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ABSTRACT
There has been a growing interest in machine learning due to its
potential to address a myriad of problems that would otherwise be
difficult to solve. Consequently, the adoption of machine learning
based programs has become mainstream. Owing to this widespread
adoption, it is imperative to develop automated approaches to as-
sess the quality of machine learning-based solutions. Although
significant research has been devoted to creating automated test
input generation methods for machine learning programs, some
promising approaches to test data generation have received limited
attention. This paper introduces a property-driven approach to
test data generation that leverages the training of an interpretable
model, specifically a decision tree, to predict the behavior of the
model under test. The tree-like structure of the resulting inter-
pretable model provides valuable insights into the model’s behavior
under test. These insights are then transformed into executable
properties, enabling the generation of test data. A primary advan-
tage of property-based testing is its capacity to generate a vast
number of inputs from a single property, thereby offering a more
rigorous evaluation of machine learning models. The results of
our experiment suggest that our property-driven approach has
the potential to generate test data that more thoroughly examine
models compared to more widely used methods for evaluating the
performance and generalizability of machine learning models.
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1 INTRODUCTION
In recent years, machine learning algorithms have garnered sig-
nificant attention as a promising solution for addressing various
Software Engineering challenges [18]. With this increased adop-
tion, it is crucial to assess the quality of machine learning-based
solutions, just as with any other part of a software system, prefer-
ably in an automated fashion. Although researchers have devoted
considerable efforts to automated test input generation for machine
learning programs [21], to the best of our knowledge, exploring
how property-based testing can be used to enable the generation of
test data remains a largely under-explored problem. To address this
gap, we set out to investigate how property-based testing can be
used to automate test data generation for machine learning models.

Property-based testing is a methodology in which testers write
executable specifications of software elements, and an automated

harness checks these specifications (i.e., properties) against numer-
ous automatically generated inputs [7]. Since its inception, which
can be traced back to the QuickCheck library [3], property-based
testing has evolved significantly and has been increasingly adopted
in industrial practice by companies such as Amazon [2]. Neverthe-
less, relatively little is known about the strengths and weaknesses
of property-based testing and the areas where further technical
advances are needed [4, 7]. Most studies have focused on using
other fault-finding tools in various settings. We argue that property-
based testing offers unique tools and merits thorough investigation,
particularly for addressing the complexities of testing machine
learning models.

We set out to develop a property-driven approach for testing
machine learning models. When faced with the task of testing a
machine-learning model, the first step in our property-driven ap-
proach is to build a decision tree using the available training data.
This decision tree model serves as the basis for targeted data gener-
ation: our approach leverages the internal structure of decision tree
models to guide the selection of test inputs. More specifically, test
generation involves encoding details related to the internal struc-
ture of the decision tree and its criteria [15] as logical formulae.
These formulae dictate how the tree should be traversed and are
subsequently turned into properties. The test case generation pro-
cess relies on a systematic, property-dependent construction of test
suites, eliminating the need for tester-supplied information. Our
approach builds on the idea that properties are created by under-
standing the internal structure of a white-box model (i.e., a decision
tree model). By knowing this internal structure, we encode the veri-
fication of the model in terms of rules (i.e., criteria) on how the tree
should be traversed. Therefore, contrary to property-based testing,
where testers must devise properties based on rules that should al-
ways hold true for the program under test [8], our approach allows
for the generation of a property-driven test suite without the tester
needing to examine the model and devise properties.

The remainder of this paper is organized as follows. Section 2
presents related work. Section 3 provides background on property-
based testing, Section 4 outlines our property-driven approach to
test data generation for machine learning models. Section 5 de-
scribes the experimental design we used to investigate our research
question and Section 6 presents the statistical analysis of the ex-
periment results. Section 7 discusses threats to the validity and
Section 8 presents concluding remarks.
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2 RELATEDWORK
A closely related study presented by Sharma et al. [16] is comparable
to our research and shares several key similarities with the method-
ology described in this paper. Specifically, Sharma et al. propose
a property-driven approach to testing machine learning models,
termed MLCheck. This approach encompasses (i) a domain-specific
language for specifying non-stochastic properties, and (ii) a sys-
tematic test data generation technique. The specification language
employs syntax elements akin to those utilized by property-based
testing frameworks. Unlike our approach, the approach proposed
by Sharma et al. requires the tester to specify the properties of
interest, upon which targeted generation of test data is performed.
Similar to our approach, MLCheck treats the model under test as a
black-box. Additionally, the test data generation step also mandates
a verifiable white-box model. To address this, [16] train a white-box
model (either a decision tree or a neural network) and compute the
test data using this model. However, in contrast to our approach,
the white-box model in MLCheck is used to verify the properties,
with the resulting counterexamples selected as test inputs for the
black-box model under test, rather than serving as the primary
source of information for property creation as is the case in our
approach.

Another related study conducted by Aggarwal et al. [1] reports
on a symbolic approach to test case generation. Similarly to our
method, their approach involves generating a decision tree from
the model under test. The resulting decision tree is then subjected
to dynamic symbolic execution to generate test cases.

3 PROPERTY-BASED TESTING
Property-based testing is a random test case generation technique,
where the behavior of the system under test is described by a
high-level specification of valid inputs along with the properties
expected to hold when the system is subjected to these inputs [10].
In property-based testing, these high-level specifications comprise
general rules or assertions about the system’s behavior that should
hold true for a wide range of inputs. Simply put, these specifica-
tions, termed properties, can be seen as high-level recipes for data
generation. In effect, properties are similar to partial specifications
in the sense that they are more compact and easier to write and
understand than full system specifications.

Property-based testing relies heavily on tool assistance [8], as
the rules about the expected behavior of the system have to be
turned into executable code so that they can be run by a specific
framework. To automate the process of transforming properties
into inputs of increasing complexity, property-based testing frame-
works provide built-in data generators for common data types (e.g.,
integers, strings, lists). Thus, one of the main benefits of property-
based testing is the ability to generate many input-output relations
with a single specification and generator.

Traditional tests are typically example-based: testers have to
come up with a list of various inputs for the program under test
and specify the corresponding expected outputs. The effectiveness
of these tests depends on including examples (i.e., sets of inputs and
expected outputs) that cover all possible states of the program under
test. In contrast, when applying property-based testing, testers only

need to specify the generic structure of valid inputs and the prop-
erties expected to hold for all valid inputs. With this information,
property-based testing tools can automatically generate complex
random inputs and an automated test harness checks these inputs
against the system under test while monitoring its execution.

According to Hebert [8], with properties and a framework that
automates the test data generation and execution, it is possible
to explore the problem space in a more in-depth fashion. Thus,
property-based testing is muchmore effective at exploring a broader
range of behaviors and identifying potential problems in the system
under test. Properties act as a checkable partial specification of the
system’s behavior [10] that is more general than any set of unit
tests. Since properties are much more concise than a series of unit
tests, property-based testing can subject the system under test to a
wider variety of inputs than a tester would typically be willing or
able to write. Consequently, compared to testing software systems
with manually-written test cases (i.e., in an example-based fash-
ion), property-based testing is both a faster and less monotonous
process [10]. Additionally, by introducing randomness to gener-
ate inputs property-based test data generation has the potential to
trigger edge cases.

The origins of property-based testing can be traced back to
the functional programming community [3, 4]; however, it has
recently begun to gain traction within a broader audience. Cur-
rently, property-based testing frameworks are available in most
programming languages [3, 8, 11, 20]. According to a JetBrains
survey conducted in 2021, Python’s Hypothesis framework [11]1
had an estimated user base of 500,000 [7]. However, these 500,000
users account for merely 4% of the total Python user base, while the
framework’s maintainers estimate the potential user base to be at
least 25%. In comparison, the most widely used testing framework,
pytest, holds a 50% market share [7].

As mentioned, property-based testing frameworks provide built-
in data generators only for common data types. Thus, when tasked
with testing machine learning models using property-based testing,
testers must either write generator functions from scratch for each
model or use the dataset’s information to develop properties. We
argue that this approach often misses certain types of faults. To
cope with this, we propose a property-driven approach to testing
machine learning models. In our approach, we build a decision tree
from the available training data and leverage the structure of this
model as the basis for test data generation.

4 PROPERTY-BASED TESTING FOR MACHINE
LEARNING MODELS

Our property-driven approach is specifically designed for super-
vised machine learning models. The models generated by super-
vised learning algorithms can be represented by the function illus-
trated in Equation 1.

𝑀 : 𝐹1 × . . . × 𝐹𝑛 → 𝑍1 × . . . × 𝑍𝑚 (1)

In the function shown in Equation 1, 𝐹𝑖 denotes the value of
feature 𝑖 (i.e., predictor), 1 ≤ 𝑖 ≤ 𝑛, and every 𝑍 𝑗 , 1 ≤ 𝑗 ≤ 𝑚,
represents the classes (i.e., response) for the 𝑗 th label. When𝑚 > 1,

1https://hypothesis.readthedocs.io/en/latest/

https://hypothesis.readthedocs.io/en/latest/
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the learning problem is a multilabel classification problem. Specif-
ically, when |𝑍 𝑗 | = 2 for all 𝑗 , the learning problem is a binary
classification problem, when |𝑍 𝑗 | > 2 for some 𝑗 , it is a multiclass
classification problem. For our study, we assume 𝑚 = 1 (i.e., a
single-label problem where each instance must be categorized into
exactly one of two or more classes) and refer to the response in
Equation 1 as 𝑍 . In most settings, the resulting function is treated
as a black box, in the sense that no one is concerned with the form
of the function as long as it yields accurate predictions for 𝑍 [9].

We are interested in understanding the association between 𝑍

and 𝐹1, . . . , 𝐹𝑛 : we cannot treat the function in Equation 1 as a
black box. Therefore, we want to estimate the underlying function,
but our goal is not necessarily to make predictions for 𝑍 ; instead,
we utilize an estimate of how the function maps the features to
predictions to guide automatic random test data generation through
properties. In this setting, we seek to address a problem related
to machine learning interpretability [13] in order to better inform
the random generation of test data. The next section outlines our
approach for addressing this issue.

4.1 Decision Tree Surrogate Model
A method for extracting insights from machine learning models,
thereby explaining the behavior of a black-box model (i.e., relation-
ships either inherent in the data or those learned by the model), is
the application of a global surrogate model [12]. In essence, a global
surrogate is an interpretable model that is trained on the same
dataset to approximate the predictions of the black-box model. Con-
sequently, by interpreting the global surrogate model, it becomes
feasible to derive conclusions regarding the black-box model un-
der test. The main goal is to approximate the black-box prediction
function as closely as possible using the surrogate model prediction
function, with the constraint that the surrogate model prediction
function must be interpretable. As a result, any interpretable model
can serve as surrogate.

Training a surrogate model is a model-agnostic method, as it
does not require any information about the inner workings of the
black-box model. As stated by Molnar [12], the global surrogate
method can be applied even if the machine learning model under
examination is replaced with a different black-box model. This is
possible because the choice of the black-box model is independent
of the type of surrogate model used. In our approach, we chose to
employ a decision tree as the surrogate model.

Decision tree is a learning algorithm that results in tree-like
graph models that are amenable to human understanding [9]. The
main idea behind our property-driven approach is to train an inter-
pretable model (i.e., a decision tree) to predict the behavior of the
black-box model. Since the resulting decision tree is a white-box
model, we can then leverage the tree-like internal structure of this
surrogate model to guide the selection and generation of test data.
Furthermore, the internal structure of the decision tree allows us
to apply decision tree coverage criteria [15] when rendering the
surrogate model into properties. This enables us to gain greater
control over the test data generation.

A decision tree algorithm works by recursively splitting the fea-
ture space into non-overlapping regions. These splits are guided
by rules that create a tree-like structure. Internal nodes in the tree

represent the decision points, while leaf nodes represent the final
outcome after a series of decisions [9]. In simpler terms, internal
nodes map the relationships among the features and leaf nodes
denote the potential outcomes. The rationale behind our encoding
decision tree coverage criteria into properties is to further leverage
the resulting tree structure. This allows us to generate test data
that effectively traverses the surrogate model (i.e., reaches all leaf
nodes). This approach is analogous to evaluating test data adequacy
for traditional programs, where a common criterion is to ensure
coverage of all program branches. Consequently, the resulting prop-
erties generate test data that randomly samples inputs to “cover”
all leaves in the surrogate model.

4.2 Decision Tree Coverage Criteria
Traditional approaches to selecting candidate test data for evaluat-
ing machine learning models often rely on randomization.We argue
that such random selection methods are insufficient and ineffec-
tive for thorough model evaluation. The results from our previous
investigation [15] suggest that increasing leaf/decision coverage
leads to a more effective test suite. Moreover, this prior research
also established criteria grounded in the premise that the internal
structure of decision tree models can be exploited to guide test data
sampling. These criteria are straightforward and can be defined as
follows:

Decision Tree Coverage (DTC) Definition: given a deci-
sion tree model𝑀 , a test set 𝑇 is deemed DTC-adequate if
it contains tests that traverse the tree from its root to every
leaf node at least once.

The other criterion is founded on thewidely accepted principle in
software testing that test cases exploring boundary conditions are
essential for effective testing [14]. This criterion employs the black-
box test design technique known as boundary value analysis [14],
which is utilized to derive test cases that examine the limits of
the input domain. However, this technique has been adapted for
application in a white-box context. When applied to decision trees,
the range of values represented in the internal decision nodes is
analyzed and used to derive test cases. Formally, this criterion can
be described as follows:

Boundary Value Analysis (BVA) Definition: test cases
are strategically designed to target valid boundary values
of decision nodes. Specifically, when designing test cases,
this criterion emphasizes the selection of input values that
explore both the lower and upper limits of each decision.

The next section details how the internal structure of a decision
tree is translated into properties for systematic test data generation.

4.3 A Motivating Example
As previously mentioned, property-based testing fundamentally
depends on advanced tool support. To address this requirement, we
developed a proof-of-concept tool that streamlines our property-
based approach to test data generation.2 Our tool is built on top
of Hypothesis [11], extending this property-based test generation
library with a decision tree property generator and integration with

2Our tool is available at the following repository: https://github.com/ricardo-s-m/
property_driven_ml_models.

https://github.com/ricardo-s-m/property_driven_ml_models
https://github.com/ricardo-s-m/property_driven_ml_models
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pytest.By leveraging Hypothesis, our tool inherits its robust test
generation functionalities, enhancing both its practical utility and
overall performance.

This section outlines our approach, detailing the main function-
alities of the tool and its integration into the testing workflow. To
illustrate our property-driven approach, we apply it to the well-
known Iris flower dataset3 [5]. Figure 1 shows the resulting decision
tree model obtained by applying the decision tree algorithm to the
Iris dataset. The resulting decision tree has 15 nodes, with eight
leaf nodes and six internal nodes.4

To simplify the example and enhance clarity, we restrict our focus
to a single path within the decision tree, rather than considering
all possible paths. Specifically, we examine the path from the root
node (i.e., node #0) to node #5: [0, 2, 3, 4, 5]. By examining this
specific path, we demonstrate how the tool’s property generator
leverages information encoded within internal nodes to apply the
decision tree coverage criteria and define intervals for random test
data generation.

As mentioned, internal nodes represent the relationships among
the features, while leaf nodes denote the potential outcomes. Thus,
when traversing the specified path, the property generator produces
a property designed to randomly generate test data that should be
classified as class 1, i.e., Iris versicolor. To generate this test data,
the property generator derives an interval of possible values based
on the decisions in the internal nodes along the path. For instance,
considering the path from node #0 to node #5, the only features
present within the internal nodes pertain to petal length (x[2]) and
petal width (x[3]). Additionally, the generated code includes an
assertion to verify that the model under test predicts class 1 (i.e.,
Iris versicolor) when provided with test data that follows the path
from node #0 to node #5 in the decision tree.

As shown in Table 1, features are analyzed to derive tuples repre-
senting intervals. These intervals are denoted as pairs comprising
the minimum and maximum values: (minimum, maximum). No-
tably, most paths do not encompass information regarding all fea-
tures. Features that do not appear in a given path are not specified
and are represented by the tuple (?, ?). In this context, ? denotes
the inability to extract information for either the minimum or max-
imum value of a given feature while traversing a path. Additionally,
it is possible for a feature to be described in a given path solely in
terms of its minimum or maximum value, e.g., (?, maximum).

Table 1: Information extracted from the internal nodes when
following the path from node #0 to node #5.

Sepal Length Sepal Width Petal Length Petal Width Assertion
(x[0]) (x[1]) (x[2]) (x[3])

(?, ?) (?, ?) (?, 4.95) (0.80, 1.65) 1

In the subsequent step, the property generator examines incom-
plete intervals represented as tuples that contain either a minimum

3This dataset is also known as Fisher’s Iris data set.
4The decision tree model was generated using the scikit-learn library. For simplic-
ity’s sake, we set max_depth=4 to limit the maximum depth of the decision tree in this
example.

node #0
x[3] <= 0.8
class = y[0]

node #1
class = y[0]

True

node #2
x[3] <= 1.75
class = y[1]

False

node #3
x[2] <= 4.95
class = y[1]

node #10
x[2] <= 4.85
class = y[2]

node #4
x[3] <= 1.65
class = y[1]

node #7
x[3] <= 1.55
class = y[2]

node #5
class = y[1]

node #6
class = y[2]

node #8
class = y[2]

node #9
class = y[1]

node #11
x[0] <= 5.95
class = y[2]

node #14
class = y[2]

node #12
class = y[1]

node #13
class = y[2]

Figure 1: Decision tree model generated from the Iris dataset.
The features depicted in the figure correspond to: x[0] = sepal
length, x[1] = sepal width, x[2] = petal length, x[3] = petal
width. The Iris dataset contains information regarding three
classes of iris plants, each representing a different species:
Iris setosa (class 0), Iris versicolor (class 1), and Iris virginica
(class 2).

or a maximum value, but not both, i.e., (minimum, ?) or (?, maxi-
mum). To complete these intervals, the property generator extracts
data from the training dataset. Specifically, our approach identifies
the unique values that characterize each feature of every class type.
For instance, when analyzing a tuple with a missing maximum
value, (minimum, ?), the property generator searches the dataset
for the largest value corresponding to the given feature, considering
only entries labeled as class 1. Similarly, for each tuple with a miss-
ing minimum value, our property generator searches the dataset
for the smallest value that can describe that feature. After this step,
the property generator identifies that the smallest possible value in
the dataset for the petal length of an Iris versicolor is 1, as shown
in Table 2.

Table 2: Updated intervals extracted from the internal nodes
when following the path from node #0 to node #5, with miss-
ing values in the intervals supplemented by data from the
dataset.

Sepal Length Sepal Width Petal Length Petal Width Assertion
(x[0]) (x[1]) (x[2]) (x[3])

(?, ?) (?, ?) (1.00, 4.95) (0.80, 1.65) 1

In the third step, the property generator addresses features that
are not present within the decision nodes for a specific path. Con-
sidering the path from node #0 to node #5, the features x[0] (i.e.,
sepal length) and x[1] (i.e., sepal width) do not appear in any of the
decision nodes. During model training and generation, this omis-
sion indicates that the learning algorithm inferred these features as
irrelevant to the classification outcome. In the proposed approach,
the property generator randomly extracts a subset of values (i.e.,
three values) from the training dataset for each feature omitted
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from the analyzed path. These values are derived from data samples
belonging to the same class as the test assertion (i.e., the leaf node).
The final set of values and intervals extracted from the example
path are shown in Table 3.

Table 3: Final set of values and intervals extracted from the
training dataset and internal nodes along the path from node
#0 to node #5.

Sepal Length Sepal Width Petal Length Petal Width Assertion
(x[0]) (x[1]) (x[2]) (x[3])

[5.1, 5.4, 6.3] [2.5, 2.7, 3.4] (1.00, 4.95) (0.80, 1.65) 1

As mentioned in Section 4.2, we encode two decision tree criteria
into properties: DTC and BVA. Our tool generates a test file for
each criterion. For the generation of the DTC test suite, all the
necessary information is in Table 3. Utilizing this information, our
tool generates a Python test code file that leverages the Hypothesis
framework for property-based test data generation and the pytest
framework for its assertion utilities.

The resulting test file in Listing 1 comprises two main parts: a
test function (i.e., a function with the test_ prefix in lines 6–11)
and a @given decorator that specifies how the function’s arguments
should be generated (lines 1–4). The sampled_from and floats func-
tions return what, in the lexicon of Hypothesis, is termed a search
strategy. In essence, a search strategy is an object with methods that
describe how to generate specific types of values. These strategies
offer various arguments that allow for customization of the test
data generation process. In the example shown in Listing 1, we
employ two distinct search strategies: randomly selecting a value
from a list (sampled_from function, lines 1 and 2) and generating
floating-point numbers within a specified range by defining min-
imum and maximum values (floats function, lines 3 and 4). The
@given decorator then takes the test function and transforms it into
a parameterized one that runs 100 times (line 5) against a range of
randomly generated data matching the search strategies. In each
test run, features values received as arguments are mapped to an
input list (line 7), and used to call the black-box model under test
in line 9. The value predicted by the model is then compared with
the expected value in line 11.

Listing 1: DTC test suite code.� �
1 @given(st.sampled_from([5.1, 5.4, 6.3]),
2 st.sampled_from([2.5, 2.7, 3.4]),
3 st.floats(min_value=1.00, max_value=4.95),
4 st.floats(min_value=0.80, max_value=1.65))
5 @settings(phases=[Phase.generate], max_examples=100)
6 def test_pbt_dtc_1(self, feat_1, feat_2, feat_3, feat_4):
7 x_test = [feat_1, feat_2, feat_3, feat_4]
8 y_expected = [1]
9 y_predicted = self.model.predict([x_test]).tolist()
10
11 assert y_expected == y_predicted
� �

To generate the BVA test suite, our property generator begins
with the values shown in Table 1. To randomly generate values near
the boundaries of each interval, the property generator narrows
down each interval. For instance, given an interval with minimal
and maximal values, our tool randomly selects either the minimal
or the maximal value and generates a new corresponding value for
the tuple. When the minimal value is chosen, our implementation
assigns a new maximum value that narrows the interval. Specifi-
cally, the new maximum value is set closer to the minimal value,
thereby generating data inputs that are near the boundary or at the
edges rather than the center of the input domain. This approach
increases the likelihood of uncovering potential issues. Features
with only one boundary value, either minimum or maximum, are
handled by assigning a new value close to the existing boundary,
thus narrowing the interval.

As shown in Table 4, the same values previously extracted from
the dataset are utilized for features that do not appear in any deci-
sion node along the path under analysis. As for petal length, since
only the maximum value for the interval (i.e., 4.95) appears in the
decision nodes, the property generator refines the interval by as-
signing a minimum value close to this maximum boundary: (4.16,
4.95). This skews the test data generation process towards the upper
limit. For petal width, given that both the minimum and maximum
values are available, the property generator randomly selects which
boundary to modify. In this example, the upper limit is adjusted to
a value closer to the lower limit, thereby narrowing the test data
generation process to values nearer to the lower boundary. The
code of the resulting test suite is shown in Listing 2.

Table 4: Set of values and intervals extracted from the train-
ing dataset and internal nodes upon applying the BVA cri-
terion for test data generation. For the sake of brevity, the
column Assertion was omitted.

Sepal Length Sepal Width Petal Length Petal Width
(x[0]) (x[1]) (x[2]) (x[3])

[5.1, 5.4, 6.3] [2.5, 2.7, 3.4] (4.16, 4.95) (0.80, 0.97)
(focus on upper boundary) (focus on lower boundary)

Listing 2: BVA test suite code.� �
1 @given(st.sampled_from([5.1, 5.4, 6.3]),
2 st.sampled_from([2.5, 2.7, 3.4]),
3 st.floats(min_value=4.16, max_value=4.95),
4 st.floats(min_value=0.80, max_value=0.97))
5 @settings(phases=[Phase.generate], max_examples=100)
6 def test_pbt_bva_1(self, feat_1, feat_2, feat_3, feat_4):
7 x_test = [feat_1, feat_2, feat_3, feat_4]
8 y_expected = [1]
9 y_predicted = self.model.predict([x_test]).tolist()
10
11 assert y_expected == y_predicted
� �
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5 EXPERIMENT SETUP
We set out to compare our property-driven approach to testing
machine learning models with cross-validation, which is a resam-
pling technique commonly used to gauge the performance of ma-
chine learning models. We conjecture that our property-driven
approach is more suitable for generating test suites for machine
learning-based programs. This hypothesis is based on the fact that
our approach leverages the internal structure and decision-making
information of decision tree models, utilizing decision tree coverage
criteria to identify test requirements. Furthermore, by employing
property-based test data generation, our approach can explore a
vast range of input data, often more than traditional example-based
tests, leading to more comprehensive coverage. In our approach, all
test data generation is based on properties extracted from a global
surrogate model. We assume that decision nodes play a key role in
the model’s behavior and that it is possible to design more effective
test cases by capitalizing on the structure and underlying decision
information of the model.

We designed an experiment to answer the following research
question (RQ):

RQ: How effective are the test cases derived from our property-
based driven approach in comparison with random test cases from
a 10-fold cross validation?

5.1 Scoping
The scope of our experiment is determined by defining its objec-
tives, which were outlined using the Goal/Question/Metric (GQM)
template [19] as follows:

Analyze our property-driven approach
for the purpose of comparison
with respect to their effectiveness
from the point of view of the researcher
in the context of testing machine learning based programs.

In Section 5.2 we present the hypotheses we used to investigate
the RQ and provide the operational definition [17] of effectiveness.

5.2 Hypotheses Formulation
We framed our prediction as follows: our property-driven approach
to machine learning testing is more effective than random testing.
In this section, we turn our RQ and prediction into hypotheses,
allowing us to conduct statistical tests. Consequently, our RQ was
translated into the following hypotheses:

Null hypothesis, H0: there is no difference in effectiveness
between our property-driven approach to testing machine learning
models and random testing.

Alternative hypothesis, H1: there is a significant difference
in effectiveness between our property-driven approach to testing
machine learning models and random testing.

Our main objective is to determine whether our property-driven
approach leads to more effective test cases. To evaluate this as-
sumption, our property-driven approach begins by training an
interpretable model (i.e., a decision tree) to predict the behavior of
the model under test, which is typically a black-box model. The

resulting interpretable model is then rendered into properties that
generate test data based on two decision coverage criteria (as de-
scribed in Section 4.3).

Subsequently, we use this randomly generated test data to eval-
uate the performance of the model under test, which, in our ex-
periment, is a k-Nearest Neighbors (k-NN) model. We train the
black-box models by applying k-NN to the original dataset. We
employ 10-fold cross-validation for both training and testing the
k-NN models. Finally, the results obtained from this 10-fold cross-
validation are compared with the results achieved by subjecting
the black-box models to the property-based test suites.

There are many different methods for evaluating and comparing
machine learning models. For this study, we leverage a set of widely
used performance metrics, including precision, recall, accuracy, and
the F1 score, to assess the effectiveness of the models employed. The
dependent variable of interest for addressing our RQ is effectiveness,
which is measured using these performance metrics within the
context of this experiment.

In the context of our study, if a model 𝑀 performs worse on
test inputs derived from a random test data selection approach
𝐴1 compared to test inputs generated by applying approach 𝐴2,
then 𝐴1 is considered more effective than 𝐴2. Given a metric 𝑓 ,
that measures the quality of a model 𝑀 , and a test suite 𝑇 , we
use 𝑓 (𝑀 (𝑇 )) to denote the score obtained by running 𝑇 against𝑀
according to 𝑓 . Consequently,

𝑓 (𝑀 (𝑇1)) < 𝑓 (𝑀 (𝑇2))
indicates that T1 is more effective than T2 according to 𝑓 because

𝑇1 reveals more instances in which𝑀 fails compared to 𝑇2.

5.3 Instrumentation and Execution
We developed two types of experiment objects: (i) Python scripts
for loading and processing datasets (including test case generation
using our tool) and (ii) scripts for analyzing the results. We utilized
Google Colaboratory (Colab),5 a cloud-based environment for run-
ning Python scripts in the browser. Google Colab enables users
to create notebooks6 that integrate executable Python code with
rich text in a single document. For data wrangling and analysis, we
employed pandas.7 All machine learning algorithms in our exper-
iment objects were implemented using scikit-learn,8 which is
the most prominent Python library for machine learning [6, 9].

To evaluate the effectiveness of our property-driven approach,
we used the resulting randomly generated test suites to assess k-NN
models. To this end, we first employ 10-fold cross-validation for
both training and testing the k-NN models. An overview of this
training and testing step is shown in Figure 2. We selected 5-NN
for our evaluation due to the simplicity of k-NN, where model
generation involves merely storing the training data.

Following a 10-fold cross-validation, each of the resulting 5-NN
models are subjected to the property-based test suites, as shown
in Figure 3. The test suites shown in Figure 3 use properties to
automatically generate complex, random, valid inputs. These inputs

5https://colab.research.google.com/
6Google Colab notebooks are Jupyter notebooks.
7https://pandas.pydata.org
8https://scikit-learn.org/stable/

https://colab.research.google.com/
https://pandas.pydata.org
https://scikit-learn.org/stable/
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Stratified 10-Fold
Cross-Validation

K-NN
Algorithm Prediction

Dataset
(10-Fold)

Training Set
    (9-Fold)

10 Iterations

Test Set 
 (1-Fold)

5-NN Model
in Testing

Experiment Data for Stratified 
    10-Fold Cross-Validation

Figure 2: The stratified 10-fold cross-validation process used
in our experiment. The dataset is divided into 10 folds, with 9
folds used as the training set and 1 fold as the test set, iterated
10 times. The 5-NNmodel is then applied to the testing phase,
and the results are recorded for each iteration.

are then fed into the test harness implemented by our tool, which
assesses them against the black-boxmodel under evaluation (a 5-NN
model in the context of our experiment). As mentioned, to evaluate
model performance, we focus on four key metrics: precision, recall,
accuracy, and F1. After training the models on the datasets, we store
their prediction results for further analysis.

Proposed Tool

5-NN Model 

Tool Config. Options

Dataset

DTC test suite

BVA test suite

Figure 3: Configuration and application of the proposed tool
for generating test suites for the 5-NNmodel. Upon receiving
a dataset, the tool employs a decision tree algorithm to build a
global surrogatemodel. Subsequently, the property generator
component of the tool turns the information gleaned from
the surrogate model into a set of properties based on two
decision tree testing criteria, producing the DTC and BVA
test suites.

5.4 Datasets
We selected 21 commonly used for training machine learning mod-
els. These datasets tend to be less complex and cleaner than real-
world data, leading to the creation of smaller and more interpretable
decision trees. An overview of the datasets used in our experiment
is shown in Table 5.

As shown in Table 5, the datasets used in our experiment ex-
hibit significant heterogeneity in terms of sample size, number of
attributes, class distribution, and the number of classes. The sample

Table 5: Overview of the datasets used in our experiment.

Dataset Samples Attributes Classes Samples per Class

Bank Marketing 45,211 17 2 [39,922; 5,289]
Banknote Authentication 1,372 5 2 [762; 610]
Blood Transfusion 748 5 2 [570; 178]
Breast Cancer Wisconsin 569 31 2 [212; 357]
Cleveland Heart Disease 297 14 2 [160; 137]
Glass Identification 214 10 6 [70; 76; 17; 13; 9; 29]
Haberman’s Survival 306 4 2 [225; 81]
Horse Racing Tipster Bets 38,248 10 2 [30,565; 7,683]
Indian Liver Patient 579 11 2 [414; 165]
Ionosphere 351 35 2 [126; 225]
Iris 150 5 3 [50; 50; 50]
Oil Spill 937 50 2 [896; 41]
Page Blocks Classification 5,473 11 5 [4,913; 329; 28; 88; 115]
Phoneme 5,404 6 2 [3,818; 1,586]
Pima Indians Diabetes 768 9 2 [500; 268]
Seeds 210 8 3 [70; 70; 70]
Sonar; Mines vs. Rocks 208 61 2 [111; 97]
Students Knowledge Levels 403 6 4 [50; 129; 122; 102]
Vertebral Column 310 7 3 [100; 60; 150]
Wine Recognition 178 14 3 [59; 71; 48]
Woods Mammography 11,183 7 2 [10,923; 260]

sizes range from as few as 150 (Iris) to over 45,000 (Bank Market-
ing), indicating a wide variation in dataset scale. The number of
attributes also varies significantly, from as few as 4 (Haberman’s
Survival) to as many as 61 (Sonar; Mines vs. Rocks). Additionally,
the class distribution within the datasets is often imbalanced, as
seen in the Oil Spill dataset with 896 samples in one class and only
41 in the other. Furthermore, the number of classes ranges from
binary classification tasks (e.g., Banknote Authentication) to more
complex multiclass problems such as Glass Identification with six
classes.

6 EXPERIMENTAL RESULTS
In this section, we present the experimental results of comparing
our property-driven test data generation approach with the widely
used 10-fold cross-validation resampling technique. Before delving
into this comparison, we outline the outcomes of applying our tool
to the 21 selected datasets. This discussion primarily focuses on
the number of properties extracted from the models, as well as
the number of test inputs generated from DTC- and BVA-based
properties.

Table 6 presents an overview of the properties extracted from
the global surrogate models and the number of unique test inputs
generated by the proposed tool. The number of properties extracted
varies significantly across datasets, ranging from as few as 9 for the
Iris dataset to as many as 7,389 for the Horse Racing Tipster Bets
dataset.

The average number of properties extracted from the global sur-
rogate models across all datasets is 609.76, resulting in an average
of 60,976.19 test inputs generated per dataset. The total number of
randomly generated test inputs follows directly from the number
of properties: this is the case because, as shown in line 5 of Listings
1 and 2, the tool is set to generate 100 test inputs for each property.
Thus, the dataset that generated the largest number of test inputs
was the Horse Racing Tipster Bets dataset, with 738,900 inputs,
while the Iris dataset produced the fewest test inputs, totaling 900.
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Table 6: Overview of the number of properties and test inputs
generated from the datasets in our experiment.

Dataset
Properties

Test Inputs
per Property

Generated
Test Inputs

Unique
Test Inputs

DTC / BVA DTC / BVA DTC / BVA DTC BVA

Bank Marketing 3,679 100 367,900 364,747 364,422
Banknote Authentication 27 100 2,700 2,568 2,535
Blood Transfusion 198 100 19,800 19,717 19,695
Breast Cancer Wisconsin 22 100 2,200 2,142 2,143
Cleveland Heart Disease 57 100 5,700 5,641 5,652
Glass Identification 50 100 5,000 4,889 4,891
Haberman’s Survival 103 100 10,300 10,277 10,279
Horse Racing Tipster Bets 7,389 100 738,900 734,365 734,202
Indian Liver Patient 111 100 11,100 10,968 10,976
Ionosphere 23 100 2,300 2,278 2,279
Iris 9 100 900 877 874
Oil Spill 35 100 3,500 3,458 3,456
Page Blocks Classification 165 100 16,500 16,137 16,107
Phoneme 521 100 52,100 51,667 51,647
Pima Indians Diabetes 129 100 12,900 12,623 12,622
Seeds 16 100 1,600 1,567 1,564
Sonar, Mines vs. Rocks 22 100 2,200 2,171 2,174
Students Knowledge Levels 31 100 3,100 3,040 3,023
Vertebral Column 45 100 4,500 4,396 4,390
Wine Recognition 12 100 1,200 1,162 1,164
Woods Mammography 161 100 16,100 15,912 15,914

Descriptive Statistics
Max 7,389 – 738,900 734,365 734,202
Min 9 – 900 877 874
Mean 609.76 – 60,976.19 60,504.86 60,476.62
Median 50 – 5,000 4,889 4,891

Upon further analysis, we found that our tool produces a high num-
ber of unique (i.e., non-duplicate) test inputs, averaging 60,504.86
for DTC-based properties and 60,476.62 for BVA-based properties.
This demonstrates the tool’s efficiency in generating diverse test
data while minimizing duplication.

The results presented in Table 6 indicate that properties based
on the DTC criterion lead to the largest number of unique test
cases. This is evident from the consistently higher unique test input
counts for DTC compared to BVA. For instance, considering the
Bank Marketing dataset, DTC-based properties generated 364,747
unique test inputs compared to BVA’s 364,422. Similarly, for the
Horse Racing Tipster Bets dataset, DTC-based properties produced
734,365 unique test inputs, while BVA-based properties yielded
734,202. Across the board, properties based on DTC consistently
outperform BVA-based properties in generating a higher number of
unique test cases, which might indicate that DTC-based properties
are more effective at exploring a more diverse set of scenarios
within the test data.

6.1 Hypothesis Testing
To investigate whether our property-driven approach leads to the
creation of test data that is more effective at evaluating the per-
formance of machine learning models, we conducted two-tailed
paired t-tests to assess differences in the mean values of the metrics
used in our experiment (i.e., precision, recall, accuracy, and F1).
Prior to performing these tests, we verified the normality of the
data distributions using the Shapiro–Wilk test. The results of the
Shapiro-Wilk test confirmed that all distributions of the results,
derived from applying test data generated from DTC- and BVA-
based properties to a k-NN model, as well as those from a 10-fold
cross-validation, are normal (as shown in Table 7).

As shown in Table 7, 10-fold cross-validation consistently yields
the highest scores across all metrics, indicating that it may not
push the models to their limits as effectively as the property-driven
approach. DTC- and BVA-based properties test suites generally
produce lower scores, suggesting they are more effective at testing
the models’ boundaries and exercising edge cases.

Based on the results of the paired t-tests shown in Table 8, there
are statistically significant (𝑝 ≤ 0.001) differences between DTC-
based properties and 10-fold cross-validation, as well as BVA-based
properties and 10-fold cross-validation. Specifically, the test data
from property-driven approaches resulted in lower scores across
all metrics, which suggests that these approaches are better suited
at more thoroughly evaluating the models. Although not reported
in Table 8, it is worth noting that the differences between DTC and
BVA properties were not statistically significant, indicating that
these two approaches perform similarly in terms of the evaluated
metrics.

The violin plots shown in Figure 4 provide a comparative anal-
ysis of the three approaches. As mentioned, the plots corroborate
that 10-fold cross-validation yields higher scores across all metrics,
indicating a lesser degree of model stress testing compared to the
property-driven approaches. Conversely, both DTC- and BVA-based
test suites show lower median scores and greater variability. While
test data generated from DTC- and BVA-based properties perform
similarly, the latter often exhibits slightly better performance, with
lower scores in most cases, suggesting it might be more effective in
generating challenging test cases.

6.2 Discussion
Our results suggest that while 10-fold cross-validation remains a
popular and reliable method for model evaluation, our property-
driven approach provides a more rigorous evaluation by generating
data that thoroughly explores the models’ limitations. This is cru-
cial for identifying potential weaknesses and ensuring robustness,
particularly in real-world applications where edge cases and un-
common scenarios can significantly impact performance. The lower
scores obtained through our property-driven approach highlight
the need for more nuanced evaluation criteria that prioritize robust-
ness and boundary testing, ensuring that models perform well in
typical scenarios and under more challenging conditions. Therefore,
incorporating property-driven test suites into the evaluation pro-
cess can enhance the comprehensiveness of model testing, leading
to more reliable and resilient machine learning models.

7 THREATS TO VALIDITY
One potential threat to external validity is that our selected datasets
may not represent the broader target population. These datasets
can be considered “toy” datasets, as they are relatively smaller and
cleaner than those encountered in real-world scenarios. Therefore,
we cannot rule out the possibility that different results might have
been obtained if larger and more complex datasets had been used
in our experiment.

A threat to construct validity arises from the possibility that the
measures employed in the experiment may not adequately evaluate
the effects we intended to investigate. Specifically, while precision,
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Table 7: Performance comparison of the two property-driven approaches and 10-fold cross-validation across four metrics.

Dataset DTC Test Suite BVA Test Suite 10-fold Cross-Validation
Precision Recall Accuracy F1 Precision Recall Accuracy F1 Precision Recall Accuracy F1

Bank Marketing 0.51 0.43 0.51 0.48 0.51 0.45 0.51 0.48 0.88 0.87 0.88 0.86
Banknote Authentication 0.78 0.78 0.78 0.78 0.69 0.68 0.69 0.69 1.00 1.00 1.00 1.00
Blood Transfusion 0.52 0.53 0.52 0.53 0.54 0.54 0.54 0.53 0.76 0.73 0.76 0.74
Breast Cancer Wisconsin 0.75 0.75 0.75 0.75 0.73 0.73 0.73 0.74 0.94 0.93 0.94 0.94
Cleveland Heart Disease 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.64 0.63 0.64 0.64
Glass Identification 0.37 0.34 0.37 0.37 0.36 0.32 0.36 0.35 0.66 0.63 0.66 0.64
Haberman’s Survival 0.62 0.58 0.62 0.60 0.61 0.57 0.61 0.59 0.72 0.69 0.72 0.69
Horse Racing Tipster Bets 0.49 0.38 0.49 0.43 0.49 0.39 0.49 0.43 0.77 0.72 0.77 0.70
Indian Liver Patient 0.51 0.41 0.51 0.52 0.50 0.42 0.50 0.49 0.67 0.66 0.67 0.66
Ionosphere 0.60 0.58 0.60 0.74 0.62 0.61 0.62 0.77 0.84 0.83 0.84 0.86
Iris 0.58 0.59 0.58 0.61 0.57 0.57 0.57 0.63 0.95 0.95 0.95 0.96
Oil Spill 0.50 0.37 0.50 0.64 0.50 0.35 0.50 0.68 0.96 0.94 0.96 0.92
Page Blocks Classification 0.40 0.39 0.40 0.40 0.41 0.40 0.41 0.40 0.96 0.95 0.96 0.95
Phoneme 0.49 0.49 0.49 0.49 0.51 0.51 0.51 0.51 0.89 0.89 0.89 0.89
Pima Indians Diabetes 0.49 0.49 0.49 0.49 0.50 0.48 0.50 0.50 0.71 0.70 0.71 0.70
Seeds 0.65 0.65 0.65 0.66 0.74 0.73 0.74 0.74 0.87 0.86 0.87 0.88
Sonar; Mines vs. Rocks 0.66 0.66 0.66 0.67 0.67 0.67 0.67 0.69 0.80 0.80 0.80 0.81
Students Knowledge Levels 0.54 0.53 0.54 0.55 0.50 0.46 0.50 0.54 0.88 0.88 0.88 0.89
Vertebral Column 0.60 0.60 0.60 0.61 0.57 0.57 0.57 0.58 0.82 0.82 0.82 0.84
Wine Recognition 0.41 0.41 0.41 0.44 0.35 0.36 0.35 0.40 0.69 0.67 0.69 0.71
Woods Mammography 0.60 0.52 0.60 0.64 0.61 0.54 0.61 0.63 0.99 0.98 0.99 0.98

Descriptive Statistics
Max 0.78 0.78 0.78 0.78 0.74 0.73 0.74 0.77 1.00 1.00 1.00 1.00
Min 0.37 0.34 0.37 0.37 0.35 0.32 0.35 0.35 0.64 0.63 0.64 0.64
Mean 0.55 0.52 0.55 0.57 0.55 0.52 0.55 0.57 0.83 0.82 0.83 0.82
Median 0.52 0.52 0.52 0.55 0.51 0.51 0.51 0.54 0.84 0.83 0.84 0.86
Std Deviation 0.11 0.12 0.11 0.12 0.11 0.12 0.11 0.12 0.12 0.12 0.12 0.12

Normality Test
Shapiro-Wilk (W) W=0.96, W=0.96, W=0.96, W=0.97, W=0.95, W=0.96, W=0.95, W=0.96, W=0.94, W=0.93, W=0.94, W=0.92,

p=0.45 p=0.46 p=0.45 p=0.72 p=0.33 p=0.58 p=0.33 p=0.54 p=0.21 p=0.12 p=0.21 p=0.07

recall, accuracy, and F1 score are commonly used to evaluate ma-
chine learning models, they may not fully capture the adequacy
of test data for machine learning-based programs. However, the
widespread use of these performance metrics in evaluating ma-
chine learning models helps mitigate this threat. We used these
metrics because the smaller the value, the better the test data is
at pushing the model under test to its limits, effectively testing
edge cases, and exploring scenarios not encountered during train-
ing. We acknowledge that the random generation of synthetic test
data can introduce biases not present in real-world data. However,

Table 8: Results from the two-tailed paired t-tests.

Paired Samples Test (𝑡 )
Metric DTC x Cross-validation BVA x Cross-validation

Precision
𝑡 = -10.97,
p-value ≤ 0.001

𝑡 = -10.88,
p-value ≤ 0.001

Recall
𝑡 = -10.10,
p-value ≤ 0.001

𝑡 = -10.08,
p-value ≤ 0.001

Accuracy
𝑡 = -10.97,
p-value ≤ 0.001

𝑡 = -10.88,
p-value ≤ 0.001

F1
𝑡 = -10.57,
p-value ≤ 0.001

𝑡 = -10.30,
p-value ≤ 0.001

our test data is designed based on a global surrogate model that
maps the model’s behavior under test. Therefore, we anticipate that
an adequately trained model should perform well on this type of
synthetic data, as it closely approximates real data. Despite this,
we recognize the inherent difficulty in validating synthetic data to
ensure that it accurately represents the diversity and distribution
of real-world data. Another potential threat to construct validity
stems from possible faults in our tool.

8 CONCLUDING REMARKS
The main benefit of property-based testing stems from its ability
to generate many inputs from a single specification (i.e., property).
This often leads to the discovery of edge and corner cases that
example-based tests might overlook. In the context of testing ma-
chine learning models, our approach offers a middle ground be-
tween example-based test cases and computationally expensive
formal methods. Property-based testing retains the precision of
traditional formal specifications and their capacity to characterize a
model’s behavior, while also providing a relatively fast, best-effort
validation [7]. Additionally, our approach eliminates the need for
testers to manually create properties by by automatically extracting
these properties from a global surrogate model. These properties
are high-level, abstract descriptions of the expected behavior of the
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Figure 4: Violin plots comparing the performance of the
two property-driven approaches and 10-fold cross-validation
across four metrics. These plots show the distribution and
variability of the scores, where lower scores indicate better
performance.

model under test and are used to generate many test cases automat-
ically. As indicated by our results, property-based test data covers
a broad spectrum of possible values, which we surmise results in
a thorough examination of the model’s behavior. In future work,

we plan to investigate the implications of using different white-box
models as global surrogates on the resulting properties and the
generated test data.
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