation and repair tools collectively,
all causes of flakiness are addressed by at least one tool.

Out of the 30 tools examined, 18 were referenced in the related
work by Parry et al. [34], emphasizing the ongoing development
and exploration of tools addressing flaky tests. Notably, 10 of the
12 newly identified tools were created or published after Parry et
al.’s study [34], highlighting the evolving landscape of flaky test
management tools. Furthermore, our study offers detailed insights
into these tools to assist developers in making informed decisions
during tool selection.

6 THREATS TO VALIDITY
Threats to study selection validity: Regarding threats related to study
selection, we selected studies with different strings due to the limi-
tations of some libraries, such as Science Direct. We also filtered
the article by title, abstract, and the area of Computer Science. To
mitigate these threats, we used control articles for the libraries so
that all strings used in the libraries returned control articles. To
mitigate, we also use the backward snowballing technique.

Threats to data validity: In threats related to data extraction, we
obtained a reasonable number of tools for the study. To mitigate
this threat, we are based on the systematic review of Parry et al.
[34], which also identifies flaky test detection tools in addition to
characterizing flaky tests. However, it does not detail these tools. In
our study, we identified 12 more tools than Parry et al. [34]’s study.
However, some extracted tools were not available for use.

Threats to research process validity: To mitigate the threat to the
research process, we use the systematic mapping guidelines pro-
posed by Petersen et al. [37]. Three experts in software testing also
participated in the mapping process, aiming to mitigate data selec-
tion and extraction bias. Furthermore, we used other systematic
reviews in the area of flaky tests as a basis for identifying some
flaky test detection tools [34]; however, they did not delve into the
characterization of these tools.

7 CONCLUSIONS
In this study, we systematically mapped flaky test detection, mitiga-
tion, and correction tools, analyzing 37 studies and identifying 30
flaky testing tools. A notable observation is the increasing trend in
tool publications over the years, with 2022 witnessing the highest
number of tool releases. We found that the Re-execution technique
was the most commonly used to support the detection of flaky
tests. Additionally, most of the tools were analyzed in projects
utilizing Java languages. While not all tools explicitly specify the
type of flaky test detected, it was observed that a majority of them
addressed test order dependency.

This work provides a comprehensive overview of flaky tests and
the available detection tools, shedding light on their characteristics
and offering insights for future studies. Moving forward, we propose
several avenues for future research: (i) Implement and evaluate the



Exploring Tools for Flaky Test Detection, Correction, and Mitigation: A Systematic Mapping Study SAST 2024, September 30th to October 04th, 2024, Curitiba, Brazil

Table 10: Characteristics of flaky test tools

Tool Implementation Analysis Framework Context Interface Documentation URL

MOKA UNK Java JUnit
Mockito Repair UNK No -

DeFlaker Java Java JUnit
TestNG Detection CLI Yes https://github.com/gmu-swe/deflaker

iDFlakies Java Java
JUnit
Surefire
Plugin

Detec. OD CLI Yes https://github.com/UT-SE-Research/iDFlakies
https://mvnrepository.com/artifact/edu.illinois.cs/idflakies

FlakeFlagger UNK Java UNK Detection UNK Yes https://github.com/AlshammariA/FlakeFlagger

RootFinder C# C# MsTest
Maven Repair UNK Yes https://github.com/winglam/RootFinder

FaTB UNK Python UNK Repair UNK Yes https://github.com/winglam/flaky-test-lifecycle-data

Shaker Java
Python Java Maven

Pytest Detection CLI
Pipeline Yes https://github.com/STAR-RG/shaker-artifacts-icsme

https://star-rg.github.io/shaker/

FLASH Python Python UnitTest
Pytest Detection CLI Yes https://github.com/uiuc-arc/flash

PraDet Java Java JUnit Detec. OD CLI Yes https://github.com/gmu-swe/pradet-replication

iFixFlakies Java Java JUnit
Maven Repair CLI

Plugin Yes https://github.com/TestingResearchIllinois/iFixFlakies

NonDex Java Java JUnit
Maven Detection CLI

Plugin Yes https://github.com/TestingResearchIllinois/NonDex
https://mvnrepository.com/artifact/edu.illinois/nondex-maven-plugin

FlakiMe Java Java JUnit
Maven Mitigation CLI

Plugin Yes https://github.com/serval-uni-lu/flakime
https://mvnrepository.com/artifact/lu.uni.serval/flakime-maven-plugin

DexFix Java Java JUnit
Maven Repair UNK No -

ElectricTest Java Java JUnit Detec. OD CLI No -
DTDetector Java Java JUnit Detec. OD CLI Yes https://github.com/winglam/dtdetector

VmVm Java Java
JUnit
Maven
Ant

Mitigation CLI Yes https://github.com/Programming-Systems-Lab/vmvm

PolDet Java Java JUnit Detec. OD UNK No -
FLAKE16 Python Python Pytest Detec. OD CLI Yes https://github.com/flake-it/flake16-framework

FLAST All Python IDE
Pipeline Detection UNK Yes https://github.com/FlakinessStaticDetection/FLAST

Flakify All Java Pipeline Detection UNK Yes https://github.com/uOttawa-Nanda-Lab/Flakify
FlakeScanner Scala Java JUnit Detec. OD UNK Yes https://github.com/AndroidFlakyTest
FlakyLoc UNK UNK UNK Mitigation UNK No -
OrcalePolish Java Java JUnit Detec. OD CLI No -

iPFlakies Python Python Pytest Detec. OD
Repair

CLI
Plugin Sim https://github.com/ailen-wrx/python-ipflakies

https://sites.google.com/view/ipflakies
PEELER UNK Java UNK Detection UNK No https://github.com/IntHelloWorld/Peeler
TEDD Java Java JUnit Detec. OD CLI Yes https://github.com/matteobiagiola/FSE19-submission-material-TEDD
FlakeRepro C# C# UNK Repair UNK No -
IncIDFlakies Java Java UNK Detec. OD UNK No -
ODRepair Java Java JUnit Repair CLI Yes https://github.com/UT-SE-Research/ODRepair
MDFlaker Python Python UNK Detection UNK No -

tools to assess their applicability in real-world projects; (ii) Conduct
a more detailed technical comparison between tools operating in
the same context to gather specific data and identify the most
suitable tools for various scenarios; (iii) Investigate CI tools for
detecting flaky tests and compare them with the tools discussed
in this study; and (iv) Develop a flaky test detection tool based on
one of the tools proposed in this work. These future efforts aim to
further enhance our understanding of flaky tests and contribute to
advancing effective detection and management strategies.

ARTIFACT AVAILABILITY
We provide our data and artifacts under open licenses at: https:
//zenodo.org/records/11403894.

ACKNOWLEDGEMENTS
This study was financed in part by the Coordenação de Aperfeiçoa-
mento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code
001; CNPq grants 315840/2023-4 and 403361/2023-0; and FAPESB
grantPIE0002/2022.

REFERENCES
[1] Azeem Ahmad, Francisco Gomes de Oliveira Neto, Zhixiang Shi, Kristian Sandahl,

and Ola Leifler. 2021. A Multi-factor Approach for Flaky Test Detection and

Automated Root Cause Analysis. In 2021 28th Asia-Pacific Software Engineering
Conference (APSEC). IEEE, 338–348.

[2] Abdulrahman Alshammari, Christopher Morris, Michael Hilton, and Jonathan
Bell. 2021. FlakeFlagger: Predicting Flakiness Without Rerunning Tests. In 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE). 1572–
1584. https://doi.org/10.1109/ICSE43902.2021.00140

[3] Jonathan Bell and Gail Kaiser. 2014. Unit test virtualization with VMVM. In
Proceedings of the 36th International Conference on Software Engineering. 550–
561.

[4] Jonathan Bell, Gail Kaiser, Eric Melski, and Mohan Dattatreya. 2015. Efficient
dependency detection for safe Java test acceleration. In Proceedings of the 2015
10th joint meeting on foundations of software engineering. 770–781.

[5] Jonathan Bell, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi, Tifany Yung,
and Darko Marinov. 2018. DeFlaker: Automatically Detecting Flaky Tests. In 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE). 433–444.
https://doi.org/10.1145/3180155.3180164

[6] Matteo Biagiola, Andrea Stocco, Ali Mesbah, Filippo Ricca, and Paolo Tonella.
2019. Web test dependency detection. In Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 154–164.

[7] Marcello Cordeiro, Denini Silva, Leopoldo Teixeira, Breno Miranda, and Marcelo
d’Amorim. 2021. Shaker: a tool for detecting more flaky tests faster. In 2021 36th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 1281–1285.

[8] Maxime Cordy, Renaud Rwemalika, Adriano Franci, Mike Papadakis, and Mark
Harman. 2022. Flakime: laboratory-controlled test flakiness impact assessment. In
Proceedings of the 44th International Conference on Software Engineering. 982–994.

[9] Zhen Dong, Abhishek Tiwari, Xiao Liang Yu, and Abhik Roychoudhury. 2021.
Flaky test detection in Android via event order exploration. In Proceedings of
the 29th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 367–378.

[10] Saikat Dutta, August Shi, Rutvik Choudhary, Zhekun Zhang, Aryaman Jain, and
Sasa Misailovic. 2020. Detecting flaky tests in probabilistic and machine learning

https://github.com/gmu-swe/deflaker
https://github.com/UT-SE-Research/iDFlakies
https://github.com/AlshammariA/FlakeFlagger
https://github.com/winglam/RootFinder
https://github.com/winglam/flaky-test-lifecycle-data
https://github.com/STAR-RG/shaker-artifacts-icsme
https://star-rg.github.io/shaker/
https://github.com/uiuc-arc/flash
https://github.com/gmu-swe/pradet-replication
https://github.com/TestingResearchIllinois/iFixFlakies
https://github.com/TestingResearchIllinois/NonDex
https://mvnrepository.com/artifact/edu.illinois/nondex-maven-plugin
https://github.com/serval-uni-lu/flakime
https://mvnrepository.com/artifact/lu.uni.serval/flakime-maven-plugin
https://github.com/winglam/dtdetector
https://github.com/Programming-Systems-Lab/vmvm
https://github.com/flake-it/flake16-framework
https://github.com/FlakinessStaticDetection/FLAST
https://github.com/uOttawa-Nanda-Lab/Flakify
https://github.com/AndroidFlakyTest
https://github.com/ailen-wrx/python-ipflakies
https://sites.google.com/view/ipflakies
https://github.com/IntHelloWorld/Peeler
https://github.com/matteobiagiola/FSE19-submission-material-TEDD
https://github.com/UT-SE-Research/ODRepair
https://zenodo.org/records/11403894
https://zenodo.org/records/11403894
https://doi.org/10.1109/ICSE43902.2021.00140
https://doi.org/10.1145/3180155.3180164


SAST 2024, September 30th to October 04th, 2024, Curitiba, Brazil Sousa, et al.

applications. In Proceedings of the 29th ACM SIGSOFT international symposium
on software testing and analysis. 211–224.

[11] Moritz Eck, Fabio Palomba, Marco Castelluccio, and Alberto Bacchelli. 2019. Un-
derstanding Flaky Tests: The Developer’s Perspective. In Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering (Tallinn, Estonia) (ESEC/FSE
2019). Association for Computing Machinery, New York, NY, USA, 830–840.
https://doi.org/10.1145/3338906.3338945

[12] Sakina Fatima, Taher A Ghaleb, and Lionel Briand. 2022. Flakify: A black-box,
language model-based predictor for flaky tests. IEEE Transactions on Software
Engineering (2022).

[13] Mattia Fazzini, Alessandra Gorla, and Alessandro Orso. 2020. A framework for
automated test mocking of mobile apps. In Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering. 1204–1208.

[14] Alessio Gambi, Jonathan Bell, and Andreas Zeller. 2018. Practical test depen-
dency detection. In 2018 IEEE 11th International Conference on Software Testing,
Verification and Validation (ICST). IEEE, 1–11.

[15] Martin Gruber and Gordon Fraser. 2022. A Survey on How Test Flakiness Affects
Developers and What Support They Need To Address It. In 2022 IEEE Conference
on Software Testing, Verification and Validation (ICST). 82–92. https://doi.org/10.
1109/ICST53961.2022.00020

[16] Martin Gruber and Gordon Fraser. 2022. A Survey on How Test Flakiness Affects
Developers and What Support They Need To Address It. In 2022 IEEE Conference
on Software Testing, Verification and Validation (ICST). 82–92. https://doi.org/10.
1109/ICST53961.2022.00020

[17] Martin Gruber, Stephan Lukasczyk, Florian Kroiß, and Gordon Fraser. 2021.
An Empirical Study of Flaky Tests in Python. In 2021 14th IEEE Conference on
Software Testing, Verification and Validation (ICST). 148–158. https://doi.org/10.
1109/ICST49551.2021.00026

[18] Alex Gyori, Ben Lambeth, August Shi, Owolabi Legunsen, and Darko Marinov.
2016. NonDex: A tool for detecting and debugging wrong assumptions on Java
API specifications. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. 993–997.

[19] Alex Gyori, August Shi, Farah Hariri, and Darko Marinov. 2015. Reliable testing:
Detecting state-polluting tests to prevent test dependency. In Proceedings of the
2015 international symposium on software testing and analysis. 223–233.

[20] Sarra Habchi, Guillaume Haben, Mike Papadakis, Maxime Cordy, and Yves Le
Traon. 2022. A Qualitative Study on the Sources, Impacts, and Mitigation Strate-
gies of Flaky Tests. In 2022 IEEE Conference on Software Testing, Verification and
Validation (ICST). 244–255. https://doi.org/10.1109/ICST53961.2022.00034

[21] Chen Huo and James Clause. 2014. Improving Oracle Quality by Detecting Brittle
Assertions and Unused Inputs in Tests. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering (Hong Kong,
China) (FSE 2014). Association for Computing Machinery, New York, NY, USA,
621–631. https://doi.org/10.1145/2635868.2635917

[22] Samireh Jalali and Claes Wohlin. 2012. Systematic literature studies: database
searches vs. backward snowballing. In Proceedings of the ACM-IEEE international
symposium on Empirical software engineering and measurement. 29–38.

[23] Staffs Keele et al. 2007. Guidelines for performing systematic literature reviews
in software engineering.

[24] Wing Lam, Patrice Godefroid, Suman Nath, Anirudh Santhiar, and Suresh Thum-
malapenta. 2019. Root Causing Flaky Tests in a Large-Scale Industrial Setting. In
Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing
and Analysis (Beijing, China) (ISSTA 2019). Association for Computing Machinery,
New York, NY, USA, 101–111. https://doi.org/10.1145/3293882.3330570

[25] Wing Lam, Kıvanç Muşlu, Hitesh Sajnani, and Suresh Thummalapenta. 2020.
A Study on the Lifecycle of Flaky Tests. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering (Seoul, South Korea) (ICSE
’20). Association for Computing Machinery, New York, NY, USA, 1471–1482.
https://doi.org/10.1145/3377811.3381749

[26] Wing Lam, Reed Oei, August Shi, Darko Marinov, and Tao Xie. 2019. iDFlakies:
A framework for detecting and partially classifying flaky tests. In 2019 12th ieee
conference on software testing, validation and verification (icst). IEEE, 312–322.

[27] Wing Lam, Stefan Winter, Anjiang Wei, Tao Xie, Darko Marinov, and Jonathan
Bell. 2020. A Large-Scale Longitudinal Study of Flaky Tests. Proc. ACM Program.
Lang. 4, OOPSLA, Article 202 (nov 2020). https://doi.org/10.1145/3428270

[28] Tanakorn Leesatapornwongsa, Xiang Ren, and Suman Nath. 2022. FlakeRepro:
automated and efficient reproduction of concurrency-related flaky tests. In Pro-
ceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 1509–1520.

[29] Chengpeng Li and August Shi. 2022. Evolution-aware detection of order-
dependent flaky tests. In Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis. 114–125.

[30] Chengpeng Li, Chenguang Zhu, Wenxi Wang, and August Shi. 2022. Repair-
ing order-dependent flaky tests via test generation. In Proceedings of the 44th
International Conference on Software Engineering. 1881–1892.

[31] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An
Empirical Analysis of Flaky Tests. In Proceedings of the 22nd ACM SIGSOFT

International Symposium on Foundations of Software Engineering (Hong Kong,
China) (FSE 2014). Association for Computing Machinery, New York, NY, USA,
643–653. https://doi.org/10.1145/2635868.2635920

[32] Jesús Morán Barbón, Cristian Augusto Alonso, Antonia Bertolino, Claudio A
Riva Álvarez, Pablo Javier Tuya González, et al. 2020. Flakyloc: flakiness local-
ization for reliable test suites in web applications. Journal of Web Engineering, 2
(2020).

[33] G.J. Myers, C. Sandler, and T. Badgett. 2011. The Art of Software Testing. Wiley.
https://books.google.com.br/books?id=GjyEFPkMCwcC

[34] Owain Parry, Gregory M. Kapfhammer, Michael Hilton, and Phil McMinn. 2021.
A Survey of Flaky Tests. ACM Trans. Softw. Eng. Methodol. 31, 1, Article 17 (oct
2021), 74 pages. https://doi.org/10.1145/3476105

[35] Owain Parry, Gregory M Kapfhammer, Michael Hilton, and Phil McMinn. 2022.
Evaluating Features for Machine Learning Detection of Order-and Non-Order-
Dependent Flaky Tests. In 2022 IEEE Conference on Software Testing, Verification
and Validation (ICST). IEEE, 93–104.

[36] Owain Parry, Gregory M. Kapfhammer, Michael Hilton, and Phil McMinn. 2022.
Surveying the developer experience of flaky tests. In Proceedings of the 44th
International Conference on Software Engineering: Software Engineering in Practice
(Pittsburgh, Pennsylvania) (ICSE-SEIP ’22). Association for Computing Machinery,
New York, NY, USA, 253–262. https://doi.org/10.1145/3510457.3513037

[37] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. 2015. Guidelines for
conducting systematic mapping studies in software engineering: An update.
Information and software technology 64 (2015), 1–18.

[38] Gustavo Pinto, Breno Miranda, Supun Dissanayake, Marcelo d’Amorim,
Christoph Treude, and Antonia Bertolino. 2020. What is the Vocabulary of Flaky
Tests?. In Proceedings of the 17th International Conference on Mining Software
Repositories (Seoul, Republic of Korea) (MSR ’20). Association for Computing Ma-
chinery, New York, NY, USA, 492–502. https://doi.org/10.1145/3379597.3387482

[39] Valeria Pontillo. [n.d.]. Static test flakiness prediction. In Proceedings of the
ACM/IEEE 44th International Conference on Software Engineering: Companion
Proceedings. 325–327.

[40] Yihao Qin, Shangwen Wang, Kui Liu, Bo Lin, Hongjun Wu, Li Li, Xiaoguang
Mao, and Tegawendé F Bissyandé. 2022. PEELER: Learning to Effectively Pre-
dict Flakiness without Running Tests. In 2022 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 257–268.

[41] August Shi, Alex Gyori, Owolabi Legunsen, and Darko Marinov. 2016. Detecting
assumptions on deterministic implementations of non-deterministic specifica-
tions. In 2016 IEEE International Conference on Software Testing, Verification and
Validation (ICST). IEEE, 80–90.

[42] August Shi, Wing Lam, Reed Oei, Tao Xie, and Darko Marinov. 2019. iFixFlakies:
A framework for automatically fixing order-dependent flaky tests. In Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. 545–555.

[43] Denini Silva, Leopoldo Teixeira, and Marcelo d’Amorim. 2020. Shake It! Detecting
Flaky Tests Caused by Concurrency with Shaker. In 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME). 301–311. https:
//doi.org/10.1109/ICSME46990.2020.00037

[44] Amjed Tahir, Shawn Rasheed, Jens Dietrich, Negar Hashemi, and Lu Zhang. 2023.
Test flakiness’ causes, detection, impact and responses: A multivocal review.
Journal of Systems and Software 206 (2023), 111837. https://doi.org/10.1016/j.jss.
2023.111837

[45] Roberto Verdecchia, Emilio Cruciani, Breno Miranda, and Antonia Bertolino.
2021. Know you neighbor: Fast static prediction of test flakiness. IEEE Access 9
(2021), 76119–76134.

[46] Ruixin Wang, Yang Chen, and Wing Lam. 2022. iPFlakies: a framework for
detecting and fixing python order-dependent flaky tests. In Proceedings of the
ACM/IEEE 44th International Conference on Software Engineering: Companion
Proceedings. 120–124.

[47] Claes Wohlin. 2014. Guidelines for snowballing in systematic literature studies
and a replication in software engineering. In Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering (London, Eng-
land, United Kingdom) (EASE ’14). Association for Computing Machinery, New
York, NY, USA, Article 38, 10 pages. https://doi.org/10.1145/2601248.2601268

[48] Peilun Zhang, Yanjie Jiang, Anjiang Wei, Victoria Stodden, Darko Marinov, and
August Shi. 2021. Domain-specific fixes for flaky tests with wrong assumptions on
underdetermined specifications. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). IEEE, 50–61.

[49] Sai Zhang, Darioush Jalali, Jochen Wuttke, Kıvanç Muşlu, Wing Lam, Michael D
Ernst, and David Notkin. 2014. Empirically revisiting the test independence
assumption. In Proceedings of the 2014 International Symposium on Software
Testing and Analysis. 385–396.

[50] Behrouz Zolfaghari, Reza M Parizi, Gautam Srivastava, and Yoseph Hailemariam.
2021. Root causing, detecting, and fixing flaky tests: state of the art and future
roadmap. Software: Practice and Experience 51, 5 (2021), 851–867.

https://doi.org/10.1145/3338906.3338945
https://doi.org/10.1109/ICST53961.2022.00020
https://doi.org/10.1109/ICST53961.2022.00020
https://doi.org/10.1109/ICST53961.2022.00020
https://doi.org/10.1109/ICST53961.2022.00020
https://doi.org/10.1109/ICST49551.2021.00026
https://doi.org/10.1109/ICST49551.2021.00026
https://doi.org/10.1109/ICST53961.2022.00034
https://doi.org/10.1145/2635868.2635917
https://doi.org/10.1145/3293882.3330570
https://doi.org/10.1145/3377811.3381749
https://doi.org/10.1145/3428270
https://doi.org/10.1145/2635868.2635920
https://books.google.com.br/books?id=GjyEFPkMCwcC
https://doi.org/10.1145/3476105
https://doi.org/10.1145/3510457.3513037
https://doi.org/10.1145/3379597.3387482
https://doi.org/10.1109/ICSME46990.2020.00037
https://doi.org/10.1109/ICSME46990.2020.00037
https://doi.org/10.1016/j.jss.2023.111837
https://doi.org/10.1016/j.jss.2023.111837
https://doi.org/10.1145/2601248.2601268

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Flaky tests
	2.2 Related work

	3 Systematic Mapping
	3.1 Search strategy
	3.2 Selection

	4 Results and Discussions
	4.1 RQ1: Objectives and techniques of flaky testing tools
	4.2 RQ2: Characteristics and causes of flaky testing tools

	5 Discussion
	6 Threats to Validity
	7 Conclusions
	References

