
TSS Tool: Automation Tool Applied in the True Single SKU
Setup Environment Preparation for Multiple Devices in Parallel

Carol Fernandes
carol.fernandes@sidia.com

SIDIA R&D Institute
Manaus, Amazonas, Brazil

Charles Araújo
charles.araujo@sidia.com

SIDIA R&D Institute
Manaus, Amazonas, Brazil

Adriano Oliveira
adriano.oliveira@sidia.com

SIDIA R&D Institute
Manaus, Amazonas, Brazil

Wellington Corrêa
wellington.correa@sidia.com

SIDIA R&D Institute
Manaus, Amazonas, Brazil

Luan Ipê
luan.ipe@sidia.com
SIDIA R&D Institute

Manaus, Amazonas, Brazil

Paulo Andrade
paulo.andrade@sidia.com

SIDIA R&D Institute
Manaus, Amazonas, Brazil

ABSTRACT
There is an extensive amount of mobile product models in the
market. In this scenario, research institutes are involved in a stage
previous to release, in order to ensure that the software meets qual-
ity standards, with stakeholders’ requirements embedded, tested
and validated. All of this in a high demand scenario. These institutes
are presented with the challenge of delivering software ready for
release increasingly faster than before. Replacing manual processes
with automation can reduce execution time in the production chain.
After analyzing our own context, we concluded that True Single
SKU (TSS) mobile models were a strong candidate for process im-
provements. These devices’ setup was a bottleneck, since execution
was done 100% manually. Our objective is to assess the benefits of
using an automated TSS Tool in the environment setup preparation
of multiple devices in parallel. Through observational studies, we
were able to reaffirm the relevance of using software automation
as a strategy to reduce development time. Besides, it works in a
supporting role when dealing with high demand. We observed a
gain in time of up to 52% for beginner testers and 50% for experi-
enced testers. These results were achieved when comparing manual
setup activities executed with multiple devices one by one and au-
tomated setup activities with multiple devices at the same time. We
concluded that we were able to save more development time and
achieve more flow in the whole production chain for TSS mobile
devices.

KEYWORDS
software testing, automated testing tool, TSS, mobile devices

1 INTRODUCTION
Technology projects aimed at mobile devices are evermore on the
rise. Hence, the need to introduce automation to implementation
processes increases. This is due to different specifications assigned
to different mobile device models, which are launched every year
[4, 13]. Keeping older devices’ software updated and developing
newer software for newer models escalates quickly. Our study scope
is focused on the Android Operational System (OS). Each Android
version is designed with different or updated features. Regarding
these features, some require negotiations, which may involve man-
ufacturer, mobile network operators, government and Google [3].
They are the ones who define new software requirements to be
included in official releases.

Requirements implementation and their respective tests are es-
sential, specially for the mobile device sphere. It’s through these
activities that high quality software is ensured. Without it, the
manufacturer brand won’t be trusted by it’s costumers. Therefore,
developers must execute manual or automated tasks in order to
guarantee that customers’ needs are properly met. SIDIA R&D Insti-
tute is an example of organization that deals with different mobile
device models. The institute works with research projects on de-
velopment and update of mobile devices’ software. These Android
software releases are aimed at a plethora of device models for Latin
America.

The projects we execute in our institute can be classified as: (1)
New Models; (2) OS Upgrades; and (3) Maintenance Releases. Our
team, i.e., the User Interface (UI) Requirements team, is responsi-
ble for developing visual requirements related to mobile devices
applications and their respective placement. That also includes
carrier wallpapers and carrier boot animations. Since we aim to
validate that all UI requirements are being met, it is of ultimate
importance that we perform tests and software validations. These
must be carried out when there’s any update, addition or removal
of requirements. And, in this scenario, developers are allocated to
carry out both implementations and validations.

In this context of requirements implementation and validations,
our developers execute some procedures that define new properties
in specific mobile device models. These procedures establish a new
context for those devices, which has to be done before validating
UI requirements. This scenario where the new context is being
applied is called True Single SKU (TSS) [16]. TSS is achieved by
doing the following: we receive some carrier specifications and
requirements that must be controlled through a provider, i.e., a
server; a specific device model is connected to the server and a
device input information is registered in this server; then, carrier
requirements will be downloaded to the device automatically.

Currently, TSS process is performed manually, as seen on Figure
1. Developers working with a few devices register them and their
respective final carriers in the server. Also, AT commands are used
at this stage, as these commands play a vital role in smartphone
communication via cable to a PC. They’re able to extract a variety
of data and control many pre-existing behaviors on devices [7].
Individually, specific AT commands are inserted into each device,
with technical steps and instructions to set a base carrier that is
related to the final carrier, which is configured in the server. To

https://orcid.org/0009-0003-6764-0889
https://orcid.org/0009-0000-6366-3168
https://orcid.org/0009-0007-6854-0707
https://orcid.org/0009-0005-5099-2364
https://orcid.org/0009-0002-8131-6375
https://orcid.org/0000-0001-7597-3817


SAST 2024, September 30-October 04, 2024, Curitiba, PR, Brazil Fernandes et al.

Figure 1: Overall manual process to set TSS.

finish, after executing a reset command in each device, an internet
connection is established to bring the final carrier associated in
each device from the server along with its carrier requirements.
This process is slow and many times is susceptible to human errors.

In our paper we explain the development and validation of an
automated tool to execute TSS process preparation in one or more
devices in parallel. This tool will be associated with the current
automated checklist tool, an internal software that applies carrier
requirements, tests and validates them on the devices. Our goal is
to obtain gains in terms of TSS device preparation time associated
with automated checklists, reducing human errors and improving
flow rate on developing and validating TSS device requirements.

Additionally, we will map which TSS models and countries (final
carrier) assume certain standard times. This kind of information
will help to identify the use, in the future, of a predictive model
to suggest the best configuration of candidate TSS models to be
executed in parallel by the developer, optimizing the process and
achieving the due date with efficiency.

This work is sectioned as follows: Section 2 - Theoretical Back-
ground, Section 3 - Current Scenario and Our Proposal, Section 4 -
Methodology, Section 5 - Results and Discussion, and Section 6 -
Conclusion and Future Work.

2 THEORETICAL BACKGROUND
In a world of technology, there’s always a need to develop, test and
validate said technology and its features. Often, executing these
steps can be done manually or through an automation [1, 2]. These
steps have to be executed as tasks in a checklist for any device
before delivering its software to the customer [15]. The main goal
of software testing is to identify errors, failures, gaps and missing
features in regard to requirements and specifications [11].

Manual testing tends to not require knowledge of testing tools.
However, it requires lots more effort and more human resources, i.e.,
more people. The work by Mohammad et al. shows that testers and
developers may have to run different parts of programs with their
own procedures and inputs in order to carry out the validations
they need [14]. The execution of these manual procedures can be
slow and may lead to successive errors.

On that regard, the work by Alferidah et al. shows the goal of
automated testing is to reduce errors that may happen due to users’
slowness and susceptibility to mistakes. Therefore, reducing errors
leads to cost decrease in software [2]. Gamido and Gamido’s work
complements this by stating that, through the usage of automated
testing, it is possible to repeat and reuse different test scenarios,
which can be executed as often as needed [10]. Using the same

logic, the work by Mohammad et al. states that automated testing
tools are used to write scripts and record testing in much less time
than manual testing, with the ability to repeat the tests as much as
needed [14].

Automated testing involves the use of automation tools or frame-
works in tests execution [17]. It requires knowledge of automation
tools and, sometimes, programming skills, where developers write
test code that runs without human intervention. With automation,
there is an increase in tests accuracy, an increase in system behav-
ior validation, and an increase in testers’ effort and time savings
compared to manual testing.

Our research identified previous studies related to development
and use of automation tools in test processes for mobile devices.
These studies discuss about time gains obtained through automation
when compared with manual process.

In the work by Franca et al., the authors state that there are great
volumes of update releases, new specifications and OS updates.
Based on this, the authors created an experiment aiming to assist
the development of technical documentation, using simulations in
a controlled environment, where a new automated approach was
used by a group of employees. The process automation showed a
reduction of up to 33.2% in documentation’s total time [9].

The work by Itkonen et al. shows how software development
performed by teams is affected by factors as environment, human ef-
fort and integrated technologies. Their proposal was to do a survey,
where the testers contributed with their experiences and feelings,
labeled as “tester’s experience” (TX) [12]. Questions regarding per-
spectives on testing review were asked, as well as infrastructure
and aggregated effort as manpower and work quality. Based on
the results, it was perceived that there are certain procedures only
executed by testers with a certain maturity in testing. That is be-
cause performing some procedures can be difficult, dealing with
some difficulties by complex level or many procedures to execute.
However, regardless of testers’ experience level, the commitment is
the main factor for achieving success and completing testing tasks
on time. This work serves as a complement to improve the test
scenario, evaluating the use of testing artifacts and their associated
activities by user perspective.

Additionally, the work by Andrade et al. shows that mobile
manufacturers need to find strategies to reduce time of production,
and, still, need to ensure the quality of the software embedded
with stakeholders’ requests [3]. The proposal of this work was to
eliminate tests repeated for each stakeholder, choosing a set of key
stakeholders and showing that gains obtained can be expanded to
the whole device model portfolio. Even regarding external factors,
different kinds of hardware and software, and also distinct quantity
of requirements by stakeholder, the study concluded that 58% of
comparisons presented time gains in terms of SW development,
contributing for internal process improvement. Like our research
goal, they aimed to decrease time spent on validations without the
risk of a decrease in quality.

Brígido et al. developed the IMEIOFF Tool for automatic execu-
tion of integrity tests on mobile devices in order to reduce time on
these test executions. They carried out a case study. Their results
showed that their tool decreased the average execution time by
up to 63% compared to manual execution [5]. Similarly, Chagas
et al. developed an automated tool to perform sanity testing on



TSS Tool: Automation Tool Applied in the True Single SKU
Setup Environment Preparation for Multiple Devices in Parallel SAST 2024, September 30-October 04, 2024, Curitiba, PR, Brazil

Android smartphones and tablets, set in a global software devel-
opment context. Through observational studies, they were able to
understand and showcase the impact of software automation usage
as a testing strategy. They concluded in their analysis that there
were time gains of up to 53% for testers, allowing the number of
manual activities and the effort to be reduced [6].

Regarding our work, the scenario we have in our hands is True
Single SKU (TSS), where devices have a common service provider,
and, when these are connected through internet to the server, net-
work specific features and services will be applied, in accordance to
the region or country where each device was purchased [16]. Based
on the TSS environment, automation tools represent a good solution
when testers use it in concurrent activities. Costa et al. presented a
script which automated the process of preparing TSS mobile device
samples through a TSS Script. After carrying out some experiments,
they registered a 46,67% time gain when preparing TSS samples
with automations instead of using manual preparation [8].

After analyzing a work by Costa et al. [8], we noticed that we
were using a similar TSS manual preparation process in our team,
concentrating an expressive part of developers efforts. Our devel-
opers were continuously handling the devices one by one in TSS
preparations, not being able to execute parallel tasks. Hence, our
paper presents the development and implementation process of
a TSS tool, which automates a group of manual procedures that
were once decentralized, now setting TSS for one or more devices
through automation and in parallel, along with a visual interface.
Additionally, we discuss the effectiveness and gains obtained with
our TSS tool when used in parallel with some mobile devices in the
same scenario.

3 CURRENT SCENARIO AND OUR PROPOSAL
UI Requirements Team is responsible for developing visual require-
ments related to mobile device applications, ensuring each one is
matching with customer specification through tests and software
validations. To be able to do this, our developers handle mobile
devices with customer full test binaries and set these to work in a
TSS environment. Normally, the demands to develop and verify UI
requiments in various TSS customer models is high due to many
telephone carriers, which, in turn, are themanufacturer’s customers.
Associated to high demand, it was perceived a bottleneck in our
process, specifically at the beginning of the chain, called TSS prepa-
ration steps on Device Under Test (DUT), where the procedures to
follow are completely manual, as seen in Figure 2. In this flow, the
execution time is slow with high risk of human error:

(1) Install new software: The developer installs new customer
full software (full binary) on the DUT.

(2) Install new BL Carrier ID: The developer installs boot
loader (BL) software, that was generated through full binary
and that contains base carrier identification (ID for carrier’s
country).

(3) Install new software again: When BL is installed, DUT is
available, but not working to develop and test requirements.
So, the developer installs full binary again.

(4) DUT security - Token: The developer checks if device
has some permissions, called tokens, to be able to receive
AT command and reset the device. If some token is needed,

Figure 2: Manual process to set TSS, now in greater details.

the developer requests to generate it and registers it in the
device.

(5) DUT security - TSS Carrier Server: The developer regis-
ters in customer server the final carrier identification to be
associated with a device.

(6) RunAT commands: The developer executes AT commands
on the device using a specific console to clean it, keeping
only the base carrier ID.

(7) Factory Reset Device: The developer restarts the device.
(8) Pass Setup Wizard with Wi-Fi: The developer executes

steps from Setup Wizard and turns on Wi-Fi so that it estab-
lishes Carrier Server communication.



SAST 2024, September 30-October 04, 2024, Curitiba, PR, Brazil Fernandes et al.

(9) Register device on TSS/ Carrier Server: The developer
confirms the association of final carrier identification from
carrier server.

(10) Reset device: The developer restarts the device.
(11) Device downloads requirements: After restarting the de-

vice, the developer executes steps from Setup Wizard until
customer requirements are fully downloaded.

(12) Check carrier requirements: The developer executes our
internal Model Tool test and validates carrier requirements
on the device. TheModel tool is our automated process for UI
requirements validation, and, regarding the current process,
this part is out of manual procedure and will not be covered
nor detailed in this paper.

TSS manual device preparation causes execution delays because
the procedures are decentralized, using parts of different programs
and being handled manually by developers. This statement was also
verified in the TSS Script paper [8]. Since we know that an extensive
part of our development projects belongs to mobile models with TSS
SKUs, as seen in Table 1, it was necessary to stop and invest time to
create our own TSS Tool in order to execute all of these preparation
decentralized steps in a single environment. We integrated this TSS
Tool as an initial extension of our Model Tool.

Table 1: Number of TSS and Non-TSS Models.

Mobile Device Type TSS Non-TSS
Smartphone 90 57
Tablet 0 28

In this new scenario, which is represented by Figure 3, the de-
veloper continues flashing software binaries in the samples, but
now they can use the TSS Tool. With the TSS Tool, the developer
can visualize the status of each device and take the best decision to
continue TSS process preparation:

(1) TSS Tool configuration - Token: The tool shows all per-
mission tokens installed. If another permission is still needed,
the developer must request it.

(2) TSS Tool configuration - Carrier Server and AT com-
mands: Now, it is possible to choose more than one final
carrier ID in samples being prepared simultaneously, as we
can see in Figure 4. This means that executing AT commands,
rebooting the device, installing some properties with final
carrier designation, and replacing the use of carrier server
are activities that can now be executed in an automated way,
reducing preparation time between TSS model samples.

Keep in mind that developers can decide if they want to apply
an action for one or more devices, i.e., parallelism. We explain the
proposed solution in technological terms below:

• Service: The Service connects the devices by Android De-
bug Bridge (ADB) commands to get the Serial Number (SN)
from each sample, and then sends these SNs to the Server.
Additionally, it is used to start requests, i.e., actions, from the
developer to go to the Server. To avoid conflicts of multiple
devices, threads queuing is used to be processed in parallel.
The Service uses Python, Flask and pure-python-adb, i.e., a
library, as technology.

Figure 3: New automated process to set TSS.

Figure 4: DUT preparation parallelism.

• Instrumentation Tests APK - Requirements Test: An-
droid Application Package (APK) is an Android native appli-
cation called by the Service to be executed under one or more
devices. It simulates human actions on the interface. Here



TSS Tool: Automation Tool Applied in the True Single SKU
Setup Environment Preparation for Multiple Devices in Parallel SAST 2024, September 30-October 04, 2024, Curitiba, PR, Brazil

it executes TSS preparation steps, including AT commands,
automatically. APK uses Java and UiObject2 as technologies.

• Server: The Server manages the requests from the Service
and re-distributes them among devices with correct TSS
application, signalizing the Service to call APK to run by
device. The Server uses Python and Django REST Framework
as technologies.

• Web App - Tool Web Page: The web app shows visual
portions, with screens containing visual information about
connected devices, APK output after AT command execu-
tion, and available actions, i.e., future requests, to be applied
for each connected TSS model sample. The web app uses
JavaScript and Next.js as technologies.

Table 2 shows the main differences of the TSS Script in contrast
with our proposed TSS Tool. The main advantage of the TSS Tool
compared with TSS Script is related to the visual status to take
decision, as well as the parallel execution with more than one
device, which helps operationalize the TSS process, which is now
performed automatically using the TSS Tool.

Table 2: Comparison of TSS Tool with TSS Script.

Feature TSS Tool TSS Script
Visual Status to take decision YES NO
Automated execution FULL PARTIAL
Parallel execution YES NO

Figure 5: A screen capture concept of our TSS Tool’s “Reset
Activate ID” feature.

Figure 6: A screen capture concept of our TSS Tool’s “Set
Activate ID” feature.

The visual status of available carrier options is an important
feature to guide the developer in a specific part of the TSS setup
process. So, we implemented some screens to better display the
available options and current settings. Figure 5 and Figure 6 rep-
resent specific features where the developer can choose one or
more devices to change the device setup in order to continue the
TSS setup process. These images had to be slightly edited to avoid
sharing confidential information.

4 METHODOLOGY
This section presents the methodology we used to obtain the results
from our research and the practical applications of the tool we
proposed. Each step for this activity is described below:

(1) Literature review: Through this stage, we surveyed related
works, which presented different tools created for automat-
ing processes and for improving solutions within the soft-
ware testing context.

(2) TSS Tool development: A tool we developed for automat-
ing the process of multiple devices preparation for the TSS
environment. It reduced the amount of repetitive manual
tasks executed by developers. We implemented this tool
using Python programming language along with AT com-
mands. This tool is complementary to our current Model
Tool, which was developed before in our team to develop,
test and validate certain requirements.

(3) TSS Tool validation: This step consisted of the planning
and execution of the following tasks:
• Selection of participants and TSS Tool introduction:
We selected four developers who already work with TSS
product models daily, having executed at least once this
manual process in their normal activities. Then, we trained
them to use the TSS Tool for sample preparation in multi-
ple devices simultaneously. After their training, they were
instructed to use the TSS Tool in some tasks of selected
models as part of this validation experiment. As the ex-
periment was executed, we recorded the times of both
manual and automated preparations, comparing the dif-
ference between them in a controlled scenario, without
affecting their normal activities.

• Interviews: We conducted the interviews during the TSS
Tool trials, face to face with our subjects. We took notes
as the interviews went on and recorded our insights in a
notebook. The participants were free to express their opin-
ions about using both manual and automated processes in
the experiment, reporting the advantages and disadvan-
tages of using the tool regarding time and allocation of
multiples devices in parallel. It is important to emphasize
the anonymity of the opinions we collected, preserving
the authenticity of the answers and satisfaction level of
the user during device setup using TSS tool.

• Observation study: A study was performed related to
TSS device setup preparation. It was conducted with four
developers as subjects, where we recorded execution times
of both manual and automated processes for each devel-
oper in separate sessions.



SAST 2024, September 30-October 04, 2024, Curitiba, PR, Brazil Fernandes et al.

• Analysis of the results: The data collected through the
interviews and the observation study with participants
were summarized and analyzed. The context of such data
is the execution time recorded frommanual and automatic
processes accomplished for all the members of the com-
parative experiment.

4.1 Experiments
Our goal with this experiment is to compare the manual and au-
tomatic TSS setup executions, which we believe will show the
effectiveness of the TSS Tool regarding time decrement, mainly for
parallel executions with multiple devices.

To collect the data of this study, four participants were selected.
The first set of subjects was composed of two experienced devel-
opers, with more than 12 months of experience; and the second
set of subjects was composed of two beginner developers, with
less than 6 months of experience in requirements development for
TSS devices, which can be seen in Table 3. These developers were
trained on how to use the TSS tool, and, during the experiment,
they answered some questions to identify and confirm the main
issues found in manual process and the advantages and challenges
perceived in the new automated process.

Table 3: Characterization of participants.

Participant Category Experience Time
Beginner 1 to 6 months
Experienced more than 12 moths

The experiment involved 18 distinct mobile devices, i.e., smart-
phones, which were selected from different kinds of hardware (HW)
and software (SW) versions. The experiment was executed in three
rounds with three randomly selected device samples. Since the ex-
periment consists of a comparison between manual and automatic
processes, this means we had to use the same round samples to
execute both processes with the different approaches, i.e., manual
and automatic. So, we calculated the total and average times for
each round per approach. We chose average time to be reported
because the execution time can vary due to devices SW and HW
versions, as well as external factors that can influence mainly the
manual process.

Regarding the manual process, the developers received 18 de-
vices, where in each round each participant got three devices and
the carrier code list to work with in the TSS manual setup. They
were instructed to use only one USB port to execute the whole TSS
setup process per device. We timed the experiment rounds, and also
observed and wrote down the main external factors that impacted
the device TSS preparation, e.g., if it was necessary to repeat some
operations more than once or execute some other procedures that
were not checked before.

External factors can mean human error or SW instability in some
steps, as described below:

• Steps before TSS preparation: Some conditions are im-
portant to check in the devices before starting TSS setup
process. Installation of permissions, i.e., tokens, and enabled
USB debug are needed to use AT commands. There’s also

registration in the carrier server to set the final carrier code,
but sometimes some kind of instability happens in the car-
rier server, being necessary to refresh the server page to
continue. For developers, mainly the beginners, the lack of
these manual checks in the appropriated time were observed
during the rounds, increasing the manual execution time.

• Executing TSS preparation: A script with AT commands
is used in a program, step by step, and executed manually,
where each command awaits a valid answer. When this an-
swer is blank or returns something invalid, the developer
must repeat the command until they get a satisfactory result.
This kind of failure was observed in almost all rounds for
experienced and beginner developers.

Regarding the automated process, the developers used the same
18 devices distributed in three devices per round too. They were
also given a carrier code list, a USB hub to support three device
connections at the same time, and the TSS Tool to perform TSS
preparation in multiple devices in parallel. During the experiment,
we timed the rounds and observed if there was any external factor
like the ones found previously. The significant factors transformed
positively through the TSS Tool. Besides being able to work with
three devices in parallel, there were these other factors: 1) Visual
signaling of USB port and token status of each device sample con-
nected in USB hub, since the beginning; 2) Replacing carrier server
to register final carrier ID by equivalent automated command; 3)
AT commands were programmed to execute automatically, without
human interaction, and repeating steps in a high speed almost not
perceived by the user, becoming more stable too.

Finally, we were able to collect enough information to create
summarized tables with Total and Average Times for each round,
analyzing and presenting the results of this study. Additionally, we
collected personal opinions from our participants with the questions
displayed in Table 4.

Table 4: Questions

Questions
Q1 What were the improvements in terms of test activity

that you got regarding the automated process?
Q2 What benefits did you find in our proposal?
Q3 Was there any difficulty or limitation not yet solved?

5 RESULTS AND DISCUSSION
Regarding recorded times, a comparison was made between Total
and Average execution times of TSS device preparation performed
manually (three devices in sequence) and automatically (three de-
vices in parallel). Table 5 summarizes the results obtained for both
categories of participants, where 52% (1h01m36s) is for beginner
testers and 50% (53m07s) is for experienced testers.

Analyzing the results presented in Tables 6 and 7, it is possible
to identify an expressive total time gain on the automated process,
where the execution time is accumulated. When the setting is auto-
mated, there is almost no difference between types of participants,
because the process assumes constant and progressive steps, with-
out external factors to interfere with the result. Thinking in high



TSS Tool: Automation Tool Applied in the True Single SKU
Setup Environment Preparation for Multiple Devices in Parallel SAST 2024, September 30-October 04, 2024, Curitiba, PR, Brazil

Table 5: Complete Rounds

Complete Rounds

Participant Manual Automated
Total
Time
(TT)

Average
Time
(AT)

Total
Time
(TT)

Average
Time
(AT)

TT
Gain

Beginner 1:58:26s 06m35s 56m50s 03m09s 52%
Experienced 1:46:13s 05m54s 53m06s 02m57s 50%

demand tides, the time gain between total and average times will be
even more evident using the automated and parallel process. Still,
even considering average time and a low demand scenario, which is
how we executed this experiment, the manual process with devices
one by one is more time consuming.

Table 6: Manual Setting Experiment

Manual Setting with 3 samples per round
Participant R1 R2 R3 Total

Time
Average
Time

Beginner1 19m48s 19m12s 18m59s 57m59s 06m27s
Beginner2 19m10s 20m45s 20m32s 1h0m27s 06m43s
Experienc.1 18m10s 18m11s 18m08s 54m29s 06m03s
Experienc.2 17m32s 17m10s 17m02s 51m44s 05m45s

All participants: 3:44:39 24m58s

Table 7: Automated Setting Experiment

Automated Setting with 3 samples per round
Participant R1 R2 R3 Total

Time
Average
Time

Beginner1 09m47s 09m47s 09m40s 29m14s 03m15s
Beginner2 09m02s 09m20s 09m14s 27m36s 03m4s
Experienc.1 09m10s 08m54s 08m47s 26m51s 02m59s
Experienc.2 09m05s 08m38s 08m32s 26m15s 02m55s

All participants: 1:49:56 12m13s

When the participants were asked the questions in Table 4, the
opinions were almost all positive too. They were summarized with
the following points without identifying the participant:

• Q1:
– Now, we are able to prepare different TSS samples simul-
taneously and faster;

– While TSS samples are being prepared, in parallel, we are
able to continue the next requirements validation in other
TSS samples that were already prepared;

– Since we can follow visually what is happening, we can
connect a new TSS sample to be prepared if some other
sample finishes as soon as possible, without leaving any
sample in stand-by for a long time.

• Q2:
– In high demand tides, we can deliver more TSS samples
prepared for requirements development and validation in
less time.

• Q3:
– It is important that we mention that we test different kinds
of models with multiple embedded hardware and software
versions, which may present some rare behaviors that can
cause some difficulties as perceived by developers.

– Some device models are processed faster than others. And
for slower samples, the visual answers are also slower.

Through the subjects’ answers, we identified that they noticed
a time gain on TSS preparation due to the tool instance running
simultaneously. Although, it is important to emphasize that, in some
rare moments, the TSS tool didn’t display visually some results in
one or other device in some rounds, not demonstrating to the user,
by visual perception, the need to restart the action. This happens
because the proposed solution has a communication limit between
the Service and the Server with the APK. When the APK is ordered
to run the TSS steps, the answers appear only on web-app side,
without an invalid return associated with APK performance as there
is no answer from the device to show.

6 CONCLUSION AND FUTUREWORK
In this work, the use of a TSS Tool with multiple devices in parallel
was proposed to replace the manual TSS samples preparation, since
almost all models weworkwith in this institute have the TSS feature.
We conducted an experiment with different participant categories,
i.e., beginners and experienced. We also interviewed our subjects to
gather their reports about improvements, benefits and limitations
that came along with the new automated process, which used our
TSS Tool. This also encompassed practical observation along the
interviews with our four subjects. The results were summarized in
tables with accumulative and average execution times, categorized
in TSS manual preparation and TSS automatic processes. A final
table was filled with a gain time of 52% for beginner testers and
50% for experienced testers, demonstrating that the new process is
effective and that it diminishes common errors executed in the old
manual process. Furthermore, more TSS devices are set to follow to
the next requirement validation process. Therefore, the TSS Tool
becomes a strong ally when high demand tides come, because more
devices are set in parallel, decreasing the wait moment between
TSS candidate devices to be prepared and validated in the Model
Tool, which is another tool we use to help in tests automation.

As future work, improvements can be made in the TSS tool, in-
cluding more steps after TSS preparation, integrating setup wizard
automation in multiple devices before requirements embedding
and validation, and reporting problems in execution when a visual
answer delays.

Since the quantity of TSS models is big, varying in different hard-
ware and software versions, we verified that, even when working
with an automated software process with devices in parallel, there
was evidence of different times of TSS preparation. With this, we
identified the opportunity to store information to build a machine
learning model, using information such as models, final carriers,
and preparation times to suggest the best model sets to run TSS
preparation, in order of execution, to save time in high demand sea-
sons, and deliver ready TSS devices on time to develop and validate
UI requirements in the next phase.



SAST 2024, September 30-October 04, 2024, Curitiba, PR, Brazil Fernandes et al.

Additionally, the TSS Tool can be integrated to a remote server,
where candidate model devices not physically available in the insti-
tute can be configured and receive an appropriate TSS preparation.
This kind of integration is important because, sometimes, in an ini-
tial new project moment, there are some model samples allocated
only in another country, and work in TSS preparation in advance
would anticipate important tasks in a research project.

Currently, the Technical Manager (TAM) or Quality Assurance
Project Leader (QA PL) send a previous e-mail requiring TSS config-
uration, in TSS carrier server, for one or more field samples already
available in the market, creating a dependency of product config-
uration with our team when some punctual studies or qualitative
analysis is required. Based on this scenario, integrating the TSS Tool
in a remote server with some samples to perform TSS preparation
automatically can be the right solution to speed up some actions
without our consent.

ACKNOWLEDGMENTS
This work is the result of the RD&I Project ASTRO, carried out
by SIDIA R&D Institute, in partnership with Samsung Eletrônica
da Amazônia Ltda., using resources from Brazilian Federal Law
8.387/1991, in accordance with the provisions of article 39 of Decree
10.521/2020.

REFERENCES
[1] Rabiya Abbas, Zainab Sultan, and Shahid Nazir Bhatti. 2017. Comparative analysis

of automated load testing tools: Apache jmeter, microsoft visual studio (tfs),
loadrunner, siege. In 2017 international conference on communication technologies
(comtech). IEEE, 39–44.

[2] Saja Khalid Alferidah and Shakeel Ahmed. 2020. Automated software testing
tools. In 2020 International Conference on Computing and Information Technology
(ICCIT-1441). IEEE, 1–4.

[3] Paulo Andrade, Kathrian Marques, Luiz Ribeiro, Marcelo da Silva, Hendria Fra-
gata, Adriano Oliveira, and Juan Nogueira. 2023. Test volume mitigation for
mobile devices software development: An improvement approach considering
shared requirements. In Proceedings of the 8th Brazilian Symposium on Systematic
and Automated Software Testing. 1–4.

[4] Mário Barros and Eric Dimla. 2021. From planned obsolescence to the circular
economy in the smartphone industry: An evolution of strategies embodied in
product features. Proceedings of the Design Society 1 (2021), 1607–1616.

[5] Antonio Brígido, Camilo Souza, Fedrik Moura, Marcelo Reis, Andre Neto, and
Bruno Bonifácio. 2021. An Industrial Case Study on Applying Software Testing
Automated in Global Software Development Environment. In 23rd International
Conference on Global Software Engineering and Technology on January, 28-29, 2021
at New York, USA (2021). 1456–1459.

[6] Ana Carolina Chagas, Davi Gonzaga, Leonardo Albuquerque, Flavia Oliveira,
Renata Castro, and Lennon Chaves. 2023. BSA Tool: An Experience Report of
Software Automation to Perform Sanity Tests in a Global Software Development
Environment. In 2023 3rd International Conference on Information Communication
and Software Engineering (ICICSE). IEEE, 15–20.

[7] Wellington Correa, Carol Fernandes, Victor Medeiros, Marcelo Diez, Paulo Lopes,
Bárbara Santos, and Paulo Andrade. 2024. X9: Tool for Tracking Mobile Devices
Among Teams. In 2024 IEEE 14th Symposium on Computer Applications & Industrial
Electronics (ISCAIE). IEEE, 83–88.

[8] Antônio B da Costa, Maria Meireles, Francisco Caio de Barros, Gaspar Mota,
Lennon Chaves, and Lidia Roque. 2022. TSS Script: Automation Tool Applied
in the Preparation of True Single SKU Testing Environment. In 2022 IEEE 2nd
International Conference on Information Communication and Software Engineering
(ICICSE). IEEE, 231–231.

[9] André José De Franca, Gaspar Henrique Alver Mota, Klirssia Isaac Sahdo,
Leonardo Tiago, Flávia Oliveira, and Lennon Chaves. 2023. LinkDoc: An Auto-
mated Process in the Delivery of Documentation in a Global Software Develop-
ment Environment. In 2023 The 5th World Symposium on Software Engineering
(WSSE). 9–16.

[10] Heidilyn Veloso Gamido and Marlon Viray Gamido. 2019. Comparative review of
the features of automated software testing tools. International Journal of Electrical
and Computer Engineering 9, 5 (2019), 4473.

[11] Hussam Hourani, Ahmad Hammad, and Mohammad Lafi. 2019. The impact of
artificial intelligence on software testing. In 2019 IEEE Jordan International Joint
Conference on Electrical Engineering and Information Technology (JEEIT). IEEE,
565–570.

[12] Juha Itkonen, Mika V Mantyla, and Casper Lassenius. 2009. How do testers do
it? An exploratory study on manual testing practices. In 2009 3rd International
Symposium on Empirical Software Engineering and Measurement. IEEE, 494–497.

[13] Volker G Kuppelwieser, Phil Klaus, Aikaterini Manthiou, and Othman Boujena.
2019. Consumer responses to planned obsolescence. Journal of Retailing and
Consumer Services 47 (2019), 157–165.

[14] Duaa R Mohammad, Sajedah Al-Momani, Yahya M Tashtoush, and Mohammad
Alsmirat. 2019. A comparative analysis of quality assurance automated testing
tools for windows mobile applications. In 2019 IEEE 9th Annual Computing and
Communication Workshop and Conference (CCWC). IEEE, 0414–0419.

[15] Chadatarn Raksawat and Pattama Charoenporn. 2021. Software testing system
development based on ISO 29119. Journal of Advances in Information Technology
12, 2 (2021).

[16] Samsung. 2024. What is True Single SKU? https://www.samsung.com/uk/
support/mobile-devices/true-single-sku/. Accessed: 2024-01-26.

[17] Mubarak Albarka Umar and Chen Zhanfang. 2019. A study of automated software
testing: Automation tools and frameworks. International Journal of Computer
Science Engineering (IJCSE) 6 (2019), 217–225.

https://www.samsung.com/uk/support/mobile-devices/true-single-sku/
https://www.samsung.com/uk/support/mobile-devices/true-single-sku/

	Abstract
	1 Introduction
	2 Theoretical Background
	3 Current scenario and our proposal
	4 Methodology
	4.1 Experiments

	5 Results and Discussion
	6 Conclusion and Future Work
	Acknowledgments
	References

