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ABSTRACT
The V-cycle has been the primary software development methodol-
ogy in the automotive sector. However, with the increasing com-
plexity of software, both from an architectural and technological
perspective, software verification has become inefficient compared
to system verification. This inefficiency results in rework and in-
creased costs due to late error detection. Software deemed func-
tional during verification may prove ineffective when tested in the
simulated vehicle environment, as development requirements are
ever-expanding, and test simulation environments have not kept
pace with this evolution. The simulation environments used in auto-
motive development are based on a guided simulation approach, en-
compassing Model-in-the-Loop (MiL), Software-in-the-Loop (SiL),
Processor-in-the-Loop (PiL), and Hardware-in-the-Loop (HiL) test-
ing. These tests are conducted between system and software verifi-
cation and must be used in conjunction to achieve comprehensive
validation. To address inefficiencies in software verification, tech-
niques such as MiL, SiL, and PiL are excellent techniques. SiL, in
particular, plays an essencial role in simulating code before its inte-
gration into the system. This rapid review will discuss techniques
that make simulations more representative of the real vehicle sys-
tem, considering the electromechanical structure of sensors and
actuators outlined in the software requirements, as well as the net-
work of ECUs, which follows a distributed communication model.

KEYWORDS
Software verification, Software-in-the-Loop (SiL), Simulation envi-
ronments, Automotive Software

1 INTRODUCTION
The increasing complexity of embedded systems in the automo-
tive industry demands the revision and adaptation of verification
and validation processes. Ensuring that automotive software, now
with greater component integration, undergoes rigorous validation
stages is essential to guarantee its quality, safety, and functionality
in critical systems.

Historically, the V-cycle has been the predominant methodology
in automotive software engineering for managing the development
and verification of systems. This linear model, with sequential
phases of development and verification, presents several limita-
tions: its rigidity makes it difficult to adapt to requirement changes
during development, a common occurrence in complex projects;
long feedback cycles result in inefficiency; and the complexity of
automotive systems requires more dynamic and interactive ap-
proaches. These limitations culminate in high costs and increased
risk of failures in the final stages of verification and validation.

To mitigate these limitations, Liu et al. [12] proposed from W
cycles, the V-INC (Incremental Verification Cycle), as shown in
the figure of his research . The goal is to improve the flexibility
and efficiency of the verification process. The W cycle includes
testing activities in the early stages of development, allowing early
detection of defects and reducing costs and correction time. In the
INC-V cycle, models and test cases are continually developed and
integrated, with verification carried out throughout the entire life
cycle, ensuring continuous and efficient verification.

Figure 1: Comparison of Models V, W and INC-V by Liu et
al. [12]
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Falcini and Lami [5] conducted an empirical study using the Au-
tomotive SPICE methodology (Software Process Improvement and
Capability dEtermination), as described by the VDA QMCWorking
Group 13 / Automotive SIG [20]. The results indicated that soft-
ware unit verification (SWE.4) and software integration verification
(SWE.5) practices often perform poorly due to the informal exe-
cution of verification activities and the lack of well-defined test
strategies. The study also revealed a significant difference in matu-
rity between system testing and software testing, with the former
showing higher maturity.

These studies on development cycle methodologies and software
testing practices highlight inefficiencies in software verification
during development and integration. Mature identification of algo-
rithmic errors predominantly occurs in the final system verification,
resulting in significant rework from the early stages of development.
This underscores the need to improve verification and validation
practices from the early stages.

Considering the closed-loop simulation-based approach, the fo-
cus of these improvements could be on Model-in-the-Loop (MiL),
Software-in-the-Loop (SiL), Processor-in-the-Loop (PiL), andHardware-
in-the-Loop (HiL). However, in HiL, we typically have System Veri-
fication tests, which are not the focus of this work. For Software
Verification, we have MiL, PiL, and SiL.

In MiL, there is no simulation of the real system, i.e., the vehicle,
making it inefficient for the purpose of this research. In PiL, the
system is simulated, but the code is running on the actual ECU
hardware, which can be considered system or software verification.
Since the focus of this research is the purely simulated environment
of software verification, SiL is the ideal environment for implement-
ing improvements that indeed affect SWE.4 and SWE.5.

This work is organized as follows: Section 2 presents the main
approaches for automotive software verification. Section 3 details
the rapid review protocol. Section 4 discusses the action research
results. Section 5 presents the discussion of the results, and Section
6 concludes the work, highlighting the main contributions and
suggesting future research directions.

2 BACKGROUND ON AUTOMOTIVE
SOFTWARE VERIFICATION

Automotive software verification is an essential process to ensure
the safety, reliability, and compliance of integrated systems that con-
trol crucial functions in modern vehicles. The approaches establish
rigorous verification standards with the goal of ensuring software
consistency and quality. Three main verification approaches are
widely used: Formal Methods, Static Code Analyzer, and Simulation-
Guided.

2.1 Static Code Analyzer
Static code analyzers are widely used in automotive software veri-
fication, being crucial for detecting specific coding errors. These
tools are designed to assess the quality of automotive control code,
identifying issues such as variable type mismatches and other syn-
tactic errors. However, the capability of static code analyzers is
limited to the static context of the code, as they cannot evaluate
properties that depend on the software’s dynamic behavior in its
execution environment. Although they are effective in identifying

syntactic errors and some logical issues, these analyzers cannot
guarantee the complete functionality of the system under real op-
erating conditions.

2.2 Formal Methods
Formal Methods are rigorous mathematical techniques used to
ensure that computational systems behave correctly and safely.
Torodov et al. [19] investigate the application of three main Formal
Methods techniques in the context of automotive software: abstract
interpretation, model checking, and deductive proofs.

Abstract interpretation detects runtime errors, such as division
by zero and out-of-bounds array accesses, by calculating abstract
representations of the code without the need for actual execution.
Model checking verifies whether a formal model of the system
meets specific properties expressed in temporal logic. This method
is effective in identifying failures by showing trajectories that vi-
olate the verified properties through counterexamples. Deductive
proofs establish mathematical properties of formal models, offering
a more expressive approach but requiring a high level of exper-
tise and not providing direct counterexamples when a property is
violated.

The article proposes the integration of these techniques in auto-
motive software development to improve the reliability and safety
of systems. The study shows that the application of Formal Methods
can detect errors more efficiently compared to traditional testing
methods and suggests a progressive approach to incorporating
these techniques into the development process.

Although Formal Methods tools provide a high degree of con-
fidence in system correctness, they face significant challenges in
terms of scalability for large and complex industrial systems, such
as automotive control codes. Additionally, the time required for
automotive software engineers to learn these techniques, as well as
the implementation costs, are barriers that hinder the widespread
adoption of Formal Methods in the automotive industry.

2.3 Simulation-Guided
Simulation-guided verification is an advanced technique used to
ensure the correctness and reliability of automotive control systems,
especially in powertrain control systems. This approach combines
simulation and optimization to identify undesirable behaviors and
ensure that systems meet specified requirements.

This method involves creating accurate models of the system to
be verified and executing simulations to estimate its behavior under
various operational conditions. The models may include detailed
representations of the embedded controller and the operational
environment of the system. Kapinski et al. [10] use simulations
to validate functional behavior, adjust initial control parameters,
and estimate system performance. Verification is performed itera-
tively, where a simulation engine generates system behaviors and
an optimizer searches for inputs and parameters that might cause
failures.

There are two main approaches: Open-Loop and Closed-Loop:

2.3.1 Open-Loop Verification. In this approach, the system model
is tested in isolation, without feedback from the environment or the
controlled plant (vehicle). The system inputs are provided without
considering the system’s responses over time. The goal is to validate
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whether the controller, in this case, the electronic control unit
(ECU), meets the basic functional requirements under predefined
conditions.

2.3.2 Closed-Loop Verification. In this approach, the simulation
includes both the controller (ECU) and the plant (vehicle), allow-
ing dynamic feedback between them. The controller sends com-
mands to the vehicle system, and the resulting feedback from the
vehicle’s behavior is used to continuously adjust the controller’s
output. This replicates real operating conditions, providing a more
accurate representation of the system’s behavior. Closed-loop test
configurations include: Model-In-The-Loop (MiL), Software-In-The-
Loop (SiL), Processor-In-The-Loop (PiL), and Hardware-In-The-
Loop (HiL).

• MiL tests control algorithms in a virtual simulation environ-
ment, using mathematical models of the plant to provide
feedback to the controller.

• SiL runs the actual control code in a simulated environment,
allowing software validation with feedback from the simu-
lated plant.

• PiL tests the control software on the final target processor
(ECU), with continuous feedback from the simulated plant
to evaluate the ECU hardware’s performance.

• HiL integrates the control softwarewith real hardware (ECU),
using real-time simulation of the plant to provide dynamic
feedback, combining computational simulation (hardware
and software) of the vehicle.

The ideal scenario for software verification involves performing
tests sequentially, going through MiL, SiL, PiL, and finally HiL,
which is already in system verification. This sequential approach
allows for progressive validation of control algorithms, software,
and hardware, ensuring that issues are identified and corrected
in the early stages. Integrating different levels of testing requires
precise temporal synchronization, essential to ensure consistency
and reliability of the results.

2.4 Defining test cases
Once the approach is defined, test cases should be designed to en-
sure comprehensive coverage of system requirements andmaximize
defect detection early in the development cycle. Barhate [2] pre-
sented a comprehensive testing strategy for automotive software
that encompasses several relevant topics:

2.4.1 Test Case Reduction Using the Taguchi Method. The Taguchi
method, based on Orthogonal Arrays, is employed to systematically
reduce the number of test cases while ensuring comprehensive cov-
erage. This approach significantly reduces the time and resources
required for testing.

2.4.2 Test Case Prioritization. Test cases are prioritized into four
levels, ensuring that the most critical and impactful tests are exe-
cuted first. This prioritization helps uncover the majority of defects
in the early phases of the testing process, improving the efficiency
of the testing strategy.

2.4.3 Automation of Test Case Development and Execution. Au-
tomation tools are developed to generate test vectors and convert

them into executable test cases. These tools facilitate the execu-
tion of tests in HiL setups, ensuring uniform implementation and
reducing reliance on manual processes.

2.4.4 Avoiding the Pesticide Paradox. Regular review and update
of test cases are emphasized to prevent test cases from becoming
ineffective over time. This approach ensures that new defects are
continuously identified, maintaining the robustness of the testing
process.

3 RAPID REVIEW PROTOCOL
The research protocol model for Rapid Review was based on the
model proposed by Cartaxo et al. [3].

3.1 The Practitioners’ Problem
The increasing complexity of automotive software has made soft-
ware validation inefficient compared to system verification, result-
ing in rework and high costs due to late identification of failures.
Considering that the most adopted and recommended software
verification methodology for this type of verification is simulation-
guided, as demonstrated in the background section, SiL is essential
to start the interaction of the software with the simulated system.
However, deficiencies in the proper application of SiL aggravate the
software verification situation, increasing the likelihood of errors
not being detected until later stages of development.

3.2 Research Questions
RQ1: What are the reasons for the maturity difference between

software verification and system verification in automotive
development?

RQ2: Which verification approach is most effective for automotive
software verification?

RQ3: What is the relevance of the XiL approach loops (MiL, SiL,
PiL, and HiL) for software verification?

RQ4: Among the most relevant loops in verification, what techni-
cal gaps prevent the simulation of a more realistic system?

3.3 Search Strategy
To expedite the search for primary studies and conduct the rapid
review within the deadline, we used the IEEE Xplore digital library.
This database was chosen because it is one of the most relevant
for the automotive sector and offers an interface that facilitates
search refinement. Additionally, the efficiency of IEEE Xplore in
providing high-quality results makes it ideal given the available
time. We tested several versions of the search string until we found
a suitable set. We presented the string to professionals and, through
a feedback cycle, refined and defined the following search strings
by search cycles:

• Cycle 1: "Automotive" and "Software" and "Verification"
• Cycle 2: "Automotive" and "Loop" and "Software"

3.4 Selection Procedure
To better organize and understand the search results, we applied a
series of selection filters distributed across different analysis cycles,
represented in Figure 2. Each cycle was designed to further refine
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the search, ensuring that the selected studies meet the specific
criteria defined at the beginning of the process.

• Filter 1: The study must be within the context of automotive
software verification

• Filter 2: The study is a primary study
• Filter 3: The study must provide answers to at least one of
the rapid review research questions

Cycle 1-2

NoFilter1-3
applied to

title

Yes

Filter 1-3
applied to
abstract

Discarded

Included

Filter 1-3
applied to
research

Discarded

Discarded

No

No

Figure 2: Model Selection Process

Table 1 presents the results of the selected studies, detailing the
compliance with each selection filter in each cycle.

Cycle 1 Cycle 2

No Filter 573 523
Filter 1-4 to title 50 80
Filter 1-4 to abstract 34 48
Filter 1-4 to research 6 11

Table 1: Research found in the selection process model

Thus, we ended up with 17 selected primary studies, as shown
in Table 2.

The pair selection was not considered due to time constraints
and taking into account the research participant’s experience in the
automotive software industry, specifically in the area of software
verification. This familiarity with the processes and criteria needed
for selecting relevant articles allowed for an efficient and focused
analysis without compromising the quality of the selection process.

3.5 Extraction Procedure
The extraction procedure followed the same selection procedure, in-
volving an individual researcher who is a participant in the research
and the industry.

3.6 Synthesis Procedure
The data synthesis will be conducted in three main stages. First,
data extraction will be performed using a standardized form to
ensure consistency and integrity of the information collected from
each included study. Next, a qualitative thematic analysis will be
employed to identify and code the emerging themes from the data.
This approach will allow for an in-depth understanding of patterns
and qualitative insights. Finally, a narrative synthesis will be used
to integrate the thematic data, providing a comprehensive and co-
herent view of the available evidence, facilitating the interpretation
of results, and drawing meaningful conclusions.

3.7 Rapid Review Report
To facilitate access for professionals to the results of the Rapid
Review (RR), we present the findings through an Evidence Briefing.
This is a concise one-page document that exclusively highlights the
main research results, providing a clear and objective summary of
the most relevant evidence. Figure 3 shows the Evidence Briefing
we created to report the RR. The Evidence Briefing document is
also available online (see Section 7 for more details) .

Verification
Approaches

Evidence Briefing: A Rapid Review on Advanced
Software-in-the-Loop Methods for Automotive
Software Verification

The article "A Rapid Review on
Advanced Software-in-the-
Loop Methods for Automotive
Software Verification" was
motivated by the increasing
complexity of embedded
systems in the automotive
industry, which has rendered
traditional software verification
methods, such as the V-cycle,
ineffective. These rigid
approaches result in late error
detection, increased costs, and
significant rework. The article
explores advanced Software-in-
the-Loop (SiL) techniques to
create simulations that more
accurately represent real
vehicle systems. The aim is to
enhance software verification
and validation from the early
stages of development, reduce
reliance on real hardware, and
promote early error detection.

JUSTIFICATION KEY FINDINGS

Software Verification
Approaches: Static Code
Analyzer, Formal Methods,
Simulation-Guided

Innovations in SiL:
Prerequisite Assessment,
Automated Testing,
Credibility and Realism 

Synchronization Methods:
Relative Time
Synchronization,
Formal Analysis

Adaptation for Electric and
Autonomous Vehicles:
Electric Drives, Autonomous
Vehicles:

RESEARCH FINDINGS STREAM

Development
Methods (Cycle
V, W, V-INC)

Simulation-
Guided: Closed-
loop

 Steps for
Implementing
SiL

Environment
Implementation
and Integration
XiL

Continuous
Validation and
Test Automation

 Enhancing SiL
with GANs

Synchronization
Methods

Adaptation for Electric
and Autonomous
Vehicles

The continuous evolution of
SiL is propagated through
the tools discussed in this
research. Although SiL has its
limitations, especially in
simulating inputs and timing
adjustments, research such
as those covered in this rapid
review demonstrates the
potential for more realistic
and comprehensive tests. For
electric and autonomous
vehicles, SiL must adapt to
the specific needs of these
technologies. Improvements
in verification practices from
the earliest stages are crucial
to dealing with the dynamic
and integrative demands of
modern automotive systems.

CONCLUSION

Larissa Pestana, lcp2@cin.ufpe.br
Breno Miranda, bamf@cin.ufpe.br

Figure 3: Evidence Briefing

3.8 Limitations and Threats to Validity
This research has some limitations. The selection of articles was
carried out by a single researcher, which may introduce biases. To



A Rapid Review on Advanced Software-in-the-Loop Methods for Automotive Software Verification SAST 2024, September 30–October 04, 2024, Curitiba, PR, Brazil

ID Title Cycle Citation

1 Effective Test Strategy for Testing Automotive Software 1 [2]
2 Software-in-the-loop Simulation of a Test System for Automotive Electric Drives 2 [4]
3 System and Software Testing in Automotive: an Empirical Study on Process Improvement Areas 1 [5]
4 Formal analysis of timing effects on closed-loop properties of control software 1 [6]
5 An X-in-the-Loop (XIL) Testing Framework for Validation of Connected and Autonomous Vehicles 2 [7]
6 Software-in-the-Loop Simulation for Early-Stage Testing of AUTOSAR Software Component 2 [8]
7 An Automated Testing Method for AUTOSAR Software Components Based on SiL Simulation 2 [9]
8 Simulation-Guided Approaches for Verification of Automotive Powertrain Control Systems 1 [10]
9 Relative Time Synchronization of Distributed Applications for Software-in-the-loop Simulation 2 [11]
10 An Incremental V-Model Process for Automotive Development 1 [12]
11 Controlled time series generation for automotive software-in-the-loop testing using GANs 2 [13]
12 SilGAN: Generating driving maneuvers for scenario-based software-in-the-loop testing 2 [14]
13 Empirical Testing of Automotive Cyber-Physical Systems with Credible Software-in-the-Loop Environments 2 [15]
14 Emphasis on Evaluative Prerequisites for Decisive Software-in-the-Loop (SiL) Environments 2 [16]
15 Software-in-the-loop Modeling and Simulation Framework for Autonomous Vehicles 2 [17]
16 Testing Automotive Embedded Systems under X-in-the-Loop Setups 2 [18]
17 Formal verification of automotive embedded software 1 [19]

Table 2: Primary Research Included

mitigate this, we ensured that the selection criteria were clearly
defined and followed a systematic approach. Additionally, while
a formal quality assessment of the studies was not conducted, we
incorporated multiple rounds of review and discussion with practi-
tioners to enhance the robustness of the conclusions. Ourmitigation
strategy is similar to the one followed by CARTAXO in [3]. These
measures were taken to reduce potential biases and increase the
reliability of our findings, although these factors should still be
considered when interpreting the results.

4 ACTION RESEARCH RESULTS
The rigidity and limitations of the V-cycle for automotive software
verification, as discussed by Liu et al. [12], reveal even greater weak-
nesses in tests that do not consider the complex system in which the
software will operate. In the V-cycle, system verification activities
occur in the final stage of development, while software verification
takes place in the early and intermediate stages. However, soft-
ware verification is often conducted through static analyses and
non-standardized tests, which are unable to measure the software’s
behavior after its integration with the vehicle’s software and its
deployment on the hardware (ECU - Engine Control Unit). These
tests, ineffective for complex systems, result in late-stage rework,
as issues are only detected during system verification.

Falcini and Lami [5], in their empirical study using the SPICE
methodology, evaluated the entire development cycle and found
inferior performance in software unit verification (SWE.4) and soft-
ware integration verification (SWE.5) practices, further reinforced
by the superiority of system verification compared to software ver-
ification. They also identified that the lack of standardized testing
practices significantly contributed to this maturity gap, leading to
less effective software verification processes and late detection of
failures that could have been identified earlier.

Answer to RQ1: The lack of standardization in testing
practices during software verification. The effectiveness
of tests is limited, as they fail to replicate environments
that reflect the real-world context in which the software

will operate.

In the development cycle, there are two main approaches to test-
ing: Formal Verification and Simulation-Guided. Torodov et al. [19]
detail the application of Formal Verification, which, despite offering
a high degree of reliability, comes with significant challenges in
terms of complexity and scalability for large and complex indus-
trial systems, such as automotive control codes. For this reason, we
opted to follow the Simulation-Guided approach.

Kapinski et al. [10] used the Simulation-Guided approach to con-
duct validation simulations. Accurate models of the systems are
created in open or closed loops, simulating the operating environ-
ment at different stages of maturity. For the purpose of this rapid
review, the focus was on Closed-Loop to ensure the highest level
of verification rigor.

Simulation environments can verify: the software model alone,
MiL (Model-in-the-Loop); the simulated operating environment
combined with the software, SiL (Software-in-the-Loop); the soft-
ware on the ECU hardware, PiL (Processor-in-the-Loop); or the
software on the ECU hardware in communication with the vehicle
hardware simulator, HiL (Hardware-in-the-Loop).

To improve software verification in the SWE.4 and SWE.5 phases,
making it as robust as system verification, it is essential to bring the
testing environment closer to real-world conditions. Therefore, the
use of Simulation-Guided closed loops in Software-in-the-Loop (SiL)
becomes crucial, as it simulates the vehicle environment without
the need for actual hardware.



SAST 2024, September 30–October 04, 2024, Curitiba, PR, Brazil Larissa Pestana and Breno Miranda

Answer to RQ2: Simulation-Guided with Closed-Loops in
Software-in-the-Loop (SiL)

Barhate [2] emphasizes the importance of defining test cases
focused on reduction, prioritization, and automation—techniques
that should be integrated into the SiL environment to ensure a more
efficient and targeted verification.

In the following sections, we will address development criteria
and system credibility, explore improvements for more realistic
simulations, temporal synchronization, and integration with other
in-Loop systems. We will also discuss how SiL can be adapted to
the new challenges of automotive systems, particularly in electric
and autonomous vehicles. All theoretical foundations and method-
ologies mentioned here are detailed in ?? and ?? as the basis for the
discussions and recommendations presented.

4.1 Development Pipeline
4.1.1 Prerequisite Assessment. Koppa et al. [16] highlight the im-
portance of assessing prerequisites for creating reliable and efficient
SiL environments. This assessment is necessary to identify and
select software components, evaluate available information, and
ensure that all necessary elements are integrated into the vECU
(virtual electronic control unit). The main prerequisites assessed
include:

• The software architecture must be well-defined, compris-
ing software elements or components, their relationships,
and properties. The architecture assessment ensures that all
definitions, configurations, and elements are available and
correct.

• Evaluation of software functionalities, including control al-
gorithms, main functions and sub-functions, and raster rates.
These details are essential for the configuration of the vECU.

• Software interfaces, or Port Interfaces, must be evaluated to
ensure the correct exchange of data between components. In
AUTOSAR environments, these interfaces are defined and
implemented according to standards.

• The AUTOSAR architecture follows a three-layer structure,
and the configuration of the software layers must be assessed
to ensure proper integration of components.

• The configuration of software components, including the
management of stubs and the integration of protocols such
as CAN, LIN, Ethernet, and FlexRay, must be carefully eval-
uated.

• Identification and definition of test concerns, including func-
tion calls, sequential execution, variable states, and operation
modes, to ensure that all critical aspects of the software are
tested.

• The qualification of the SiL environment and its constituent
elements is necessary to ensure that the vECU and the sim-
ulation environment meet the expected performance and
accuracy criteria.

4.1.2 Implementation and Automated Testing. Jeong et al. [8] pro-
pose in their research a simulation-based testing method for AU-
TOSAR software components using the Software-in-the-Loop (SiL)
concept. The aim of the research is to validate software components

in the early stages of development, before the availability of real
hardware, allowing for rapid prototyping and early error detection.

Software development following the AUTOSAR methodology
employs a structured and standardized approach, facilitating the
modular and scalable creation of embedded systems for automo-
biles. The initial process involves system configuration, where soft-
ware component models are created and their interactions defined
through the Virtual Functional Bus (VFB). This step generates a sys-
tem description document in ARXML format, serving as a reference
for subsequent phases.

Next, developers implement the internal behavior of the software
components as specified in the ARXML document, ensuring each
component performs its designated functions. Following this stage,
components are mapped to the ECUs and subsystems, including the
integration of basic software (BSW), which comprises the operating
system, device drivers, and communication modules. All elements
are integrated to form the executable software intended for specific
ECUs, allowing its installation in the vehicle.

The AUTOSAR architecture, which includes the VFB, the Run-
time Environment, and the Basic Software, is designed to be hardware-
independent. VFB simulation allows software components to inter-
act through a common AUTOSAR interface, eliminating the need
for physical hardware.

To implement VFB simulation, software component descriptions
are converted into C code, representing the port connections and
communication interface between components. Communication
is facilitated by the use of shared memory for data exchange. The
simulated VFB has an event manager to handle temporal events and
other triggers, as well as a scheduler that coordinates the execution
of components based on time. The result is a code simulator that
can run on a PC, faithfully simulating the behavior of software
components as if they were in a real system.

Continuing their research in SiL, Jeong et al. [9] conducted a
case study on an automated method for testing AUTOSAR software
components based on SiL simulation. Understanding the limita-
tions of manual testing methods, they introduced an automated
testing module, which in its execution, automatically collects test
case results during simulation, eliminating the need for manual
intervention and increasing the efficiency of the testing process.

A method was developed to convert test cases into temporal
format, facilitating the automation of tests in closed-loop control
systems. The analysis and comparison of simulation results are
performed automatically by the testing module, which records suc-
cesses and failures in detailed reports, allowing for more rigorous
and efficient validation of software components.

4.2 Credibility of the Simulation
The methodology for validating the credibility of SiL published
by Raghupatruni et al. [15] promotes the reliability, efficiency, and
safety of automotive cyber-physical systems. The separation of
concerns and the definition of specific environments ensure rig-
orous testing of both functional and non-functional aspects, in-
creasing system reliability. The approach facilitates adaptation to
open-context environments and supports continuous updates.

4.2.1 Separation of Concerns. Each functional aspect (what the
software should do) and non-functional aspect (how the software
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should behave under different conditions) must be addressed inde-
pendently.

4.2.2 Define Domain-Specific Simulation Environments. Each sim-
ulation environment is configured to test specific aspects of the
system:

• Feature SiL (F): Focuses on testing specific software function-
alities, ensuring individual functions operate as expected.

• Component SiL (C): Focuses on testing individual compo-
nents, such as electronic control units (ECUs), assessing both
their functional and non-functional capabilities.

• System Integration SiL (S): Focuses on integrating complete
systems, including multiple components and their interac-
tions, ensuring all elements work together harmoniously
and efficiently.

4.2.3 Establish a Test Selection Method. The test selection ensures
that all relevant aspects, including functional and non-functional
concerns, are addressed. Tests should cover the verification of de-
signs and the falsification of models to ensure they meet specified
requirements.

4.2.4 Establish and Maintain a Socio-Technical System. Collabo-
ration between people, processes, and technologies to ensure all
aspects of the software are verified and validated throughout the
product lifecycle. This includes coordination between different
teams and maintaining contracts that specify performance and
functionality requirements.

4.3 Realism and Control
Parthasarathy et al. [13], collaborators from the Volvo Group and
Chalmers University of Technology, used controlled generation of
time series for SiL testing using Generative Adversarial Networks
(GANs). The goal of using this technology is to expose the system
to a variety of input scenarios that could occur under real oper-
ating conditions, allowing for more comprehensive and efficient
validation and verification of automotive software.

To simulate input values in SiL, vehicle operation sequences
under various conditions are reproduced, and the signals generated
during operation are collected and used as a learning base for the
GAN model. The GAN uses these recorded signals to learn to gen-
erate new synthetic signal sequences that mimic real data. Thus,
the model can create various realistic input patterns for testing,
without the need for repeated field tests.

The SiL method allows continuous integration and verification of
systems by running the System Under Test in a virtual environment.
However, generating realistic and varied input stimuli is a challenge,
as the input ranges are broad and continuous, requiring systematic
coverage.

GANs are unsupervised learning models composed of a gener-
ator and a discriminator. The generator creates samples that the
discriminator tries to distinguish from real ones. The goal is for the
generator to create fake data that resembles real data, while the
discriminator tries to differentiate between real and fake data. The
generator continuously improves its samples to fool the discrimi-
nator, and the discriminator enhances its differentiation capability.
This iterative process results in the generation of extremely realistic
data.

To generate input stimuli, the VAE/GAN model uses two tech-
niques: VAE (Variational Autoencoder) and GAN. The VAE com-
presses the data and attempts to reconstruct it, while the GAN
improves the quality of these reconstructions, making them more
realistic.

Advancing their research, Parthasarathy et al. [14] adopted a new
approach using GANs called SilGAN. Unlike the hybrid VAE/GAN
model used previously, SilGAN focuses on generating specific driv-
ing maneuvers for SiL testing. While the VAE/GAN model focused
on creating realistic time series inputs, SilGAN significantly ad-
vances by automating the generation of stimuli for tests, using
templates to specify driving scenarios.

This new method not only facilitates the creation of realistic
multi-dimensional signal transitions but also expands these ma-
neuvers to include transitions before and after the main event,
providing a more complete and realistic view of vehicle behavior.

4.4 Relative Time Synchronization
The automotive system is composed of multiple distributed subsys-
tems, each responsible for specific functions such as engine control,
braking, navigation, and communication. These subsystems need
to operate in a coordinated and synchronized manner to ensure the
efficient and safe functioning of the vehicle.

In automotive systems, communication between Electronic Con-
trol Units (ECUs) is carried out through internal networks, such as
CAN. Each ECU operates independently and sends messages on-
demand, that is, only when another ECU requests information or
when it detects a specific condition. This efficient communication
model reduces data traffic on the network and improves response
to requests, ensuring that the vehicle’s multiple distributed subsys-
tems function in a coordinated and effective manner.

Lee et al. [11] proposed a relative time synchronization method
to improve SiL performance, providing a more realistic environ-
ment with the actual vehicle environment, with distributed systems.
Instead of ensuring absolute synchronization with a global clock,
the relative approach synchronizes the operations of distributed sys-
tems based on their operation sequences, thus reducing overhead
and improving simulation performance.

Traditional global clock synchronization methods, although pre-
cise, introduce efficiency problems. Each tick of the global clock
requires synchronization of all nodes, resulting in significant over-
head. The proposed relative synchronization approach eliminates
the need for continuous and detailed synchronization at each global
clock tick. Instead, it focuses on synchronizing the operations of
distributed systems based on their own operation sequences, which
is more efficient and suitable for automotive SiL simulations.

The authors presented a simplified synchronization protocol that
uses only tick and ticked messages, eliminating the need for com-
plex delay calculations and other complications found in traditional
methods like IEEE 1588 [1]. This protocol is efficient and suitable for
the SiL simulation environment, where relative precision is more
important than absolute precision.

In contrast to the simplicity and efficiency of relative synchro-
nization, Frehse et al. [6] adopted an approach that focuses on
formal analysis of time effects on the properties of closed-loop
control systems. Unlike the relative synchronization used in SiL
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simulations, which prioritizes efficiency, this technique integrates
timing models with functional models to verify control system
properties in detail. Using hybrid automate, which combine contin-
uous dynamics and discrete system events, it is possible to consider
effects such as jitter and latency.

Synchronization is crucial here to ensure that software con-
trollers respond within expected time limits, avoiding issues like
overshoot and variable response times. This approach allows rigor-
ous verification of the system’s functional properties in the presence
of temporal effects, ensuring that control systemsmeet performance
specifications in a realistic industrial environment.

4.5 Synchronization: SiL-XiL
The integration of Software-in-the-Loop (SiL) with other in-Loop
methodologies, such as Model-in-the-Loop (MiL), Processor-in-the-
Loop (PiL), and Hardware-in-the-Loop (HiL), collectively known as
XiL, enables verification throughout the entire development cycle.
The focus of this rapid review is on SiL, as it is a critical point that
often leads to rework. However, it should be noted that the greatest
benefit will be achieved through XiL integration, and therefore, its
integration techniques should be carefully studied.

In research conducted by Tibba et al. [18], collaborators from
ETAS GmbH and the Institute of Real-Time Computer Systems
at the Technical University of Munich, the X-in-the-Loop (XiL)
approach for testing automotive embedded systems was explored.

The research reviews various works related to the development
and implementation of the Functional Mockup Interface (FMI) stan-
dard. Since the first release of the standard, efforts have been made
to implement and test functional mockup units (FMUs). Several
studies explored the creation of FMI-based simulation environ-
ments for continuous systems, deterministic execution of FMUs for
co-simulation, and the limitations and extensions of using FMI in
electronic control unit (ECU) software.

The Functional Mockup Interface (FMI) standard allows the in-
tegration of simulation models from different tools, promoting
interoperability and co-simulation in complex system development
environments, such as automotive embedded systems. Functional
mockup units (FMUs) are software packages that encapsulate sim-
ulation models, facilitating the exchange between different simu-
lation tools. Each FMU contains a model description file, model
equations, and optional resource files. The description file includes
definitions of variables, units, and general information about the
model.

There are two variants of the FMI standard: FMI for Model Ex-
change (FMI-ME) and FMI for Co-Simulation (FMI-CS). The FMI-ME
variant allows the exchange of models described by differential,
algebraic, and discrete equations, which are solved by the host sim-
ulation tool’s solver. This variant offers flexibility in handling the
synchronization of continuous and discrete models. The FMI-CS
variant facilitates co-simulation where the simulation models in-
clude their own solvers. Communication between models occurs at
discrete communication points, allowing each model to be solved
independently between these points.

FMI functions include initialization and instantiation, progres-
sion, getters and setters for reading and setting values, and termina-
tion for unloading components and freeing memory. The integra-
tion and co-simulation of models from different tools are facilitated
by the FMI standard. This is important for the development of
mechatronic systems that require the combination of continuous,
discrete, and event models. Co-simulation with FMI allows models
to operate as black boxes, reacting to inputs and producing outputs
at discrete time steps. Synchronization between models is managed
by a master algorithm that coordinates the execution of FMUs.

The orchestration of FMUs for hybrid simulation is central to the
XiL approach, allowing the integration of continuous and discrete
models on a single simulation platform. The appropriate choice
of FMI variants (FMI-ME for model exchange and FMI-CS for co-
simulation) is necessary to meet synchronization and accuracy in
simulations.

Experimental results demonstrated the capability of the XiL
approach to provide a seamless transition between MiL and SiL,
maintaining simulation accuracy and performance. The study high-
lighted the efficiency in reusing test cases between different XiL
levels and product generations, showing the practical applicabil-
ity of the approach in the development of automotive embedded
systems.

Answer to RQ3: Individually, verification loops ensure
software quality at different stages of development.

However, the integration between these loops
significantly enhances this quality. In MiL, control
algorithms and designed functions are tested in a

simulated environment, ensuring they work as expected.
This allows the focus in SiL to be exclusively on the

integration of the software with the simulated
environment, ensuring that the code behaves correctly

under conditions that closely resemble real-world
operations.

4.6 Adaptation for Electric and Autonomous
Vehicles

The growing demand for electric vehicles (EVs) and autonomous
vehicles is rapidly shaping the automotive industry, highlighting
the need for advanced testing and simulation methodologies. The
use of XiL techniques, particularly SiL, is crucial to ensure the safety,
performance, and reliability of these complex systems.

Casolino et al. [4] developed an innovative testing system for
automotive electric drives using a real-time platform where the
electric vehicle model is implemented. This system simulates motor
and load behavior, allowing for an accurate assessment of electric
drives under different control methods.

The testing system is based on an inverter controlled by a real-
time platform that emulates motor and load behavior at the drive
terminals. Three control methods are compared through simula-
tion, showing real-time results for different load hypotheses. The
architecture of the testing system is described in detail, highlight-
ing the need to precisely select the parameters of the virtual load
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to adequately replace the synchronous permanent magnet motor
(PMSM) model that represents the electric vehicle.

Ahamed et al.[17] addressed autonomous vehicles by discussing a
SiL modeling and simulation framework developed using the Robot
Operating System (ROS) and Gazebo. This framework allows the
creation of multiple vehicle models and customized environments,
facilitating the validation and comparison of different algorithms
in various scenarios.

The MIR (Mobile Intelligent Robotics) framework developed by
Ahamed et al. [17] offers a complete set of tools to add vehicle mod-
els and environments. The integration of sensors such as cameras,
LiDAR, and RADAR into the vehicle model allows for comprehen-
sive validation of perception and control systems, essential for the
development of autonomous vehicles.

Gupta et al. [7] present amodular X-in-the-Loop (XiL) framework
for the validation of connected and autonomous vehicles (CAVs).
This innovative framework allows the integration of vehicles with
traffic simulations, autonomy software, computational resources,
and human drivers through the use of a mixed reality headset. This
setup enables the validation of CAVs in a controlled environment,
reducing the need for public road testing and increasing the safety
and efficiency of the validation process.

The virtual environment is realized through traffic microsimula-
tion software, populating virtual vehicles, traffic lights, road signs,
etc. The virtual environment can interact with the real experimental
vehicle, transmitting its current orientation, position, speed, and ac-
celeration, being replicated as a digital twin in the simulation. The
use of the Robot Operating System (ROS) software to implement
autonomy on the vehicle platform accelerates the integration and
deployment of self-driving algorithms, configuring a modular and
hierarchical hierarchy that allows the execution of steering and
acceleration commands based on the planner’s reference trajectory.

The framework allows human-driven vehicles to be included in
the traffic flow of CAVs to investigate how their interaction affects
the control and energy consumption of autonomous vehicles. A
mixed reality device is added as an onboard simulation platform,
allowing drivers to visualize the test site augmented with virtual
traffic objects. This approach facilitates the study of human reac-
tions in mixed traffic environments (autonomous and human).

5 DISCUSSION
As automotive systems become increasingly complex, ensuring
that software verification processes accurately simulate real-world
conditions is essential. The effectiveness of verification loops, such
as Model-in-the-Loop (MiL), Software-in-the-Loop (SiL), Processor-
in-the-Loop (PiL), and Hardware-in-the-Loop (HiL), plays a vital
role in the development of safe and reliable automotive software.
However, despite advancements in these methodologies, there are
still significant technical gaps that prevent these loops from fully
replicating the complexities of a real system.

To better understand these limitations, it is important to identify
the key challenges that hinder the achievement of a truly realistic
simulation. These challenges not only impact the accuracy of the
verification process but also limit the ability to detect and resolve
potential issues before the software is implemented in the vehicle.
Due to their greater integration with system verification and their

physical hardware structure, HiL and PiL do not present the greatest
challenges within the XiL approach. Instead, MiL and SiL are the
most challenging verification loops for development, particularly
SiL, which must computationally simulate the complexity of the
vehicle for integration testing.

A weakness of SiL is the limitation in simulating inputs to the
system.With the aid of GAN, the ability to create realistic and varied
input stimuli was explored, expanding test coverage and allowing
for more comprehensive and efficient software validation. This
technology evolved into SilGAN, focused on generating specific
driving maneuvers, demonstrating the effectiveness of GANs in
automating and improving the quality of SiL tests.

The automotive system is composed of multiple distributed sub-
systems, each ECU operating independently and sending messages
on demand. Operating with absolute synchronization and a global
clock is not the best solution to simulate a realistic environment
within the vehicle. Relative time synchronization and formal analy-
sis of the effects of time on control system properties are comple-
mentary approaches aimed at improving the accuracy and efficiency
of SiL simulations. Precise temporal synchronization is crucial to en-
sure the consistency and reliability of results, especially in complex
distributed systems.

Another factor previously mentioned in the research is the need
for XiL integration. SiL is particularly dependent on this integra-
tion, especially with MiL, due to the inherent complexity of the
computational simulation of the vehicle. Any functional error in
the code that disrupts the tests can result in a complete rework of
the entire integration within the test suite, making this integration
even more essential to ensure the efficiency and accuracy of the
verification process.

In concluding the answers and perspectives presented in this
rapid review on the gaps to be addressed in the development and re-
search focused on SiL, it is essential that all technology and software
development in the automotive sector keep pace with the sector’s
evolution, regardless of its individual rate of progress. Currently,
the automotive sector is moving towards electric and renewable
energy-powered vehicles, as well as autonomous vehicles. All devel-
oped technology must not only meet these new demands but also
evolve in parallel with the sector’s continuous development, thereby
ensuring the relevance and effectiveness of the implemented solu-
tions.

Answer to RQ4: Integration in the operation of XiL loops;
Limitations in purely computational simulations, SiL;
Behavior of inputs and outputs with vehicle dynamics;

Temporal synchronization between ECUs in SiL;
Modeling of electrical systems in simulators and test cases

for autonomous vehicles.

6 CONCLUSIONS
The increasing complexity of embedded systems in the automotive
industry demands more efficient methods for software verification
and validation. Improvements in development cycles, such as the W
and V-INC cycles, demonstrate the importance of early inclusion of
verification activities and continuous integration of models and test
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cases. However, Simulation-Guided techniques, especially Software-
in-the-Loop (SiL), stand out as the most effective approach for
software verification in simulated environments.

SiL enables continuous validation of software components before
system integration, eliminating the dependence on real hardware
and significantly reducing rework and costs. The use of Generative
Adversarial Networks (GANs) to create realistic input stimuli fur-
ther enhances the effectiveness of SiL tests, while precise temporal
synchronization ensures the consistency and reliability of results.

The adaptation of SiL techniques for electric and autonomous
vehicles is essential, requiring specific monitoring of electric drives
and restructuring to simulate new test conditions. The modular
X-in-the-Loop (XiL) approach for the validation of connected and
autonomous vehicles offers a robust solution to these challenges.

In summary, the adoption of advanced simulation and automa-
tion techniques in automotive software verification is fundamental
to addressing the challenges posed by the increasing complexity of
embedded systems, ensuring continuous and efficient validation,
and improving the quality and safety of automotive systems.

7 ARTIFACT AVAILABILITY
A replication package has been made available, to allow for in-
dependent verification and replication. Our data, including files
and primary research table, and evidence briefing, are available at
https://github.com/LarissaPestana/RapidReviewSAST.git.

ACKNOWLEDGMENTS
This work was partially supported by a grant from the National
Council for Scientific and Technological Development (Grant CNPq-
Universal 408651/2023-7).

REFERENCES
[1] 2008. IEEE Standard for a Precision Clock Synchronization Protocol for Net-

worked Measurement and Control Systems. https://standards.ieee.org/ieee/
1588/6825/

[2] Sujit Sopan Barhate. 2015. Effective test strategy for testing automotive software.
In 2015 International Conference on Industrial Instrumentation and Control (ICIC).
645–649. https://doi.org/10.1109/IIC.2015.7150821

[3] Bruno Cartaxo, Gustavo Pinto, and Sergio Soares. 2018. The Role of Rapid
Reviews in Supporting Decision-Making in Software Engineering Practice. In
Proceedings of the 22nd International Conference on Evaluation and Assessment in
Software Engineering 2018 (Christchurch, New Zealand) (EASE ’18). Association
for Computing Machinery, New York, NY, USA, 24–34. https://doi.org/10.1145/
3210459.3210462

[4] Giovanni Mercurio Casolino, Milad AlizadehTir, Alessandro Andreoli, Mariano
Albanesi, and Fabrizio Marignetti. 2016. Software-in-the-loop simulation of a test
system for automotive electric drives. In IECON 2016 - 42nd Annual Conference of
the IEEE Industrial Electronics Society. 1882–1887. https://doi.org/10.1109/IECON.
2016.7794145

[5] Fabio Falcini and Giuseppe Lami. 2021. System and Software Testing in Au-
tomotive: an Empirical Study on Process Improvement Areas. In 2021 14th

IEEE Conference on Software Testing, Verification and Validation (ICST). 253–262.
https://doi.org/10.1109/ICST49551.2021.00035

[6] Goran Frehse, Arne Hamann, Sophie Quinton, and Matthias Woehrle. 2014.
Formal Analysis of Timing Effects on Closed-Loop Properties of Control Software.
In 2014 IEEE Real-Time Systems Symposium. 53–62. https://doi.org/10.1109/RTSS.
2014.28

[7] Prakhar Gupta, Rongyao Wang, Tyler Ard, Jihun Han, Dominik Karbowski,
Ardalan Vahidi, and Yunyi Jia. 2023. An X-in-the-Loop (XIL) Testing Framework
for Validation of Connected and Autonomous Vehicles. In 2023 IEEE International
Automated Vehicle Validation Conference (IAVVC). 1–6. https://doi.org/10.1109/
IAVVC57316.2023.10328040

[8] Sooyong Jeong, Yongsub Kwak, and Woo Jin Lee. 2016. Software-in-the-Loop
simulation for early-stage testing of AUTOSAR software component. In 2016
Eighth International Conference on Ubiquitous and Future Networks (ICUFN). 59–63.
https://doi.org/10.1109/ICUFN.2016.7536980

[9] Sooyong Jeong and Woo Jin Lee. 2017. An automated testing method for
AUTOSAR software components based on SiL simulation. In 2017 Ninth In-
ternational Conference on Ubiquitous and Future Networks (ICUFN). 278–283.
https://doi.org/10.1109/ICUFN.2017.7993793

[10] James Kapinski, Jyotirmoy Deshmukh, Xiaoqing Jin, Hisahiro Ito, and Ken Butts.
2015. Simulation-guided approaches for verification of automotive powertrain
control systems. In 2015 American Control Conference (ACC). 4086–4095. https:
//doi.org/10.1109/ACC.2015.7171968

[11] Sunghee Lee, Bueng Il Hwang, Kang-Bok Seo, and Woo Jin Lee. 2016. Relative
Time Synchronization of Distributed Applications for Software-in-the-Loop Sim-
ulation. In 2016 IEEE Intl Conference on Computational Science and Engineering
(CSE) and IEEE Intl Conference on Embedded and Ubiquitous Computing (EUC) and
15th Intl Symposium on Distributed Computing and Applications for Business Engi-
neering (DCABES). 753–756. https://doi.org/10.1109/CSE-EUC-DCABES.2016.273

[12] Bohan Liu, He Zhang, and Saichun Zhu. 2016. An Incremental V-Model Process
for Automotive Development. In 2016 23rd Asia-Pacific Software Engineering
Conference (APSEC). 225–232. https://doi.org/10.1109/APSEC.2016.040

[13] Dhasarathy Parthasarathy, Karl Bäckstrom, Jens Henriksson, and Sólrún Einars-
dóttir. 2020. Controlled time series generation for automotive software-in-the-
loop testing using GANs. In 2020 IEEE International Conference On Artificial Intel-
ligence Testing (AITest). 39–46. https://doi.org/10.1109/AITEST49225.2020.00013

[14] Dhasarathy Parthasarathy and Anton Johansson. 2021. SilGAN: Generating
driving maneuvers for scenario-based software-in-the-loop testing. In 2021 IEEE
International Conference on Artificial Intelligence Testing (AITest). 65–72. https:
//doi.org/10.1109/AITEST52744.2021.00022

[15] Indrasen Raghupatruni, Thomas Goeppel, Muhammed Atak, Julien Bou, and
Thomas Huber. 2019. Empirical Testing of Automotive Cyber-Physical Systems
with Credible Software-in-the-Loop Environments. In 2019 IEEE International
Conference on Connected Vehicles and Expo (ICCVE). 1–6. https://doi.org/10.1109/
ICCVE45908.2019.8965169

[16] Kushal Koppa Shivanandaswamy, Chandrima Sarkar, Sivakumar Rajagopal,
Lakkappa Pisutre Ramachandra, and Chiranjeevi Manchasandra Chayakumar.
2021. Emphasis on Evaluative Prerequisites for Decisive Software-in-the-Loop
(SiL) Environments. In 2021 8th International Conference on Computing for Sus-
tainable Global Development (INDIACom). 450–457.

[17] Mohamed Fasil Syed Ahamed, Girma Tewolde, and Jaerock Kwon. 2018. Software-
in-the-Loop Modeling and Simulation Framework for Autonomous Vehicles. In
2018 IEEE International Conference on Electro/Information Technology (EIT). 0305–
0310. https://doi.org/10.1109/EIT.2018.8500101

[18] Ghizlane Tibba, Christoph Malz, Christoph Stoermer, Natarajan Nagarajan, Li-
cong Zhang, and Samarjit Chakraborty. 2016. Testing automotive embedded
systems under X-in-the-loop setups. In 2016 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). 1–8. https://doi.org/10.1145/2966986.2980076

[19] Vassil Todorov, Frédéric Boulanger, and Safouan Taha. 2018. Formal Verification
of Automotive Embedded Software. In 2018 IEEE/ACM 6th International FME
Workshop on Formal Methods in Software Engineering (FormaliSE). 84–87.

[20] VDA QMC Working Group 13 / Automotive SIG 2017. Automotive SPICE Process
Assessment Model (version 3.1 ed.). VDA QMC Working Group 13 / Automotive
SIG. Available at: https://www.vda-qmc.de/en/publications/software-process-
assessment-automotive-spice/.

https://github.com/LarissaPestana/RapidReviewSAST.git
https://standards.ieee.org/ieee/1588/6825/
https://standards.ieee.org/ieee/1588/6825/
https://doi.org/10.1109/IIC.2015.7150821
https://doi.org/10.1145/3210459.3210462
https://doi.org/10.1145/3210459.3210462
https://doi.org/10.1109/IECON.2016.7794145
https://doi.org/10.1109/IECON.2016.7794145
https://doi.org/10.1109/ICST49551.2021.00035
https://doi.org/10.1109/RTSS.2014.28
https://doi.org/10.1109/RTSS.2014.28
https://doi.org/10.1109/IAVVC57316.2023.10328040
https://doi.org/10.1109/IAVVC57316.2023.10328040
https://doi.org/10.1109/ICUFN.2016.7536980
https://doi.org/10.1109/ICUFN.2017.7993793
https://doi.org/10.1109/ACC.2015.7171968
https://doi.org/10.1109/ACC.2015.7171968
https://doi.org/10.1109/CSE-EUC-DCABES.2016.273
https://doi.org/10.1109/APSEC.2016.040
https://doi.org/10.1109/AITEST49225.2020.00013
https://doi.org/10.1109/AITEST52744.2021.00022
https://doi.org/10.1109/AITEST52744.2021.00022
https://doi.org/10.1109/ICCVE45908.2019.8965169
https://doi.org/10.1109/ICCVE45908.2019.8965169
https://doi.org/10.1109/EIT.2018.8500101
https://doi.org/10.1145/2966986.2980076
https://www.vda-qmc.de/en/publications/software-process-assessment-automotive-spice/
https://www.vda-qmc.de/en/publications/software-process-assessment-automotive-spice/

	Abstract
	1 Introduction
	2 Background on automotive software verification
	2.1 Static Code Analyzer
	2.2 Formal Methods
	2.3 Simulation-Guided
	2.4 Defining test cases

	3 RAPID REVIEW PROTOCOL
	3.1 The Practitioners’ Problem
	3.2 Research Questions
	3.3 Search Strategy
	3.4 Selection Procedure
	3.5 Extraction Procedure
	3.6 Synthesis Procedure
	3.7 Rapid Review Report
	3.8 Limitations and Threats to Validity

	4 ACTION RESEARCH RESULTS
	4.1 Development Pipeline
	4.2 Credibility of the Simulation
	4.3 Realism and Control
	4.4 Relative Time Synchronization
	4.5 Synchronization: SiL-XiL
	4.6 Adaptation for Electric and Autonomous Vehicles

	5 DISCUSSION
	6 CONCLUSIONS
	7 Artifact Availability
	Acknowledgments
	References

