
Mutation Testing to Support the Security Testing of Android
Applications

Eduardo S. M. de Vasconcelos
ICMC/USP

Universidade de São Paulo
São Carlos, SP, Brazil

eduardovasconcelos@usp.br

Marcio E. Delamaro
ICMC/USP

Universidade de São Paulo
São Carlos, SP, Brazil
delamaro@icmc.usp.br

Simone R. S. Souza
ICMC/USP

Universidade de São Paulo
São Carlos, SP, Brazil
srocio@icmc.usp.br

Abstract
The Android system has seen considerable growth in its vulner-

ability landscape due to an extensive application catalog catering
to many user needs, many of which are security sensitive. This
growth leads to an ever-increasing concern about security robust-
ness; hence, security testing Android apps has gained substantial
prominence in recent years. Many security professionals and tools
specialize in security testing Android applications, but the quality
of testing procedures varies significantly. In this paper, we present a
preliminary study exploring the use of Mutation Testing to support
Android security testing. We propose novel mutation operators,
implement them in code, and conduct an experiment to evaluate
their resemblance to real-world vulnerabilities. We test our mutants
using a well-known open-source tool named mobsfscan. Our re-
sults indicate the adequacy of our operators for supporting security
testing. Moreover, we reveal a potential design flaw in mobsfscan.
CCS Concepts
• Software and its engineering→ Software testing and debug-
ging.
Keywords
Software Testing, Mutation Testing, Security Testing, Android, Mu-
tation Operator

1 Introduction
As of December 2023, more than 2.4 million applications were

available for download on Google’s official Android application
repository, namely Google Play 1 [52]. Since many of these ap-
plications are published by amateur developers [3], establishing
application quality safeguards becomes relevant. Many applica-
tions contain defects, and these might be severe ones [14]. Given
the sensitive use cases of many contemporary Android applications,
quality improvement efforts focused on the security requirements
of Android applications become particularly relevant.

Indeed, it is evident that, since 2016, there has been a sheer in-
crease in the number of security vulnerabilities reported in Android
in the Common Vulnerabilities and Exposures (CVE) database [40].
Likewise, security testing for Android apps has been gaining sub-
stantial prominence ever since. Nowadays, security professionals
and automated tools specialize in security testing Android apps.
As diverse as these are, the quality of testing procedures varies
significantly. Thus, the question arises as to how to verify whether
Android application security testing procedures meet acceptable
levels of quality.

1https://play.google.com/

In recent years, there has been a movement in the scientific com-
munity to explore Mutation Testing in Android. Mutation Testing
has seen considerable success in improving the quality of Android
application test suites in various contexts [50]. Despite the success
achieved in applying Mutation Testing in other testing domains,
there is still room for advancement in testing for Android security.

This paper introduces a preliminary study that uses Mutation
Testing for Android application security testing. We begin by ex-
amining the Android vulnerability landscape to identify common
vulnerabilities. Based on these findings, we propose new mutation
operators for Android app security. In total, 14 mutation operators
were defined, with 5 each for Java and Kotlin, and 4 for XML. We
developed a Mutation Testing tool named [54] to support mutant
generation. seed-vulns implements the 14 mutation operators and
can generate mutants from an Android app’s codebase.

We evaluate our mutation operators using a well-known security
static analysis tool named mobsfscan [2]. The objective is to assess
whether or not the proposed mutation operators resemble real-
world vulnerabilities. We confront mutation logs with vulnerability
scanning reports provided by the tool. The results indicate the
adequacy of proposed mutation operators for known vulnerabilities.

With this paper, we make the following contributions:

• We propose 14 security mutation operators for Android,
accounting for Java, Kotlin, and XML;

• We develop a testing tool, namely seed-vulns, to support
the proposed mutation testing for Android security. The tool
is available on GitHub [54];

• We reinforce the viability of applying Mutation Testing to
Android application security testing;

• We find a potential design flaw in a well-known open-source
security static analysis tool, which results in systematic false
negatives, and we report such finding to its maintainer for
patching;

• We identify future research opportunities in Mutation Test-
ing applied to Android application security testing.

The remainder of this paper is divided into the following sections.
Section 2 provides background on the major concepts involved in
the development of this study. Ourmutation operators are described
in Section 3. The experimental strategy we employed to answer our
research question is covered in Section 4. Section 5 covers results
discussion and threats to validity. Related work is presented in
Section 6 and concluding remarks are presented in Section 7.

SAST’24, September 30–October 04, 2024, Curitiba, Brazil Vasconcelos et al.

2 Background
2.1 Android Applications

Android applications, also known as apps, are the topmost com-
ponent of the Android operating system architecture. They can
be pre-installed by the device manufacturer, providing basic tele-
phony, system management functionalities, and potentially other
services that give the manufacturer a competitive edge. Android
device owners can also install their own apps from various sources,
including Google’s official Android app repository, Google Play,
repositories provided by the device manufacturer, or alternative
repositories like open-source ones.

The most basic Android app format is an Android Package (APK).
APK files contain bytecode compiled for the Android Runtime (ART)
and all other runtime resources required to run the app. During
installation, these are extracted and copied to system storage [18].

Among other constructs, Android apps define what is called an
application manifest. It is an XML file that describes, at a high level,
the structure of the app it represents. It contains an exhaustive list of
application components [17], namely activities, services, broadcast
receivers, and content providers; the application permissions and
the hardware and software resources necessary for the app to run.
One must remember that app components are coded in high-level
programming languages, such as Java and Kotlin, using the Android
Application Programming Interface (API).

An activity is an app component that interacts directly with
the user through a Graphical User Interface (GUI) [25]. Activities
must be declared in the manifest through the activity element,
which in turn is located within the application element [15] of
the manifest.

A service is an app component that does not have a GUI and
whose execution occurs in the background, without the need for
user interaction [25].

A broadcast receiver is a component through which the app
may receive intents – an object representing a message exchanged
between Android applications [25] –, and which may contain a de-
scription of an operation to be performed by the receiving app [19].
Unlike activities and services, broadcast receivers do not necessarily
need to be described in the manifest, and may be instantiated at
runtime.

A content provider is a component through which the app, using
a structured interface, can provide data to other applications [25].
Indeed, content providers resemble conventional databases in their
structure and usage.

Android apps actively communicate with each other and the An-
droid system through various Inter-Process Communication (IPC)
mechanisms, such as the aforementioned intents. Intents contain
an operation that the sending application intends to perform and
additional information relevant to its execution [25].
2.2 Android Application Vulnerabilities

To support the decision-making regarding proposing relevant
Android app security mutation operators, we have surveyed three
knowledge bodies of Android application vulnerabilities, namely
the OWASP Mobile Top 10 Project [43], Google’s Developers Com-
mon Risks [28] and the academia [1, 4, 29, 33, 34].

We consider the Google classification for vulnerabilities the most
adequate from a practical point of view. OWASP’s Mobile Top

10 and most academic studies provide higher-level vulnerability
descriptions, taxonomies, rankings, and classifications. Developers
Common Risks, on the other hand, provides in-depth descriptions
of vulnerabilities from an Android application programming point
of view, which is exceptionally useful for our purpose of modeling
realistic Android programming errors leading to security defects
which could be labeled as vulnerabilities. Therefore, we focused on
Google’s classification as a primary source of information regarding
Android vulnerabilities to propose mutation operators.
2.3 Mutation Testing

Mutation Testing may be understood as a software testing cri-
terion in which, taking a computer program as input, alternative
versions of the program – mutants – are generated by introducing
small defects – mutations – in the original program. The mutants
obtained are then tested to verify whether the set of test cases
written to test the original program is capable of detecting the mu-
tations purposefully introduced in the mutants, thus measuring the
quality of the test cases [27] and aiding in its improvement [9].

Mutations are performed by special operators called mutation
operators. Mutation operators model errors inherent to the soft-
ware development process that result in defects in the program
under analysis. Therefore, mutation operators are firmly attached
to the programming language; consequently, applying Mutation
Testing depends on the availability of mutation operators for the
programming language and specific software domain.
3 Mutation Operators for Security

Vulnerabilities
This section presents the mutation operators we propose for

the context of Android application security testing. The following
subsections describe each proposed mutation operator, which is
named according to the mutation they refer to. Each subsection
presents a security vulnerability inherent to Android apps, modeled
by the proposed mutation operator.
3.1 ImproperExport Mutation Operator

When defining application components in the manifest, it is
possible to specify the exported XML property, which can assume
the values true or false.

When exported is set to true, the component can be started by
other applications on the system. In this case, the component is
said to be exported. On the other hand, when it is set to false, the
component cannot be started by other applications on the system.

Improperly assigning exported="true" may create a vulnera-
bility since external apps accessing the exported component may
lead to the unintentional exposure of sensitive information. To
avoid this vulnerability, Android secure development best practices
mandate that the value of property exported should always be
defined explicitly [16].

This vulnerability leads to the definition of mutation operator
ImproperExport, whichmodels the improper exposure of an appli-
cation component by inadvertently specifying exported="true"
in the manifest element that defines the component in question.

Listing 1 illustrates the definition of an Android activity com-
ponent in the manifest. Listing 2 shows the mutated code of such
component after operator ImproperExport has been applied to it.
Property exported has its value changed from false to true.

Mutation Testing to Support the Security Testing of Android Applications SAST’24, September 30–October 04, 2024, Curitiba, Brazil

3.2 DebuggableApplication Mutation Operator
When defining an Android app using the application element

of the manifest, it is possible to specify the debuggable property as
true or false. This determines whether or not it is possible to attach
the app to a debugger.

When the value of debuggable is true, the system allows debug-
ging of the app. Conversely, if the value of debuggable is false, the
system does not allow debugging. Thus, assigning debuggable to
true means potentially allowing access to administrative elements
of the app. In contrast, such elements should remain inaccessible to
individuals other than app developers [6]. Attaching to a debugger
may facilitate, for example, reverse engineering an Android app or
even access to sensitive data that it handles.

To mitigate this vulnerability, secure development best practices
mandate that the value of debuggable should be assigned false
[6]. Based on the vulnerability in question, we define operator De-
buggableApplication, which models the improper assignment of
value true to the debuggable property of the application element
in the application manifest.

Listing 3 illustrates a fictitious Android application definition
in the application manifest. Such application is not debuggable.
Listing 4 shows the mutated code of such application after op-
erator DebuggableApplication has been applied to it. Property
debuggable has its value changed from false to true.

3.3 ImplicitPendingIntent Mutation Operator
A pending intent can be understood as an authorization granted

by an application, say app A, to another application, say app B,
so that app B can perform a scoped operation, enjoying the same
privileges as app A, with such privileges being granted solely for
the execution of said operation.

A pending intent is represented by an instance of PendingIntent,
whose attributes specify the intended operation. When instantiat-
ing a pending intent and delegating it to app B, it is up to app A to
specify correct attributes scoping the operation delegated to app
B. If app A fails to do so, it is said to have delegated an implicit
pending intent to app B.

Once instantiated, the PendingIntent is handed over to app
B. A vulnerability arises that app B may at this point modify the
PendingIntent object if it happens to be implicit, hence abusing
the privileges of app A. This may lead to improper access to re-
sources to which app B should not have access.

To mitigate this vulnerability, secure development best practices
recommend specifying attributes action, package, and component
of a PendingIntent. Additionally, for applications designed for An-
droid API levels 23 or higher, and lower than 30, flag PendingIntent.
FLAG_IMMUTABLE should be applied to the instantiated object, which
instructs the system not to allow its modification [23].

We derive operator ImplicitPendingIntent from the vulnerabil-
ity described. It models the situation where the developer does not
apply flag PendingIntent.FLAG_IMMUTABLE to a PendingIntent
object, allowing its modification, and potentially leading to abuse.

Listing 5 illustrates the instantiation of a PendingIntent object
using PendingIntent.FLAG_IMMUTABLE in the application source
code. Listing 6 shows the mutated source code after operator Im-
plicitPendingIntent has been applied to the excerpt. Pending

Intent.FLAG_IMMUTABLE is substituted by PendingIntent.FLAG_
MUTABLE.

Listing 1: ImproperExport: original source code.
< a c t i v i t y

andro id :name= " . S e n s i t i v e A c t i v i t y "
a n d r o i d : e x p o r t e d = " f a l s e "
. . . / >

Listing 2: ImproperExport: mutated source code.
< a c t i v i t y

andro id :name= " . S e n s i t i v e A c t i v i t y "
a n d r o i d : e x p o r t e d = " t r u e "
. . . / >

Listing 3: DebuggableApplication: original source
code.
< a p p l i c a t i o n

and r o i d : d e bugg ab l e = " f a l s e " . . . >
. . .

< / a p p l i c a t i o n >

Listing 4: DebuggableApplication: mutated source
code.
< a p p l i c a t i o n

and r o i d : d e bugg ab l e = " t r u e " . . . >
. . .

< / a p p l i c a t i o n >

3.4 HardcodedSecret Mutation Operator
Many apps implement cryptographic functions, such as data

integrity and confidentiality. However, at times, the secure storage
of cryptographic keys is neglected. Apps may store keys and secrets
improperly, i.e. hardcoded in the source code, in the form of strings
or arrays of bytes. Under such circumstances, the compromise of
cryptographic functions is almost certain, for instance, allowing
adversaries to access sensitive data protected by cryptography [22].

To model this vulnerability, we propose operatorHardcodedSe-
cret. It models the situation in which the app developer inserts a
secret in cleartext into the source code, making it detectable by code
inspection or automated scanning mechanisms capable of detecting
high entropies.

Listing 7 illustrates a fictitious class definition in the application
source code. After operator HardcodedSecret is applied to the
excerpt in question, a high entropy string attribute, resembling a
hardcoded cryptographic secret, is introduced. Listing 8 shows the
corresponding mutated code.

SAST’24, September 30–October 04, 2024, Curitiba, Brazil Vasconcelos et al.

Listing 5: ImplicitPendingIntent: original source
code.
Pend i ng I n t en t p end i ng I n t en t =

Pend i ng I n t en t . g e t A c t i v i t y (
. . .
P end i ng I n t en t . FLAG_IMMUTABLE

) ;

Listing 6: ImplicitPendingIntent: mutated source
code.
Pend i ng I n t en t p end i ng I n t en t =

Pend i ng I n t en t . g e t A c t i v i t y (
. . .
P end i ng I n t en t . FLAG_MUTABLE

) ;

Listing 7: HardcodedSecret: original source code.
public c l a s s SomeClass {

. . .
}

Listing 8: HardcodedSecret: mutated source code.
public c l a s s SomeClass {

public S t r i n g s e c r e t =
"MIICWwIBAAKBgQCbtF . . . " ;

. . .
}

Listing 9: TapjackingFullOcclusion: original
source code.
<But ton

. . .
a nd ro i d : f i l t e rTouche sWhenObs cu r ed =

" t r u e " >
< / But ton>

Listing 10: TapjackingFullOcclusion: mutated
source code.
<But ton

. . . >
< / But ton>

3.5 Tapjacking Mutation Operators
Similarly to the clickjacking vulnerability in the context of web

applications, the tapjacking vulnerability in the context of mobile
applications refers to the situation in which a malicious application
manages to trick the user into believing that he is tapping the
smartphone screen within a certain harmless context, when in fact
such interaction is carried out in a malicious context.

To carry out a tapjacking attack, the malicious application over-
lays the graphical elements with which it wants the user to interact
with seemingly harmless graphical elements. The harmless ele-
ments are strategically positioned to lead the user to tap exactly on

the desired screen regions, where the hidden malicious graphical
elements are located. When the user taps on a harmless element of
the screen, the malicious application propagates the user’s touch to
the overlaid graphical element, leading to the inadvertent issuance
of commands that the user never intended.

In this study, wemodel three types of the tapjacking vulnerability,
each one by a different mutation operator [24].

TapjackingFullOcclusion Mutation Operator: the full occlu-
sion tapjacking vulnerability occurs when the malicious application
completely overlays the malicious graphical element positioned
behind the seemingly harmless graphical element. To mitigate this
vulnerability, secure development best practices recommend using
the filterTouchesWhenObscured="true" attribute in the layout
configuration of the sensitive graphical element in question. This
attribute prevents the propagation of touches to the graphical el-
ement when it is overlapped and can be controlled either in the
static XML file that defines the layout of the element or program-
matically when the application instantiates the graphical interface
of the element [24].

To model the discussed vulnerability, we propose operator Tap-
jackingFullOcclusion, which models the situation where the de-
veloper inadvertently omitted the aforementioned configuration in
the layout of the sensitive graphical element.

Listing 9 illustrates the definition of a fictitious graphical element
using filterTouchesWhenObscured="true". After applying op-
erator TapjackingFullOcclusion, such attribute is removed, as
shown in the mutated excerpt in Listing 10.

TapjackingPartialOcclusion Mutation Operator: the partial
occlusion tapjacking vulnerability is similar to the full occlusion
vulnerability, differing in how the malicious application overlays
the malicious graphical element. In the partial occlusion type, the
overlay is not complete but merely partial.

Tomitigate the described vulnerability, it is up to the developer to
actively check for touch events on the sensitive graphical element,
via the public boolean dispatch TouchEvent(MotionEvent
event); method of the sensitive graphical element. If event con-
tains flag MotionEvent.FLAG_WINDOW_IS_PARTIALLY_OBSCURED,
it is up to the developer to instruct the method to return false, indi-
cating that the graphical element is partially overlapped, and touch
events on it should not be accepted [24]. When the developer omits
this check, a potential vulnerability arises. We propose operator
TapjackingPartialOcclusion to model the situation where the
developer fails to correctly check for MotionEvent.FLAG_WINDOW_
IS_PARTIALLY_OBSCURED before accepting a touch event.

Listing 11 illustrates a fictitious implementation of the aforemen-
tioned method. After operator TapjackingPartialOcclusion is
applied, as shown in Listing 12, the method immediately propagates
the touch event in question, without any checking whatsoever.

TapjackingSetHideOverlayWindows Mutation Operator:
the last kind of tapjacking wemodel is named overlay windows. The
Android system defines a special permission called SYSTEM_ALERT_
WINDOW that allows applications to create windows to overlay other
apps’ windows. In API versions 31 or higher, developers can use
the public final void setHideOverlay Windows(boolean
hide); method, with argument true, to prevent windows created

Mutation Testing to Support the Security Testing of Android Applications SAST’24, September 30–October 04, 2024, Curitiba, Brazil

by other apps from appearing over their own windows [24]. Omit-
ting it, therefore, exposes potentially sensitive windows to tapjack-
ing. We propose operator TapjackingSetHideOverlayWindows
to model the situation where the developer omitted the call to
.setHideOverlayWindows(true); when instantiating an applica-
tion window.

Listing 13 illustrates a call to method setHideOverlayWindows
providing argument true. After applying operator TapjackingSet
HideOverlayWindows, the method’s argument is changed from
true to false, as shown in Listing 14.

Listing 11: TapjackingPartialOcclusion: original
source code.
@Override
public boolean d i spa t chTouchEven t (

MotionEvent even t
) {

. . .
}

Listing 12: TapjackingPartialOcclusion: mutated
source code.
@Override
public boolean d i spa t chTouchEven t (

MotionEvent even t
) {

return super . d i spa t chTouchEven t (even t) ;
. . .

}

Listing 13: TapjackingSetHideOverlayWindows:
original source code.
. . .
getWindow () . setHideOver layWindows (true) ;
. . .

Listing 14: TapjackingSetHideOverlayWindows:
mutated source code.
. . .
getWindow () . setHideOver layWindows (f a l s e) ;
. . .

Listing 15: PlaintextHTTP: original source code.
< a p p l i c a t i o n

. . . >
< / a p p l i c a t i o n >

Listing 16: PlaintextHTTP: mutated source code.
< a p p l i c a t i o n

. . .
a n d r o i d : u s e s C l e a r t e x t T r a f f i c = " t r u e " >

< / a p p l i c a t i o n >

3.6 PlaintextHTTP Mutation Operator
Sending and receiving data in plaintext HTTP is considered a

security vulnerability in Android. It allows adversaries positioned
between the client app and its server to eavesdrop data [21].

To prevent this vulnerability, in more recent versions of the
operating system, starting from API level 28, the use of HTTP
in plaintext is now disabled by default. Developers can still force
its use by modifying security attribute usesCleartextTraffic in
the application manifest. usesCleartextTrafficmay be assigned
either true or false, with false being the default value for API levels
equal to or greater than 28. If the developer chooses to change it
to false, there is the risk of allowing data to travel inappropriately
in plaintext, hence exposing it to adversaries [20]. Therefore, we
propose operator PlaintextHTTP, which models this situation.

Listing 15 illustrates the definition of an application in the man-
ifest. Listing 16 shows the result of applying operator Plaintex-
tHTTP to this excerpt: attribute usesCleartextTraffic is intro-
duced and assigned the value true.
3.7 seed-vulnsMutation Tool

To automate the application of the proposed mutation operators,
we have implemented a tool named seed-vulns [54]. seed-vulns
is a command-line tool implemented in Python, capable of mutating
Android apps based on their source code. Apart from XML, which
is familiar to the static configuration portion of all Android apps, it
also supports Java and Kotlin, the main programming languages
used in modern Android application development.

The basic functioning of seed-vulns is as follows: it expects two
inputs, namely a codebase and a list of configuration parameters
defining which operators it is supposed to apply. The tool processes
the codebase in search of viable mutation points and outputs one
mutant codebase per viable mutation point, along with mutation
logs. Such logs contain the location where each mutation was ap-
plied, the original code, the mutated code, and the identifier of
the corresponding mutant. The leftmost part of Figure 1 illustrates
the basic functioning of seed-vulns. Mutants𝑀1 to𝑀𝑁 represent
mutants generated, whereas mutation logs are identified by the
corresponding𝑚1 to𝑚𝑁 outputs.

For the time being, the tool is only capable of applying operators,
but in future versions, we plan to enhance it to include mutant anal-
ysis and evaluation so that it more robustly supports the application
of the criterion to Android apps. The tool is engineered in such
a way as to automatically recognize the programming language
that has been used to develop its input app and to choose mutation
operators accordingly. Likewise, hybrid apps (i.e., developed partly
in Java and partly in Kotlin) are supported seamlessly.

The complete set of mutation operators that seed-vulns sup-
ports is depicted in Table 1. Note that for operator TapjackingFul-
lOcclusion, there are means to achieve the same mutation using
both the Android API and static XML configurations. seed-vulns
implements both. Thus, starting from the 8 proposed mutation op-
erators we have previously introduced, we end up with 14 mutation
operators targeted specifically at Android application security: 5
for Java, 5 equivalent ones for Kotlin, and other 4 for XML.
4 Experimental Study

To evaluate how well our operators resemble real-world vul-
nerabilities, we have developed a Android mutation tool named

SAST’24, September 30–October 04, 2024, Curitiba, Brazil Vasconcelos et al.

Table 1: seed-vulnsmutation operators.

Operator Java Kotlin XML
ImproperExport ✓
DebuggableApplication ✓
ImplicitPendingIntent ✓ ✓
HardcodedSecret ✓ ✓
TapjackingFullOcclusion ✓ ✓ ✓
TapjackingPartialOcclusion ✓ ✓
TapjackingSetHideOverlayWindows ✓ ✓
PlaintextHTTP ✓

seed-vulns, which is publicly available on GitHub [54]. We shall
generate mutants for a total of 10 open-source Android apps, per-
form security tests against each of their mutants using awell-known
Android security testing tool, namely mobsfscan [2] and then an-
alyze the vulnerability reports that result from this exercise to
determine whether mobsfscan will detect our mutations as vulner-
abilities or not. With this, we hope to answer the following research
question:

𝑅𝑄 : Do the proposed mutation operators represent
real-world vulnerabilities found in Android apps?

4.1 Hypothesis Formulation
We hypothesize that applying our proposed mutation operators

to subject apps and performing security tests against the mutants
that result will lead to detecting mutations as security vulnerabil-
ities, hence attesting to the adequacy of our mutation operators
and their quality regarding their ability to generate mutations that
resemble real-world vulnerabilities.

Therefore, we formulate our null hypothesis as follows:
𝐻0 : The mutations are not detected as vulnerabilities.

And our alternative hypothesis:
𝐻𝐴 : The mutations are detected as vulnerabilities.

Since mutation operators are independent, we shall evaluate
our hypothesis concerning each mutation operator individually.
While doing so, we shall look at the ratio between the number of
mutations detected as vulnerabilities and the number of mutations
introduced to the mutants of each subject app. For instance, suppose
that applying mutation operator O to app A results in 10 mutants
(10 mutations). If security testing detects 8 out of 10 such mutations
as vulnerabilities, this yields a detection/mutation ratio of 8/10 (or
0.8) for app A, for operator O.
4.2 Subject Apps

In order to carry out the experiment, we chose 10 open-source
Android apps, all from the OWASP MASTG (Mobile Application
Security Testing Guide) vulnerable applications catalog [44]. These
are purposefully vulnerable open-source Android apps developed
to serve as educational resources for mobile application security
professionals. Table 2 shows the programming language in which
each of these apps has been coded and a brief description of each
one.

As per Table 2, 6 out of 10 subject apps have been coded in
Java, while 4 have been coded in Kotlin. Notwithstanding, 6 apps
are generic test apps, given that they do not attempt to mimic
real Android apps. They merely implement a set of vulnerabilities

Figure 1: Evaluation execution flow.

purposefully. A total of 3 apps attempt to mimic banking apps.
Finally, 1 app attempts to mimic a shopping app.

Table 2: Subject apps list.

App Language Description
AndroGoat [46] Kotlin Generic tests
Digitalbank [48] Java Dummy bank
diva-android [32] Java Generic tests
DodoVulnerableBank [47] Java Dummy bank
finstergram [39] Kotlin Generic tests
InsecureBankv2 [49] Java Dummy bank
InsecureShop [7] Kotlin Dummy shop
MASTG-Android-Kotlin-App [42] Kotlin Generic tests
MASTG-Android-Java-App [42] Java Generic tests
ovaa [30] Java Generic tests

4.3 Security Testing Tool
We used mobsfscan [2] to search for vulnerabilities in mutants

generated during the experiment. First published in 2021 as part of
the renownedMobSF framework, mobsfscan is a static analysis tool
capable of finding insecure patterns in mobile application source
code.
4.4 Execution Flow

Figure 1 depicts the execution flowwe used to evaluate our muta-
tion operators. Based on input configuration parameters that never
change throughout the entire experiment, we used seed-vulns to
generate mutants of each aforementioned subject app. This process
results in a set of mutant apps (from 𝑀1 to 𝑀𝑁) and correspond-
ing mutation logs (from𝑚1 to𝑚𝑁). Each mutant𝑀𝑖 contains one
single mutation, and each corresponding mutation log𝑚𝑖 stores
information detailing it.

After generating mutants, we test each mutant 𝑀𝑖 from 𝑀1 to
𝑀𝑁 using mobsfscan. A vulnerability report, namely 𝑉𝑅𝑖 , results
from this step. 𝑉𝑅𝑖 details the vulnerabilities that mobsfscan was
able to find in mutant𝑀𝑖 . Finally, we then analyze𝑉𝑅𝑖 to determine
if it contains the vulnerability introduced by 𝑚𝑖 . We repeat this
process for every subject app and their respective mutants.
5 Results and Discussion

In this section, we look at the results of generating and examining
mutants. We scan each mutant for vulnerabilities using mobsfscan,

Mutation Testing to Support the Security Testing of Android Applications SAST’24, September 30–October 04, 2024, Curitiba, Brazil

and we compare the resulting vulnerability reports with the mu-
tation logs generated by seed-vulns during mutant generation.
With this exercise, we are able to determine whether introduced
mutations were detected as vulnerabilities or not.

In total, seed-vulns generated 286 mutants. These were created
and saved, along with their respective mutation logs, for later scan-
ning. Figure 2 shows the distribution of mutants the tool generated
for each subject app, while trying to apply all 14 operators to each
one. The total number of mutants generated for each app is shown
in bold.

Listing 17: Original code of .XSSActivity.
< a c t i v i t y

andro id :name= " . XSSAc t i v i t y "
a n d r o i d : l a b e l = " @str ing / x s s " / >

Listing 18: .XSSActivity mutated by ImproperEx-
port.
< a c t i v i t y

andro id :name= " . XSSAc t i v i t y "
a n d r o i d : l a b e l = " @str ing / x s s "
a n d r o i d : e x p o r t e d = " t r u e " >
< ! −− Mutated by s e ed − vu l n s −−>

< / a c t i v i t y >

5.1 Characteristics of Mutants
By examining Figure 2, it is easy to notice that several mutation

operators are not represented among generated mutants. These
are ImplicitPendingIntent and all three tapjacking operators.
Furthermore, several others are overrepresented, namely Improp-
erExport and HardcodedSecret.

These results are expected. Pending intents and tapjacking struc-
tures are not some of the the most frequent constructs in Android.
It is natural that they do not appear in the set of subject apps, as
they all have rather small codebases. Furthermore, the number
of mutants generated is within the expected range, since it was
not feasible to apply all operators. In addition, operators Debug-
gableApplication and PlaintextHTTP produce each, at most, a
single mutant per application, since there exists at most one viable
mutation point for them in any Android application.

As for the overrepresented operators, their high frequencies are
easily explained by the fact that their mutation points are very easily
found in pretty much any Android app: ImproperExport operates
over non-exported application components, whereas Hardcoded-
Secret operates over any Java or Kotlin class definition.
5.2 Detectability of Mutations as Vulnerabilities

Table 3 shows the results obtained from security scanning gener-
ated mutants using mobsfscan. Operators that could not be applied
to any subject app, namely ImplicitPendingIntent and the three
tapjacking operators, were omitted.

Column Mutants shows the total number of mutants generated
for each subject app. Detection/Mutation Ratio shows the proportion
between mutations that mobsfscan could detect as vulnerabilities
and the total number of mutations resulting from applying each
mutation operator to each subject app. To illustrate, the detection/-
mutation ratio of ImproperExport for subject app AndroGoat is

0/23 (or 0.0), meaning that mobsfscan was not able to detect any
out of the 23 mutants that resulted from applying operator Improp-
erExport to the subject app in question. Detection/mutation ratios
of 0/0 (N/A) mean that no mutations of that type were introduced
in the subject app. By inspecting Table 3, several aspects of the
results stand out.

All debuggable application mutations were correctly de-
tected as vulnerabilities. This means that we may reject the null
hypothesis, and operator DebuggableApplication adequately re-
sembles real-world instances of the vulnerability it models.

The same observation holds for the instances of plaintext
HTTPmutations.Again, wemay reject the null hypothesis. Hence,
the operator PlaintextHTTP also resembles real-world instances
of the vulnerability it models.

No instances of improper export mutations were detected
as vulnerabilities.We have no means to reject the null hypoth-
esis. Thus, technically, we must accept it and conclude that the
ImproperExport operator is inadequate. There is a detail inherent
to this operator, though, that we must bear in mind to adequately
diagnose the situation. Improper exports arise from exporting sen-
sitive application components, but recognizing sensitive compo-
nents is not trivial. It depends on the app’s context and requires
human analysis. One of the subject apps, InsecureShop, is known
to contain an improper export [7] (namely, exporting provider
.InsecureShopProvider). Yet, the tool failed to detect even this
occurrence. Hence, this result, along with the intrinsically semantic
nature of improper exports, leads us to believe that we may not,
based solely on the results herein, neither refute nor confirm the
adequacy of operator ImproperExport. On the other hand, by ex-
amining the source code of its mutants, we may confirm that they
contain the correct constructs. To illustrate, Listing 17 contains the
original code of subject app AndroGoat’s .XSSActivity, whereas
Listing 18 contains the mutated code. Thus, we argue that our op-
erator correctly models the construct that leads to the vulnerability.
Nevertheless, due to the semantic nature of this vulnerability and
the limitations of our tests, it was impossible to detect improper ex-
port mutations as vulnerabilities. Doing so would require different
kinds of tests, perhaps involving human analysts.

By examining column HardcodedSecret of Table 3, it is ev-
ident that there were systematic inconsistencies in detecting
instances of hardcoded secret mutations as vulnerabilities.
In 6 out of 10 subject apps, mobsfscan has correctly detected all
mutations as vulnerabilities, yielding a detection/mutation ratio of
1.0. In 4 out of 10 subject apps, though, the tool failed to detect all
hardcoded secrets, yielding a detection/mutation ratio of 0.0. This
is inconclusive. Yet, by examining the source code of generated
mutants in which no mutations were detected as vulnerabilities, we
notice that mutations were, indeed, applied correctly, and there is
no reasonable explanation as to why the tool failed to detect them
as vulnerabilities while detecting virtually the same patterns as
vulnerabilities in other subject app mutants. To illustrate, Listing 19
shows the definition of subject app AndroGoat’s TrafficActivity,
in which a hardcoded secret mutation was introduced, yet remained
undetected by mobsfscan. All instances of hardcoded secret muta-
tions correctly detected as vulnerabilities closely resemble this one.
The only reasonable explanation we could think of for this result
is that there must be a design flaw in mobsfscan, which leads to it

SAST’24, September 30–October 04, 2024, Curitiba, Brazil Vasconcelos et al.

Figure 2: Mutants generated per subject app and mutation operator.

systematically failing to find hardcoded secrets in some cases. We
have already contacted the maintainer of mobsfscan in order to
report our findings and to contribute with investigating the issue
and eventually patching the tool. Thus, again, we argue that our
operator correctly models the construct leading to the hardcoded
secret vulnerability.

Listing 19: False negative hardcoded secret.
c l a s s T r a f f i c A c t i v i t y :

AppCompatAct iv i ty () {

p r i v a t e v a l KEY =
" a8a3abed06 . . . " / / 512 by t e s
/ ∗ Mutated by seed − vu ln s ∗ /

. . .

5.3 Threats to Validity
In order to evaluate the adequacy of our proposed operators,

we have selected subject apps from a well reputable open-source
vulnerable app catalog. Such apps contain fabricated vulnerabilities
meant to mimic real-world ones. We assume that these are repre-
sentative of real-world vulnerabilities. Yet, we cannot dismiss the
possibility that we could have obtained different results have we
used a different set of subject apps, perhaps one comprised of end
user apps obtained from Google Play.

Another limitation of our approach is the fact that the exam-
ination of vulnerability reports and mutation logs to determine
whether mutations were correctly identified as vulnerabilities was
performed by a single researcher, namely the main author. Since
seed-vulns is not yet a complete mutation testing tool, in the
sense that it currently implements only mutant generation, the
analysis reported herein was a semi-automated process. As much
as due diligence was done in order to mitigate the risk of mistakes
in the analysis and compilation of results, we cannot neglect the
possibility of occasional human error.

6 Related Work
While investigating Mutation Testing for Android, we noticed

that the criterion has been successfully used in testing Android apps
in recent years. A systematic mapping carried out in 2020 supports

this observation [51]. This mapping analyzes 16 primary studies,
of which 14 have Mutation Testing as their primary focus. The first
study analyzed dates back to 2015 [10], with most of the studies
being conducted between 2017 and 2020 [51]. Most of the studies
published in the area focus on validating/evaluating the possibility
of using Mutation Testing for Android apps and proposing tools to
make it viable.

One such study [10] seeks to investigate the practicality of per-
forming Mutation Testing in Android. The authors propose 8 mu-
tation operators, develop a prototype tool that implements them,
called muDroid, and exercise it against an application obtained from
Google Play, demonstrating the applicability of the criterion. One
of the proposed operators, the APD (Activity Permission Deletion)
operator, relates to application security.

In another study [13], the researchers reinforce the feasibility of
adopting Mutation Testing in Android applications and propose 3
new operators specific to Android apps.

In [14], an experimental study confirms the effectiveness of ap-
plying Mutation Testing to Android. The researchers tested 9 apps
using four other testing approaches in addition to Mutation Test-
ing. They propose 5 novel mutation operators, which they then
implement in the muJava tool [38]. The study demonstrates that
Mutation Testing is more effective than other approaches.

Further studies [11, 12, 36] approach reducing the costs of Mu-
tation Testing in Android, by discarding irrelevant operators and
proposing new tools focused on test performance.

Several studies focus on developing tools for performing Muta-
tion Testing in Android, such as MDroid+ [35, 41]. Its authors have
built a taxonomy of 262 Android defects, based on 2023 apps [35].
However, very few relate to security. From the taxonomy, 38 Java
mutation operators are derived. These are implemented in MDroid+.

In [41], the effectiveness and performance of MDroid+ are com-
pared to another three Mutation Testing tools. The authors found
that it outperforms the other tools in several aspects but has inferior
performance regarding the total number of mutants generated. Yet,
the researchers argue that the quality of its mutants is higher.

Other studies [26, 53] focus on proposing tools capable of generat-
ing mutants from compiled Android apps, hence operating directly
over bytecode. The advantage of this is the possibility of applying
Mutation Testing even in black box test scenarios, in which the

Mutation Testing to Support the Security Testing of Android Applications SAST’24, September 30–October 04, 2024, Curitiba, Brazil

Table 3: Detection/Mutation ratio per mutation operator for each subject app.

Detection/Mutation Ratio
App Mutants ImproperExport HardcodedSecret PlaintextHTTP DebuggableApplication
AndroGoat 53 0/23 (0.0) 0/29 (0.0) 1/1 (1.0) 0/0 (N/A)
Digitalbank 13 0/0 (N/A) 11/11 (1.0) 1/1 (1.0) 1/1 (1.0)
diva-android 37 0/14 (0.0) 21/21 (1.0) 1/1 (1.0) 1/1 (1.0)
DodoVulnerableBank 22 0/3 (0.0) 17/17 (1.0) 1/1 (1.0) 1/1 (1.0)
finstergram 21 0/5 (0.0) 0/14 (0.0) 1/1 (1.0) 1/1 (1.0)
InsecureBankv2 18 0/3 (0.0) 13/13 (1.0) 1/1 (1.0) 1/1 (1.0)
InsecureShop 26 0/5 (0.0) 0/20 (0.0) 0/0 (N/A) 1/1 (1.0)
MASTG-Android-Kotlin-App 13 0/4 (0.0) 0/8 (0.0) 0/0 (N/A) 1/1 (1.0)
MASTG-Android-Java-App 58 0/24 (0.0) 32/32 (1.0) 1/1 (1.0) 1/1 (1.0)
ovaa 25 0/4 (0.0) 19/19 (1.0) 1/1 (1.0) 1/1 (1.0)

Mean 0.0 0.6 1.0 1.0
Std.Dev 0.0 0.4899 0.0 0.0

tester does not have access to the source code. Several studies focus
specifically in applying Mutation Testing to testing non-functional
aspects of Android applications, such as energy consumption [31],
UI [37, 45], and accessibility [50].

Other studies evaluate the quality of security static analysis
tools [5, 8]. One of such studies [8] investigates whether tools con-
tain flaws originating from poorly made design decisions which
would lead them to fail to detect security vulnerabilities. The re-
searchers propose a novel tool, called µSE, which injects security
vulnerabilities into Android apps using mutation operators. The
tool implements only 1 operator, modeling the situation where the
app obtains sensitive information, and then "leaks" it in the system
log. This type of vulnerable behavior is called data leak. The authors
use µSE to exercise a static analysis tool specialized in detecting
data leaks against 7 Android apps. They prove the existence of flaws
in the tool. Hence, the authors demonstrate the feasibility of using
Mutation Testing to verify the quality of security static analysis
tools.

In another study [5], the authors increase the number of apps and
static analysis tools used, totaling 15 apps and 3 tools, respectively,
and implement improvements in µSE concerning the tool’s ability
to decide on the executability of its mutants, as well as mutant
generation. The authors found new flaws in the analyzed tools.

Therefore, we were able to find a couple of mutation operators
targeted at Android security (namely, the APD [10] and data leak
[8] operators). Still, these appear to be collateral results of studies
whose primary focus is something else. We also found a specific
line of work focusing on applying Mutation Testing to analyze
security static analysis tools [5, 8]. Still, so far, a single security
mutation operator seems to have been developed for this endeavor.
We conclude that applying Mutation Testing to Android security
remains an underdeveloped field of study, and our work aims to
address this research gap.
7 Concluding Remarks

In this paper, we proposed a set of mutation operators for security
testing Android apps, considering themain programming languages
used in this context. To support the application of the proposed
mutation operators, we developed seed-vulns, an open-source
mutation testing tool.

An experimental study was conducted to evaluate our proposed
operators, and the results indicate that they can generate muta-
tions corresponding to real-world vulnerabilities. Furthermore, we
have revealed a potential design flaw in a well-known Android
application security static analysis tool.

Finally, we have identified a couple of caveats and difficulties of
applying Mutation Testing to the context of Android application
security, namely:

• Context-dependent vulnerabilities, such as improper exports,
are hard to detect based solely on automated tests, which
could pose an obstacle to the further development of Muta-
tion Testing applied to Android app security;

• Less obvious vulnerabilities, such as implicit pending intents
and tapjacking, are not as widely available in open-source
vulnerable Android apps. We have been unable to exercise
some of our proposed operators simply because there were
no viable mutation points in any of our subject apps.

In future research, we intend to address these issues by exploring
the usage of Machine Learning to aid context-dependent Android
vulnerability detection engines. We also plan to execute additional
experiments to evaluate our mutation operators more thoroughly
and explore other security static analysis tools. Also, we intend to
keep incrementing our mutation operators catalog by proposing
more mutation operators targeted at Android security.
Acknowledgments

Authors Marcio E. Delamaro and Simone R. S. Souza thank the
support of FAPESP, process number 20/09560-2, and CNPq, under
processes number 308636/2021-0 and 308445/2021-0.
References
[1] Hilmi Abdullah and Subhi R. M. Zeebaree. 2021. Android Mobile Applications

Vulnerabilities and Prevention Methods: A Review. In 2021 2nd Information
Technology To Enhance e-learning and Other Application (IT-ELA). 148–153. https:
//doi.org/10.1109/IT-ELA52201.2021.9773615

[2] Ajin Abraham. 2024. mobsfscan. Retrieved July 2, 2024 from https://github.com/
MobSF/mobsfscan

[3] Yasemin Acar, Michael Backes, Sven Bugiel, Sascha Fahl, Patrick McDaniel, and
Matthew Smith. 2016. SoK: Lessons Learned from Android Security Research for
Appified Software Platforms. In 2016 IEEE Symposium on Security and Privacy
(SP). 433–451. https://doi.org/10.1109/SP.2016.33

[4] Saket Acharya, Umashankar Rawat, Roheet Bhatnagar, and Bharat Bhushan. 2022.
A Comprehensive Review of Android Security: Threats, Vulnerabilities, Malware
Detection, and Analysis. Sec. and Commun. Netw. 2022 (jan 2022), 34 pages.
https://doi.org/10.1155/2022/7775917

https://doi.org/10.1109/IT-ELA52201.2021.9773615
https://doi.org/10.1109/IT-ELA52201.2021.9773615
https://github.com/MobSF/mobsfscan
https://github.com/MobSF/mobsfscan
https://doi.org/10.1109/SP.2016.33
https://doi.org/10.1155/2022/7775917

SAST’24, September 30–October 04, 2024, Curitiba, Brazil Vasconcelos et al.

[5] Amit Seal Ami, Kaushal Kafle, Kevin Moran, Adwait Nadkarni, and Denys Poshy-
vanyk. 2021. Systematic Mutation-Based Evaluation of the Soundness of Security-
Focused Android Static Analysis Techniques. 24, 3, Article 15 (feb 2021), 37 pages.
https://doi.org/10.1145/3439802

[6] AndroidDevelopers. 2024. android:debuggable. Retrieved February 5, 2024 from
https://developer.android.com/privacy-and-security/risks/android-debuggable

[7] Gaurang Bhatnagar, Rujul Gandhi, and Sergey Toshin. 2022. InsecureShop.
Retrieved July 2, 2024 from https://github.com/hax0rgb/InsecureShop/

[8] Richard Bonett, Kaushal Kafle, Kevin Moran, Adwait Nadkarni, and Denys Poshy-
vanyk. 2018. Discovering Flaws in Security-Focused Static Analysis Tools for
Android Using Systematic Mutation. In Proceedings of the 27th USENIX Conference
on Security Symposium (Baltimore, MD, USA) (SEC’18). USENIX Association, USA,
1263–1280.

[9] M. Delamaro, J. Maldonado, and M. Jino. 2016. Introdução Ao Teste De Software–2.
ed. Elsevier.

[10] Lin Deng, Nariman Mirzaei, Paul Ammann, and Jeff Offutt. 2015. Towards
mutation analysis of Android apps. In 2015 IEEE Eighth International Conference
on Software Testing, Verification and Validation Workshops (ICSTW). 1–10. https:
//doi.org/10.1109/ICSTW.2015.7107450

[11] Lin Deng and A. Jefferson Offutt. 2018. Experimental Evaluation of Redundancy
in Android Mutation Testing. Int. J. Softw. Eng. Knowl. Eng. 28 (2018), 1597–1618.

[12] Lin Deng and A. Jefferson Offutt. 2018. Reducing the Cost of Android Muta-
tion Testing. In International Conference on Software Engineering and Knowledge
Engineering.

[13] Lin Deng, Jeff Offutt, Paul Ammann, and Nariman Mirzaei. 2017. Mutation
operators for testing Android apps. Information and Software Technology 81 (2017),
154–168. https://www.sciencedirect.com/science/article/pii/S0950584916300684

[14] Lin Deng, Jeff Offutt, and David Samudio. 2017. Is Mutation Analysis Effective at
Testing Android Apps?. In 2017 IEEE International Conference on Software Quality,
Reliability and Security (QRS). 86–93. https://doi.org/10.1109/QRS.2017.19

[15] Android Developers. 2023. <activity>. Retrieved January 11, 2023 from https:
//developer.android.com/guide/topics/manifest/activity-element

[16] Android Developers. 2023. android:exported. Retrieved February 5, 2023 from
https://developer.android.com/privacy-and-security/risks/android-exported

[17] Android Developers. 2023. App Manifest Overview. Retrieved January 11, 2023
from https://developer.android.com/guide/topics/manifest/manifest-intro

[18] Android Developers. 2023. Application Fundamentals. Retrieved January 4,
2023 from https://developer.android.com/guide/components/fundamentals

[19] Android Developers. 2023. Intent. Retrieved January 11, 2023 from https:
//developer.android.com/reference/android/content/Intent

[20] Android Developers. 2024. <application>. Retrieved February 5, 2024 from
https://developer.android.com/guide/topics/manifest/application-element

[21] Android Developers. 2024. Cleartext / Plaintext HTTP. Retrieved February 5,
2024 from https://developer.android.com/privacy-and-security/risks/cleartext

[22] Android Developers. 2024. Hardcoded Cryptographic Secrets. Retrieved Feb-
ruary 5, 2024 from https://developer.android.com/privacy-and-security/risks/
hardcoded-cryptographic-secrets

[23] Android Developers. 2024. Pending intents. Retrieved February 5, 2024 from
https://developer.android.com/privacy-and-security/risks/pending-intent

[24] Android Developers. 2024. Tapjacking. Retrieved February 5, 2024 from
https://developer.android.com/privacy-and-security/risks/tapjacking

[25] J. Drake, P. Fora, Z. Lanier, C. Mulliner, S. Ridley, and G. Wicherski. 2014. Android
Hacker’s Handbook. Wiley.

[26] Camilo Escobar-Velásquez, Michael Osorio-Riaño, and Mario Linares-Vásquez.
2019. MutAPK: Source-Codeless Mutant Generation for Android Apps. In 2019
34th IEEE/ACM International Conference on Automated Software Engineering (ASE).
1090–1093. https://doi.org/10.1109/ASE.2019.00109

[27] R. Finkbine. 2003. Usage of mutation testing as a measure of test suite robustness.
In Digital Avionics Systems Conference, 2003. DASC ’03. The 22nd (Indianapolis,
IN, USA). IEEE. https://doi.org/10.1109/DASC.2003.1245826

[28] Google. 2023. Common risks. Retrieved May 1, 2023 from https://developer.
android.com/topic/security/risks

[29] Jalal B. Hur and Jawwad A. Shamsi. 2017. A survey on security issues, vul-
nerabilities and attacks in Android based smartphone. In 2017 International
Conference on Information and Communication Technologies (ICICT). 40–46.
https://doi.org/10.1109/ICICT.2017.8320163

[30] Oversecured Inc. 2020. ovaa. Retrieved July 2, 2024 from https://github.com/
oversecured/ovaa

[31] Reyhaneh Jabbarvand and Sam Malek. 2017. µDroid: An Energy-Aware Mutation
Testing Framework for Android. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering (Paderborn, Germany) (ESEC/FSE 2017).
Association for Computing Machinery, New York, NY, USA, 208–219. https:
//doi.org/10.1145/3106237.3106244

[32] Aseem Jakhar. 2016. diva-android. Retrieved July 2, 2024 from https://github.
com/payatu/diva-android

[33] Jignesh Joshi and Chandresh Parekh. 2016. Android smartphone vulnerabilities:
A survey. In 2016 International Conference on Advances in Computing, Communi-
cation, Automation (ICACCA) (Spring). 1–5. https://doi.org/10.1109/ICACCA.

2016.7578857
[34] X. Li, L. Yu, and X.P. Luo. 2017. Chapter 7 - On Discovering Vulnerabili-

ties in Android Applications. In Mobile Security and Privacy, Man Ho Au
and Kim-Kwang Raymond Choo (Eds.). Syngress, Boston, 155–166. https:
//www.sciencedirect.com/science/article/pii/B9780128046296000079

[35] Mario Linares-Vásquez, Gabriele Bavota, Michele Tufano, Kevin Moran, Massi-
miliano Di Penta, Christopher Vendome, Carlos Bernal-Cárdenas, and Denys
Poshyvanyk. 2017. Enabling Mutation Testing for Android Apps (ESEC/FSE
2017). Association for Computing Machinery, New York, NY, USA, 233–244.
https://doi.org/10.1145/3106237.3106275

[36] Jian Liu, Xusheng Xiao, Lihua Xu, Liang Dou, and Andy Podgurski. 2020. Droid-
Mutator: An Effective Mutation Analysis Tool for Android Applications. In Pro-
ceedings of the ACM/IEEE 42nd International Conference on Software Engineering:
Companion Proceedings (Seoul, South Korea) (ICSE ’20). Association for Com-
puting Machinery, New York, NY, USA, 77–80. https://doi.org/10.1145/3377812.
3382134

[37] Eduardo Luna and Omar El Ariss. 2018. Edroid: A Mutation Tool for Android
Apps. In 2018 6th International Conference in Software Engineering Research and
Innovation (CONISOFT). 99–108. https://doi.org/10.1109/CONISOFT.2018.8645883

[38] Yu-Seung Ma, Jeff Offutt, and Yong Rae Kwon. 2005. MuJava: an automated
class mutation system. Software Testing, Verification and Reliability 15, 2 (2005),
97–133. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.308 https:
//onlinelibrary.wiley.com/doi/abs/10.1002/stvr.308

[39] Jonas Mayer and Florentin Wieser. 2024. finstergram. Retrieved July 2, 2024
from https://github.com/netlight/finstergram

[40] MITRE. 2023. Retrieved November 18, 2022 from https://www.cvedetails.com/
product/19997/Google-Android.html?vendor_id=1224

[41] Kevin Moran, Michele Tufano, Carlos Bernal-Cárdenas, Mario Linares-Vásquez,
Gabriele Bavota, Christopher Vendome, Massimiliano Di Penta, and Denys Poshy-
vanyk. 2018. MDroid+: A Mutation Testing Framework for Android. In 2018
IEEE/ACM 40th International Conference on Software Engineering: Companion
(ICSE-Companion). 33–36.

[42] OWASP. 2016. MASTG-Hacking-Playground. Retrieved July 2, 2024 from
https://github.com/OWASP/MASTG-Hacking-Playground

[43] OWASP. 2023. OWASP Mobile Top 10. Retrieved March 21, 2023 from https:
//owasp.org/www-project-mobile-top-10/

[44] OWASP. 2024. Reference applications. Retrieved July 2, 2024 from https:
//mas.owasp.org/MASTG/apps/

[45] Ana C. R. Paiva, João M. E. P. Gouveia, Jean-David Elizabeth, and Márcio E.
Delamaro. 2019. Testing When Mobile Apps Go to Background and Come
Back to Foreground. In 2019 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW). 102–111. https://doi.org/10.1109/
ICSTW.2019.00038

[46] Satish Patnayak. 2019. AndroGoat. Retrieved July 2, 2024 from https://github.
com/satishpatnayak/AndroGoat

[47] Cyber Security and Privacy Foundation (breakthesec). 2015. DodoVulnera-
bleBank. Retrieved July 2, 2024 from https://github.com/CSPF-Founder/
DodoVulnerableBank

[48] Abhinav Sejpal and Karan Sawhney. 2015. Digitalbank. Retrieved July 2, 2024
from https://github.com/CyberScions/Digitalbank

[49] Dinesh Shetty, Anant Shrivastava, and Dark Cowling. 2014. Insecure-
Bankv2. Retrieved July 2, 2024 from https://github.com/dineshshetty/Android-
InsecureBankv2

[50] Henrique Neves Silva. 2020. Uma Abordagem de Teste de Mutação para Avaliar
a Acessibilidade de Aplicações Android. Retrieved July 15, 2024 from https:
//acervodigital.ufpr.br/handle/1884/70676 Master thesis.

[51] Henrique Neves Silva, Jackson Prado Lima, Silvia Regina Vergilio, and An-
dre Takeshi Endo. 2022. A mapping study on mutation testing for mobile
applications. Software Testing, Verification and Reliability 32, 8 (2022), e1801.
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1801

[52] Statista. 2023. Number of available applications in the Google Play
Store from December 2009 to December 2023. Retrieved July
3, 2024 from https://www.statista.com/statistics/266210/number-of-available-
applications-in-the-google-play-store/

[53] Macario Polo Usaola, Gonzalo Rojas, Isyed Rodríguez, and Suilen Hernández.
2017. An Architecture for the Development of Mutation Operators. In 2017 IEEE
International Conference on Software Testing, Verification and ValidationWorkshops
(ICSTW). 143–148. https://doi.org/10.1109/ICSTW.2017.31

[54] Eduardo Vasconcelos. 2024. seed-vulns. Retrieved July 2, 2024 from https:
//github.com/vasconcedu/seed-vulns

https://doi.org/10.1145/3439802
https://developer.android.com/privacy-and-security/risks/android-debuggable
https://github.com/hax0rgb/InsecureShop/
https://doi.org/10.1109/ICSTW.2015.7107450
https://doi.org/10.1109/ICSTW.2015.7107450
https://www.sciencedirect.com/science/article/pii/S0950584916300684
https://doi.org/10.1109/QRS.2017.19
https://developer.android.com/guide/topics/manifest/activity-element
https://developer.android.com/guide/topics/manifest/activity-element
https://developer.android.com/privacy-and-security/risks/android-exported
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/components/fundamentals
https://developer.android.com/reference/android/content/Intent
https://developer.android.com/reference/android/content/Intent
https://developer.android.com/guide/topics/manifest/application-element
https://developer.android.com/privacy-and-security/risks/cleartext
https://developer.android.com/privacy-and-security/risks/hardcoded-cryptographic-secrets
https://developer.android.com/privacy-and-security/risks/hardcoded-cryptographic-secrets
https://developer.android.com/privacy-and-security/risks/pending-intent
https://developer.android.com/privacy-and-security/risks/tapjacking
https://doi.org/10.1109/ASE.2019.00109
https://doi.org/10.1109/DASC.2003.1245826
https://developer.android.com/topic/security/risks
https://developer.android.com/topic/security/risks
https://doi.org/10.1109/ICICT.2017.8320163
https://github.com/oversecured/ovaa
https://github.com/oversecured/ovaa
https://doi.org/10.1145/3106237.3106244
https://doi.org/10.1145/3106237.3106244
https://github.com/payatu/diva-android
https://github.com/payatu/diva-android
https://doi.org/10.1109/ICACCA.2016.7578857
https://doi.org/10.1109/ICACCA.2016.7578857
https://www.sciencedirect.com/science/article/pii/B9780128046296000079
https://www.sciencedirect.com/science/article/pii/B9780128046296000079
https://doi.org/10.1145/3106237.3106275
https://doi.org/10.1145/3377812.3382134
https://doi.org/10.1145/3377812.3382134
https://doi.org/10.1109/CONISOFT.2018.8645883
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.308
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.308
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.308
https://github.com/netlight/finstergram
https://www.cvedetails.com/product/19997/Google-Android.html?vendor_id=1224
https://www.cvedetails.com/product/19997/Google-Android.html?vendor_id=1224
https://github.com/OWASP/MASTG-Hacking-Playground
https://owasp.org/www-project-mobile-top-10/
https://owasp.org/www-project-mobile-top-10/
https://mas.owasp.org/MASTG/apps/
https://mas.owasp.org/MASTG/apps/
https://doi.org/10.1109/ICSTW.2019.00038
https://doi.org/10.1109/ICSTW.2019.00038
https://github.com/satishpatnayak/AndroGoat
https://github.com/satishpatnayak/AndroGoat
https://github.com/CSPF-Founder/DodoVulnerableBank
https://github.com/CSPF-Founder/DodoVulnerableBank
https://github.com/CyberScions/Digitalbank
https://github.com/dineshshetty/Android-InsecureBankv2
https://github.com/dineshshetty/Android-InsecureBankv2
https://acervodigital.ufpr.br/handle/1884/70676
https://acervodigital.ufpr.br/handle/1884/70676
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1801
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://doi.org/10.1109/ICSTW.2017.31
https://github.com/vasconcedu/seed-vulns
https://github.com/vasconcedu/seed-vulns

	Abstract
	1 Introduction
	2 Background
	2.1 Android Applications
	2.2 Android Application Vulnerabilities
	2.3 Mutation Testing

	3 Mutation Operators for Security Vulnerabilities
	3.1 ImproperExport Mutation Operator
	3.2 DebuggableApplication Mutation Operator
	3.3 ImplicitPendingIntent Mutation Operator
	3.4 HardcodedSecret Mutation Operator
	3.5 Tapjacking Mutation Operators
	3.6 PlaintextHTTP Mutation Operator
	3.7 seed-vulns Mutation Tool

	4 Experimental Study
	4.1 Hypothesis Formulation
	4.2 Subject Apps
	4.3 Security Testing Tool
	4.4 Execution Flow

	5 Results and Discussion
	5.1 Characteristics of Mutants
	5.2 Detectability of Mutations as Vulnerabilities
	5.3 Threats to Validity

	6 Related Work
	7 Concluding Remarks
	Acknowledgments
	References

