Benchmark review and case study of stress test for a gaming
computer applied in CPU

Tamires Martins Rezende
FITec
Belo Horizonte - MG, Brasil
tamiresrezende@fitec.org.br

Joao Ider Silva Junior

Séo José dos Campos - SP, Brasil
joaoiderjunior@fitec.org.br

ABSTRACT

A stress test on gaming computers is one of the instruments used to
ensure that machines can handle demanding memory, processing,
and graphics tasks without compromising performance. This study
examines benchmark tools for stress testing both personal and gam-
ing computers, as well as degradation variables that can impact
their performance. A C++ algorithm based on prime number calcu-
lation was created to stress and measure the consumption of three
CPUs: AMD Ryzen 7 4800H (Nitro 5 AN515-44), 12th Gen Intel(R)
Core(TM) i7-12700H (Predator Triton 300 SE), and 12th Gen Intel(R)
Core(TM) i9-12900H (Predator Triton 500 SE). To provide similar
conditions, the test was run with ten simultaneous threads on each
machine. The results show good performance of the algorithm and
revealed the superior performance of the Predator Triton 500 SE in
terms of runtime. The discussion addresses the findings that can
be utilized to identify potential bottlenecks and ensure a positive
gaming experience.

CCS CONCEPTS

« General and reference — Performance; - Hardware — Hard-
ware test.

KEYWORDS

benchmark test, stress test, gaming computer, CPU

1 INTRODUCTION

A gaming computer is a high-performance computing device de-
signed for memory-intensive, processing-heavy, and graphics-rich
activities. The positive experiences of players drive the continuous
growth in the gaming market and works on organizational strategy
in the digital games industry [16].

Performance evaluation tests are conducted on these machines
to assess system stability and performance under extreme loads.
These tests create scenarios in which the computer is pushed to
its limits, such as simulations running intensive games, ensuring
that the system operates efficiently and reliably in challenging
situations [22]. These performance comparison programs, known
as benchmarks, help identify speed and performance bottlenecks.
The tools may be used, for instance, to extract information for
comparison with similar setups. The main performance metrics in
the industry of digital games generally include Central Processing

Alfredo Enrique Macias Medri
FITec
Manaus - AM, Brasil
alfredomedri@fitec.org.br

Marcos Antonio Alves
FITec FITec

Belo Horizonte - BH, Brasil
marcosaalves@fitec.org.br

Jacqueline Teixeira Santos
FITec
Séo José dos Campos - SP, Brasil
jacquelinetsantos@fitec.org.br

Fabio de Carvalho Zottino
FITec
Séo José dos Campos - SP, Brasil
fezottino@fitec.org.br

Unit (CPU) usage, temperature, clock speed, voltage, and system
stability; Graphics Processing Unit (GPU) usage and performance
in games; Random-Access Memory (RAM) usage and speeds; and
Hard Drive (HD) speeds and access times.

Benchmarks have been widely utilized in academic research to
evaluate computing performance. Eigenmann [7] conducted re-
search on methodology, the interaction between SPEC benchmarks
and other operations, shortcomings, and the necessity for more ini-
tiatives. The authors pointed out that understanding and enhancing
computer system performance evaluation requires a focus on these
areas. This is in line with [21] study, whose research evaluated
the comparison between two processors (Intel and AMD). These
authors argued that this type of research is important given the de-
mand for greater computational power in more recent applications.

CPU performance, specially in gaming computers, is an im-
portant component in delivering an enjoyable player experience.
As gaming technology evolves, the demand for high-performance
CPUs has intensified, making it essential for gamers to understand
their hardware’s capabilities. The literature reports several tools
for conducting stress tests that analyze different components and
providing machine characteristics, along with a score indicating
how good the computer performs for gaming is. However, these
tools are often opaque, and their scoring system is difficult to un-
derstand. The score is a kind of a metric that represents an overall
assessment of the computer or component’s performance. Unfor-
tunately, in most cases, this score is calculated using a black-box
approach, with varying score ranges across different tools. While it
is acknowledged that many variables can contribute to an overall
score, these tools typically do not clearly specify how the scores
are derived.

In this paper, we conducted a benchmark review and case study
of CPU stress testing for gaming computers. Our aim is to present
and discuss various benchmark tools for stress tests, highlight degra-
dation factors that can impact performance of computers under
extreme loads, and provide a C++ algorithm based on prime num-
bers, which we apply to measure the CPU performance of three
different gaming machines.

This work fits into this event for two main reasons: First, the
analysis of benchmark tools provides a straightforward approach
that can be utilized by the gaming industry, players, and the event
audience. Second, the score provided serves as a metric for evaluat-
ing the machine’s performance in various aspects, directly aligning

SAST 2024, September 30 — October 04, 2024, Curitiba, PR

with the topic of “performance, load, and stress tests” The proposed
solution in this paper directly addresses these challenges by present-
ing a C++ algorithm designed to stress test CPUs effectively. Unlike
existing tools that operate in a black-box manner, our approach
aims to provide clear and interpretable performance metrics based
on a systematic analysis of CPU behavior under load.

The rest of this paper is organized into the following sections:
Section 2 discusses related works. Section 3 details the methodology
utilized to evaluate the different machines. Section 4 presents and
discuss the results. Finally 5 highlights the conclusion and future
works.

2 RELATED WORKS

The literature presents several studies in stress tests for gaming
computers. Sibai [17, 18] presented an analysis and evaluation of
personal computer performance in terms of CPU, memory, and
graphics using the OSMark benchmark. The study focused on spe-
cific tests and compares the benchmark results of two different
personal computers with single and dual cores. The author argued
that although the tool provides relevant information about the
tests, it falls short in total instruction and application coverage, and
does not adequately stress multi-core processors compared to the
competing benchmarks. Similarly, Ivanova et al. [10] utilized vari-
ous benchmark tools to evaluate GPUs by incorporating synthetic
benchmarks such as 3DMark, 3DMark11, and Unigine Heaven. The
authors reported interesting results and pointed out the importance
of development next-generation architectures.

In addition to the importance of component analysis for players,
Ivanova et al. [10] explored the energy-intensive nature of digital
games and offers insights into reducing energy consumption. Sig-
nificant variations in the energy ratings of computer components
suggest a considerable potential for energy savings.

CPU stress testing software, such as Prime95 and Cinebench
R23, thoroughly evaluates CPU performance and stability under ex-
treme loads. These tools offer detailed insights into CPU utilization,
temperatures, and other critical metrics. However, because they
exclusively focus on CPU testing, they may not provide a complete
assessment of the system. This could result in outcomes that do not
fully represent real-world gaming performance [13, 19, 23].

Similarly, GPU stress testing software such as 3DMark, Heaven /
Valley Benchmarks, and GPU-Z simulate intense graphics work-
loads to stress GPU. These tools provide detailed information about
GPU performance, temperatures, and stability. However, because
they primarily focus on testing the GPU, they may not offer a com-
plete picture of the overall system performance. Results from these
tests do not always correlate with actual gaming performance due
to the unique characteristics of gaming workloads [13, 19, 23]. In
terms of GPU application performance, Che and Skadron [4] em-
phasize the relevance of benchmark correlations in understanding
GPU performance metrics and scalability. It advocates for the use
of proxy benchmarks to forecast the performance of arbitrary appli-
cations and discusses the considerations necessary for constructing
future benchmark suites.

On the other hand, comprehensive stress testing software such
as AIDA64 and HeavyLoad tests multiple components (CPU, GPU,

Rezende, T. M. et al.

RAM) simultaneously, providing a more holistic assessment of sys-
tem performance and stability under extreme conditions. Although
these tools help identify system bottlenecks and potential prob-
lems, configuring them and interpreting the results can be more
time-consuming and effort-intensive compared to testing individ-
ual components. Automated stress testing tools like JMeter and
LoadTracer simplify the stress testing process by providing detailed
reports and analysis on system performance and stability. However,
they may require more technical knowledge to install and configure
[13, 19, 23].

Selecting stress testing software for a gaming computer should
take into account specific needs, such as the level of detail required,
the components to be tested, and the desired balance between
comprehensiveness and ease of use. A combination of specialized
and comprehensive tools can offer the most complete assessment
of system performance and stability [13, 19, 23].

Pugh [15] underscores the challenges in selecting representative
benchmarks and the complexities of evaluating computer system
performance, which often surpass those in algorithm evaluation.
Researches have address performance variability in computer sys-
tems for accurate assessments [9], benchmark energy efficiency,
power costs, and carbon emissions in heterogeneous systems [11],
compare different benchmarking software [5], develop strategies to
enhance performance evaluation [14], and use of microbenchmarks
to assess virtual machine instructions [3].

Figure 1 summarizes the main software commonly used for stress
tests, detailing characteristics such as components tested, program-
ming languages, algorithms, ownership, operating systems, and
others. The illustration highlights that each tool offers different
features, without a standardized approach. Each manufacturer pro-
vides their own benchmarking software, which varies in the pa-
rameters analyzed and the way results are presented. These tools
provide machine characteristics and a reference score, which in-
dicates the machine’s suitability for gaming. The tools listed vary
significantly in their focus, with some designed specifically for
stress testing (e.g., FurMark for GPU stress, Prime95 used in HW-
Monitor for CPU stress) and others providing more general system
monitoring and benchmarking (e.g., Geekbench, Novabench). The
programming language also is also diverse, such as C++, OpenGL,
and Vulkan, with specialized algorithms like Fur rendering and
Anti-Aliasing used for stress testing. Most tools are compatible
with Windows, with some supporting Linux and macOS, but there
are gaps in cross-platform compatibility.

Also, the related works aforementioned discuss about different
aspects used to assess stress in gaming computers. One of these
features that deserves special attention is the degradation factor
when a component is exposed to a high load, which is the stress
test. When studying the degradation factors of the components, it
became evident that these devices are composed of semiconduc-
tors [20], and that any degradation directly affects the performance
of the components [6, 8].

Below is a list of the key factors which contribute to the degra-
dation of components:

e Processing Demand: Programs or tasks requiring high pro-
cessing power can subject computer components to more
stressful conditions.

Benchmark review and case study of stress test for a gaming computer applied in CPU

SAST 2024, September 30 — October 04, 2024, Curitiba, PR

Info @ Stress & Runtime ¥ Score Il Benchmark #” Windows & Linux ® macos B Android

Software Rev| Enterprise CPU GPU ||RAM| SSD FPS oS Programming || Github Algorithm(s) Support
FurMark 2 Geeks3D Fr O Ll [OpenGL, Vulkan|| [Fur rendering Discord
ICPU-Z 1 |CPUID rr O B re MS Visual C++ @ff gG |Prime95 Contact
HWNMonitor I |CPUID rr T B MS Visual C++ || % X Contact
\GPU-Z 1 TechPowerUP (o) [4 C++ X 2D noise function Forum
Geekbench 1 |Primate Labsus || @) &% O u8 Bk 0O @® B ANSIC, Lua iprimatelabs|LZMA compression, Blowfish Forum
SiSoftware Sandra 1 SiSoftware GB OOno &l ” OpenCL X avx-IFMA, avx512-fp16, sha2-512 Ticket
ISuperPosition 1 |UNIGINE 6B O O O C++/unigine X SSRTGI (ray tracing) Contact
Novabench 1 Novabench ca [OF::] [OF:: Nk ek 00 ? X [compression and cryptography] |le-mail
MSI Kombustor I |MSITtw HH K] ” OpenGL, Vulkan|| 3 |Anti-Aliasing e-mail
OCCT 1 |OCBase Fr O B O = E] H ? X 3D Standard and Adaptative Discord
3DMark I |UL Solutions us ||) ## O = oS B ? X [For each game Help
UserBenchmark 1 |Free service AR A A T ? X ? Guide
Cinebench | |Maxon pe BE:ANIGE:20 e ? b4 [Render across CPU/GPU e-mail
ICrystalDiskMark 1 Hg"ystalMark I o> B C++ lhiyohiyo ||Sequential and Random e-mail
BaseMark GPU 1 ‘BaseMark FI O sl O @ B |C++/RockSolid State-of-the-art rendering Contact
Google Benchmark Library||1 ‘ Google us (€] €] ¢ €] O C++ google X Forum

Figure 1: Benchmark review for different stress tests software and their main characteristics.

o Increased Temperature: Intensive processing generates more
heat, especially in CPU and GPU, accelerating degradation
processes like atom migration and material aging.

e Power Cycling: Frequent power on and off cycles can strain
components, especially when temperature variations are
significant.

e Overclocking: Increasing the CPU or GPU operating fre-
quency beyond factory specifications can result in higher
heat production and component stress, potentially accelerat-
ing degradation if not managed properly.

e Environmental Conditions: Factors such as high tempera-
tures or humidity in the computer’s environment can con-
tribute to faster component degradation.

o Intensive Storage and Memory Usage: Activities involving
frequent read/write operations or heavy memory use can
stress components like memory controllers and disk con-
trollers.

Figure 2 presents a flowchart showing the life-cycle of computer
components from their initial phase to their eventual replacement
or maintenance. It begins with components being integrated into
the computer during the assembly process, followed by a phase
of normal operation. Throughout this operation, factors such as
natural wear and tear, thermal stress, and critical events (such as
electrical overloads) can influence component degradation. These
challenges result in component failures, leading to consequences
such as processing errors, data loss, and a subsequent decline in
performance.

The importance of environmental factors, such as temperature
and humidity, which can accelerate semiconductor wear is also high-
lighted in Figure 2. The consequences of failures lead to decision-
making, such as maintenance or replacement, and a bad experience
for the player.

Most researchers argued that it is important to adopt practices of
conscious use and ensure that the computer is maintained in suit-
able conditions to mitigate component degradation. It includes pro-
viding adequate ventilation, avoiding extreme environments, not
overloading the system with intensive tasks, and if applicable, not
overclocking without careful monitoring and proper cooling. Addi-
tionally, using temperature and performance monitoring software
can help maintain control over the computer’s operational condi-
tions. Finally, it is worth noting that semiconductor degradation
can indeed be analyzed in a laboratory setting through controlled
experiments to verify changes in electrical and phonon conditions
in the semiconductors.

In summary, this section has explored topics concerning per-
formance evaluation, computer system benchmarks and pointed
out the main tools and features. These studies underline the role
of effective benchmarks in understanding both hardware and soft-
ware performance, emphasizing the continuous need for enhance-
ments and greater transparency in evaluation methods. This paper
presents the CPU performance results of three gaming computers,
as a white-box manner, which contributes to benchmark methods.
These results are part of the development of software that will
perform stress testing on the four components (CPU, GPU, RAM,
SSD) and aims to be transparent in evaluating the machine’s per-
formance. An important feature of the algorithm presented in this
work was the consecutive search of next N prime number without
interruptions. It means that it performs a continue sequence of
loops after find the next N prime, which differs to Prime95.

3 METHODOLOGY

This section details the methodology employed to develop and
evaluate an algorithm based on prime numbers for stress testing
CPUs, following the Goal, Question, Metric (GQM) approach [2].

SAST 2024, September 30 — October 04, 2024, Curitiba, PR Rezende, T. M. et al.

Device Integration
(CPU, GPU, RAM)

Heatin
Temperature 9
Environmental Factors
Thermal Stress
Inefficient
Humidity Normal Cooling
Operation
Semiconductor Electrical
Degradation Overload
Component Failure
Natural Wear Critical Events
Electrostatic
Contact Failure Discharge

Performance
Loss

Replacement or

Maintenance

Figure 2: Degradation factors that can affect the performance of a gaming computer throughout its life cycle.

Goal: The primary objective is to develop an algorithm capable o Literature Review: The methodology began with a compre-
of quantifying CPU usage under stress conditions without causing hensive bibliographic review of major commercial bench-
long-term degradation. marking tools, focusing on their characteristics and capabil-

Questions: ities. This review informed the initial design of the stress

testing algorithm.

(1) What are the key characteristics of existing commercial e Component Analysis: We conducted a study to identify the
benchmarking tools that can inform the design of the stress primary factors leading to CPU degradation. These insights
testing algorithm? showed up the importance in designing an algorithm that

(2) Which factors contribute most to CPU component degrada- maximizes processing load while ensuring component longevity.
tion, and how can the algorithm maximize CPU load while e Algorithm Development: An initial version of the CPU stress
avoiding these issues? algorithm was implemented in C++, targeting extreme CPU

(3) How does the developed algorithm perform across different utilization while avoiding degradation. Through C++ and
CPU models in terms of utilization and stress? modern compilers, numerical and bitwise operations can

be performed by addressing CPU cache memory, and so on,

Metrics: avoiding the use of the external components to the CPU that

could bring on an extra runtime in stress algorithms.

The algorithm was executed on three CPUs detailed in Ta-
ble 1, under same conditions. These specific gaming laptops
were selected by availability.

Testing and Evaluation: The algorithm was executed several
times (cycles) and in parallel on several previously config-
ured threads. A flowchart of the algorithm’s steps is shown
in Figure 3. The stress tests involved running the algorithm

o Characteristics of benchmarking tools: Identified from bibli-

ographic research.
e CPU degradation factors: Derived from a detailed study on

component wear and tear. .
e CPU utilization under stress: Measured using the imple-

mented algorithm based on prime numbers across three

different gaming machines.

Process:

Benchmark review and case study of stress test for a gaming computer applied in CPU

SAST 2024, September 30 — October 04, 2024, Curitiba, PR

Table 1: Specification of each computer gamer used in the stress tests

ID CPU GPU RAM SSD
1. Nitro 5 AN515-44 AMD Ryzen 7 4800H NVIDIA GeForce RTX 1650 8GB 512GB
2. Predator Triton 300 SE 12th Gen Intel(R) Core(TM) i7-12700H NVIDIA GeForce RTX 3060 16GB 2TB
3. Predator Triton 500 SE 12th Gen Intel(R) Core(TM) i9-12900H NVIDIA GeForce RTX 3080 32GB 1TB

in parallel with black-box software, capturing CPU activity,
and performing re-engineering based on the data.

Initialization

Algorithm Definition

CPU Activity Capture

Parallel Threads Execution

Performance Evaluation

Algorithm End

Figure 3: Description of the steps taken to build the CPU
stress algorithm.

The algorithm was developed using the GetSystemTimes func-
tion (IpIdle, IpKernel, IpUser), where these variables represent the
idle, kernel, and user process times, respectively. The stress test
involves the calculation of prime numbers, whose function is re-
sponsible for finding the next prime number after a previously
configured number, repeating this process a specific number of
times. Essentially, the function seeks the next N prime numbers
following H as detailed in Algorithm 1.

To determine the prime number, the smallest divisor of the in-
teger is calculated, as shown in Algorithm 2. Therefore, during
the stress test, the CPU is placed under heavy load by repeatedly
performing prime number calculation in multiple threads, which
requires high consumption of computational resources and results
in a significant increase in CPU utilization.

Algorithm 1 NextPrimes function

1: function NEXTPRIMES(H, N)

2 // Tterate N times to find N prime numbers after H.
3 fork=0to N—-1do

4 while Divisor(H) # H do

5 H—H+1

6 end while

7 end for

8 // Return the last prime number found.

9: return H

10: end function

Algorithm 2 Divisor function

1: function D1visor(H)
2 // If H is less than 4, return 1, indicating it is prime or too
small to have relevant divisors.

if H < 4 then

return 1

end if

// Tterate over possible divisors of H, starting from 2 up to
H-1.
7: for j=2toH-1do

8: if H mod j = 0 then
9: // If a divisor of H is found, return this divisor.
10: return j
11: end if
12: end for
13: // If no divisor is found, return H, indicating H is a prime
number.
14: return H

15: end function

The NextPrimes algorithm was chosen due to its ability to gen-
erate a sustained and significant computational load on the CPU.
The task of finding successive prime numbers requires intensive
arithmetic operations, particularly as numbers grow larger, which
places a consistent demand on the CPU’s processing capabilities.
This algorithm’s importance lies in its ability to simulate real-world
scenarios where a system must handle complex, resource-heavy
calculations, such as those found in cryptographic applications.
Also, the algorithm is highly parallelizable, allowing the stress test
to run across multiple threads simultaneously.

4 RESULTS

The C++ algorithm, which is based on prime numbers, was em-
ployed under the same conditions, to evaluate the CPU of three
gaming computers previously described in Table 1. It can be used

SAST 2024, September 30 — October 04, 2024, Curitiba, PR

for gaming industries, especially due to the organizational strategy,
to evaluate gaming computers and offer this information to users.

The results of the stress tests are shown in Table 2. It is in terms
of time spent to run the stress test (runtime). The algorithm was ex-
ecuted for 30 cycles and 17 threads (number of stress test instances
that were executed simultaneously).

Table 2: CPU stress test

CPU Runtime [sec]
1. Nitro 5 AN515-44 1905.981
2. Predator Triton 300 SE 926.432
3. Predator Triton 500 SE 568.004

The Predator Triton 500 SE presented the best performance, com-
pleting the test in 568.004 seconds in total. The Predator Triton 300
SE was placed in second with 926.432 seconds and Nitro 5 AN515-
44 finished last with 1905.981 seconds. As all tests were run with
17 simultaneous threads, the difference in execution time directly
reflects the processing capacity of each CPU. The algorithm showed
stability, which means that the test measured performance without
failures or errors. The analysis does not take into account the cool-
ing characteristics of computers, which can affect performance in
stress tests.

Similar results are seen for the tested machines when the perfor-
mance of the proposed technique is compared with CPU-Z, which
also uses prime number calculations; these findings are displayed
in Table 3. This consistency proves that our proposed technique
is appropriate for assessing microcomputer performance and fits
in nicely with a popular benchmarking tool such as CPU-Z. It also
shows that the method employed to capture the relative perfor-
mance of these CPUs is successful.

Table 3: CPU stress test with CPU-Z

CPU Score
1. Nitro 5 AN515-44 4727.5
2. Predator Triton 300 SE | 4914.6
3. Predator Triton 500 SE | 7275.0

Table 2 shows that Predator Triton 500 SE outperforms all tested
processors under maximum load, as shown in Figure 4.

Based on the literature revised, we aggregate different protocols
to analyze benchmarks for different computers. They are listed
bellow.

(1) Identify performance limits and bottlenecks:
o Observe the maximum CPU utilization levels reached dur-
ing the stress test.
o This will reveal the hardware components that are the
limiting factors for your system’s performance [12, 13].
(2) Assess system stability and reliability:
e Monitor for any system crashes, freezes, or errors that
occur during the stress test.
e These indicate potential hardware or software issues that
need to be addressed [1, 13].

Rezende, T. M. et al.

CPU 12th Gen Intel(R) Core(TM) i9-12900H

% de Utilizagdo 100%

60 segundos 0

Figure 4: Stress test on the CPU of the Predator Triton 500
SE.

Through a stress test the users may have important insights
in terms of performance, stability, and thermal management ca-
pabilities. This information can be used to ensure which part is
suffering gaming workloads [1, 12, 13]. Also, running a benchmark
is to stress the components of the machine to analyze their perfor-
mance and check if they are capable of running games with good
performance. This means imposing an overload on the components
while ensuring that they are not degraded by use and, therefore,
avoiding damage to the machine.

Finally, this study have implications in different domains, includ-
ing for industry and academic sector. For practitioners and industry,
the developed C++ algorithm offers a practical tool for diagnosing
CPU performance under stress, being useful for hardware manu-
facturers, game developers, and IT professionals. For the academic
community, it contributes to the ongoing research in performance
evaluation and benchmarking.

4.1 Limitations and Future Works

The paper presents a simple and efficient C++ algorithm based
on prime numbers to stress-test and measure the performance
of three CPUs: Nitro 5 AN515-44, Predator Triton 300 SE, and
Predator Triton 500 SE. This research is part of a larger software
suite designed for stress testing CPUs, GPUs, RAM, and SSDs. As
demonstrated in Section 2, several software tools are available for
conducting CPU benchmarks.

We acknowledge threats to the validity of our findings. First, the
specific hardware configurations used may limit the generalizability
of the results to other systems with different specifications. Future
studies should address these limitations by incorporating a broader
range of tests, hardware configurations, and energy consumption
metrics to provide a more comprehensive evaluation. Addition-
ally, while the NextPrimes algorithm effectively stresses the CPU,
it does not encompass the full range of workloads encountered
in real-world applications, potentially limiting the breadth of our
performance evaluations.

This study does not differentiate between single-core and multi-
core performance. Single-core performance is particularly critical
for most games, so it is essential for our tool to provide results
for both scenarios. Future work may include the development of

Benchmark review and case study of stress test for a gaming computer applied in CPU

a benchmarking framework that explicitly measures and reports
both single-core and multi-core performance metrics. Furthermore,
many games do not fully utilize the CPU’s potential and run in
parallel with other applications, such as voice programs. Thus, as-
sessing the influence of these external factors on CPU performance
will be valuable.

Energy consumption was not measured during the stress tests, al-
though previous research has highlighted its significant impact, e.g.
in cryptocurrency mining. This aspect shows further investigation
in future studies.

Finally, we aim to apply the provided algorithm to a larger num-
ber of CPUs and conduct a comparative statistical analysis to en-
hance the robustness of our findings.

5 CONCLUSION

This paper identifies and details the main benchmark tools for
stress testing computers. Each of them has its own characteristics
and are based on different algorithm. However, many of them lack
transparency in explaining how the score was calculated, despite
often providing comparisons with other tested machines. Therefore,
interpreting the results of stress tests can be somewhat complex.

From the user’s perspective, it is important to check if the com-
puter components are operating within safe temperature limits and
are not subject to overload. Additionally, it is important to verify if
the results fall within the reference limits for each test tool used
and if the machine is suitable for gaming purposes.

Stress testing provides valuable information about the maximum
performance of CPUs under extreme conditions. It is important
to consider the user’s specific context and needs when choosing
a CPU. Factors such as price, energy consumption and portability
must also be taken into consideration.

For users who prioritize maximum performance in games and
demanding tasks, the Predator Triton 500 SE stands out as the best
option. For users looking for a balance between performance and
cost-benefit, the Predator Triton 300 SE could be a good choice.
The Nitro 5 AN515-44 may be suitable for users on a more limited
budget.

Our paper provides yet another method for testing the CPU, but
this time using intuitive, proprietary code that prioritizes minimiz-
ing unnecessary load times. We get 100% CPU utilization with a fast
test. Future works will be concentrated on developing a software
that will perform stress testing on the four components (CPU, GPU,
RAM, SSD) and aims to be transparent in evaluating the machine’s
performance.

REFERENCES

[1] Alim Adams. 2024. Stress Test a Game: Four Key Considerations. Antidote. antidote.
gg/stress-test-game-four-key-considerations/ Accessed: 2024-07-05.

[2] Victor R Basili and David M Weiss. 1984. A methodology for collecting valid
software engineering data. IEEE Transactions on software engineering 6 (1984),
728-738. https://doi.org/10.1109/TSE.1984.5010301

[3] Andreas Blumenthal, Mirko Luedde, Thomas Manzke, Bjoern Mielenhausen,
and Christiaan E. Swanepoel. 2004. Measuring software system per-
formance using benchmarks. United States, Patent Application Publica-
tion. Patent US2005120341A1_20050602. Online. Available at: searchplat-
form.rospatent.gov.ru/doc/US2005120341A1_20050602. Accessed: 2024-07-05.

[4] Shuai Che and Kevin Skadron. 2014. BenchFriend: Correlating the performance
of GPU benchmarks. Journal of Experimental Algorithmics 28, 2 (2014), 238-250.
https://doi.org/10.1177/1094342013507960

[5

[12

(13

[14

jpory
&

[16]

[17

[18

=
X2

[20

[21

[22

[23

SAST 2024, September 30 — October 04, 2024, Curitiba, PR

Christopher Cullinan, Christopher Wyant, and Timothy Frattesi. 2012. Com-
puting Performance Benchmarks among CPU, GPU, and FPGA. MathWorks,
117587, Russia, Moscow, Varshavskoye Highway, No. 125. Online. Avail-
able at: www.nicevt.ru/wp-content/uploads/2019/10/1.-Computing-Performance-
Benchmarks-among-CPU-GPU-and-FPGA.pdf. Accessed: 2024-07-05.

Tyler Dwyer, Alexandra Fedorova, Sergey Blagodurov, Mark Roth, Fabien Gaud,
and Jian Pei. 2012. A practical method for estimating performance degradation on
multicore processors, and its application to hpc workloads. In SC’12: Proceedings of
the International Conference on High Performance Computing, Networking, Storage
and Analysis. IEEE, Salt Lake City Utah, 1-11. https://doi.org/10.1109/SC.2012.11
Rudolf Eigenmann. 2000. Performance evaluation and benchmarking with realistic
applications. MIT Press; First Edition, 255 Main Street 9th Floor Cambridge, MA
02142.

David Flater and William F Guthrie. 2013. A case study of performance degra-
dation attributable to run-time bounds checks on C++ vector access. Journal
of research of the National Institute of Standards and Technology 118 (2013), 260.
https://doi.org/10.6028/jres.118.012

Samuel Irving, Bin Li, Shaoming Chen, Lu Peng, Weihua Zhang, and Lide Duan.
2020. Computer comparisons in the presence of performance variation. Frontiers
of Computer Science 14, 1 (2020), 21-41. https://doi.org/10.1007/511704-018-7319-
2

Desislava Ivanova, Vladimir Kadurin, and Yanko Belov. 2015. Performance Evalu-
ation and Benchmarking of Modern GPU Architectures. In International Scientific
Conference Computer Science. International Scientific Conference Computer Sci-
ence’2015, Durrés, Albania, 1-8.

Simon McIntosh-Smith, Terry Wilson, Amaurys Avila Ibarra, Jonathan Crisp, and
Richard B. Sessions. 2012. Benchmarking Energy Efficiency, Power Costs and
Carbon Emissions on Heterogeneous Systems. Comput. 7. 55, 2 (2012), 192-205.
https://doi.org/10.1093/comjnl/bxr091

Samuel Nzube. 2024. How to Stress Test GPU for Peak Performance. Aus-
logics. www.auslogics.com/en/articles/how-to-stress-test-gpu-for-peak-
performance/ Accessed: 2024-06-25.

Samuel Nzube. 2024. The Why and How of Computer Stress Tests: A User’s
Handbook. Auslogics. www.auslogics.com/en/articles/the-why-and-how-of-
computer-stress- tests-a-users-handbook/ Accessed: 2024-06-25.

Aashish Shreedhar Phansalkar. 2006. Measuring program similarity for efficient
benchmarking and performance analysis of computer systems. PhD thesis. Uni-
versity of Texas at Austin, Computer Science Dept. Taylor Hall 2.124 Austin,
TXUnited States. ISBN: 978-0-549-26741-6.

William Pugh. 2008. Technical perspective: A methodology for evaluating
computer system performance. Commun. ACM 51, 8 (2008), 82-82. https:
//doi.org/10.1145/1378704.1378722

Gareth Schott, David Buckingham, Andrew Burn, and Diane Carr. 2006. Studying
computer games (Chapter 1). In Computer Games: Text, Narrative and Play. Willey,
42 McDougall Street Milton, Queensland 4064, 224pp. ISBN: 978-0-745-63400-5.
Fadi N Sibai. 2007. Evaluating the CPU, Memory and Graphics Performance
of Personal Computers with OSMark. In Proceedings of the 9th Annual UAE
University Research Conference. College of Information Technology, United Arab
Emirates University P.O. Box 15551, 1-6.

Fadi N Sibai. 2008. Gauging the OpenSourceMark Benchmark in Measuring
CPU Performance. In Seventh IEEE/ACIS International Conference on Computer
and Information Science (icis 2008). IEEE, Institute of Electrical and Electronics
Engineers, Portland, Oregon, USA, 433-438.

TestSigma. 2024. Software Stress Testing. TestSigma. https://testsigma.com/blog/
software-stress-testing/ Accessed: 2024-06-25.

Vladislav A Vashchenko and Vladimir F Sinkevitch. 2008. Physical limitations
of semiconductor devices. Vol. 340. Springer, New York, NY. 1-330 pages. https:
//doi.org/10.1007/978-0-387-74514-5

Joao Victor Amorim Vieira, Matheus Alcantara Souza, and Henrique Cota de
Freitas. 2023. Performance Evaluation of Intel and AMD Memory Hierarchies
Using a Simulation-driven Approach With Gem5. In Proceeding of XXIV Simpésio
em Sistemas Computacionais de Alto Desempenho (SSCAD). SBC, Brazilian Com-
puter Society, Porto Alegre, RS, Brazil, 17-24. https://doi.org/10.5753/wscad_
estendido.2023.235791

Vijay. 2023. 18 Top Computer Stress Test Software To Test CPU, RAM And GPU
[2023 LIST]. Software Testing Help. www.softwaretestinghelp.com/computer-
stress-test-software/ Accessed: 2023-07-29.

Vijay. 2024. Computer Stress Test Software. Software Testing Help. www.
softwaretestinghelp.com/computer-stress-test-software/ Accessed: 2024-07-05.

Received 19 August 2024

antidote.gg/stress-test-game-four-key-considerations/
antidote.gg/stress-test-game-four-key-considerations/
https://doi.org/10.1109/TSE.1984.5010301
https://doi.org/10.1177/1094342013507960
https://doi.org/10.1109/SC.2012.11
https://doi.org/10.6028/jres.118.012
https://doi.org/10.1007/S11704-018-7319-2
https://doi.org/10.1007/S11704-018-7319-2
https://doi.org/10.1093/comjnl/bxr091
www.auslogics.com/en/articles/how-to-stress-test-gpu-for-peak-performance/
www.auslogics.com/en/articles/how-to-stress-test-gpu-for-peak-performance/
www.auslogics.com/en/articles/the-why-and-how-of-computer-stress-tests-a-users-handbook/
www.auslogics.com/en/articles/the-why-and-how-of-computer-stress-tests-a-users-handbook/
https://doi.org/10.1145/1378704.1378722
https://doi.org/10.1145/1378704.1378722
https://testsigma.com/blog/software-stress-testing/
https://testsigma.com/blog/software-stress-testing/
https://doi.org/10.1007/978-0-387-74514-5
https://doi.org/10.1007/978-0-387-74514-5
https://doi.org/10.5753/wscad_estendido.2023.235791
https://doi.org/10.5753/wscad_estendido.2023.235791
www.softwaretestinghelp.com/computer-stress-test-software/
www.softwaretestinghelp.com/computer-stress-test-software/
www.softwaretestinghelp.com/computer-stress-test-software/
www.softwaretestinghelp.com/computer-stress-test-software/

	Abstract
	1 Introduction
	2 Related Works
	3 Methodology
	4 Results
	4.1 Limitations and Future Works

	5 Conclusion
	References

