
TString: a tool to locate the target string’s screen based on
automatic exploration

Lais Felipe
Federal University of Pernambuco

Recife, Brazil
lpf2@cin.ufpe.br

Breno Miranda
Federal University of Pernambuco

Recife, Brazil
bafm@cin.ufpe.br

Maria Couto
Federal University of Pernambuco

Recife, Brazil
mrlc@cin.ufpe.br

ABSTRACT

Developing localized software applications for multiple languages
can significantly expand a developer’s potential consumer base,
offering strong economic incentives. When targeting the global
market, it is essential to adapt content to the specific region, cul-
ture, or country that the software will serve. Therefore, Localization
(l10n) and Internationalization (i18n) testing are crucial for ensuring
a seamless user experience, regardless of the locale settings on the
application. A key task in localization testing is validating textual
content (strings), which often relies heavily on the tester’s experi-
ence to locate screens containing the strings that need validation.
However, the limited availability of automated tools for localization
and internationalization testing results in labor-intensive, repeti-
tive manual work. This research seeks to address these challenges
by (i) introducing TString, a tool designed to assist localization
and internationalization testers in identifying screens containing
specific strings for validation, and (ii) conducting a preliminary
evaluation to assess the usefulness of TString in an industrial con-
text. To assess the tool’s usability, the System Usability Scale (SUS)
was employed. A group of localization/internationalization testers
received an overview of the tool and subsequently completed the
SUS questionnaire. The tool achieved highly positive results, with
scores ranging from 92.5 to 100, indicating strong acceptance and a
high likelihood of meeting the testers’ needs.

CCS CONCEPTS

• Software and its engineering → Software testing and au-

tomation.

KEYWORDS

Localization, Internationalization, L10n, i18n, string, tool

1 INTRODUCTION

When it comes to developing software for the worldwide market,
it is important to keep in mind the concept of Globalization (G11n).
G11n refers to the process of developing software that provides a
seamless user experience regardless of the language or region in
which it’s being used. The process of G11n comprehends two main
concepts: Internationalization and Localization. Internationaliza-
tion refers to developing software in such a way that it can support
different languages and regions [15]. Localization is to effectively
localize software according to the grammar rules of the languages
that are supported while taking into account the cultural and local
aspects of each region [16].

Localization testing mostly validates, from the user’s perspec-
tive, strings shown on screen. In i18n and L10n, the term "locale" is

commonly used instead of language. Languages spoken in different
nations may have unique expressions and meanings. For instance,
en-US refers to English from the United States, while en-GB repre-
sents English from the United Kingdom. In a food app for example,
the word "eggplant" should appear when the locale is set to en-US,
whereas "aubergine" should appear when it is set to en-GB. There-
fore, is essential to validate the content for each locale supported
even though the it’s the same language.

The first version of an app supports one specific locale, known as
source, and subsequently localized for the others. When strings are
edited or new strings are added to the app, the tester should validate
them for each affected locale. It means that if the source changes in
any manner, all locales must be validated to ensure that the change
did not cause any issue in other locales. In some circumstances, a
string can be altered for a locale that is not the source, therefore
validation is only conducted on that locale.

For some apps used around the world that support a large num-
ber of locales, L10n testing becomes extremely time-consuming
and repetitive. If the software is large and supports 52 locales, for
example, the tester must explore the app, which is already an exten-
sive work, to locate and check each string. It should be done for all
52 locales supported to ensure that no issues arise in any of them.

Validating newly added or recently modified strings is a time-
consuming and repetitive activity that can be automated, however,
there is no much tool support for this type of L10n testing. To
have a tool that could help to find newly added or recently modified
strings could speed up this activity and reduce the burden of manual
exploration faced by the testers. Motivated by this challenge, the
main contributions of this work are:

• introducing TString, a tool to assist localization and in-
ternationalization testers in the task of identifying screens
containing specific strings for validation;

• a preliminary evaluation for assessing the usefulness of
TString in an industrial context.

This paper is organized as follows. Section 2 presents the con-
text and motivation of this research and common i18n/L10n issues.
Section 3 shows the background. Section 4 describes the tool devel-
oped (TString). Then Section 5 defines the evaluation, results and
discussion, and threats to validity. Section 6 discusses related work,
and Section 7 presents the conclusions and future work.

2 CONTEXT AND MOTIVATION

2.1 Common L10n/i18n issues

There are a lot of issues that can be found on i18n and L10n test-
ing process. In this section it’s going to be presented six common

https://orcid.org/0009-0007-5861-387X
https://orcid.org/0000-0001-9608-9393
https://orcid.org/0000-0001-5387-9029

SAST 2024, September 30–October 04, 2024, Curitiba, PR, Brazil Lais Felipe, Breno Miranda, and Maria Couto

issues which are: Ellipsis, truncation, overlapping, not localized,
inconsistency and missing translation.

• Ellipsis, represented by three dots in Figure 1a, are used
to reduce the length of a string when it exceeds the screen
space limit. Shortening a string with ellipsis might result in
unpleasant or derogatory words or expressions, negatively
impacting the user experience.

• Truncation, seen on Figure 1b happens when the string
does not fit on the screen space, but instead of presenting
ellipsis, the string is cropped at any part of it which again
can result in unpleasant or derogatory words or expressions.

• Overlapping happens when visual elements of the UI over-
laps each other as seen o Figure 1c.

• Not localized is when even though the texts are translated,
however the content is not culturally or regionally appropri-
ate, so it’s not considered localized. For example the correct
currency, or following Right to Left (RTL) languages patterns.
RTL languages are languages that written and read from the
right side to the left. This way, the elements will be aligned
on the right side of the screen, however a issue is when its
not as seen on Figure 1d.

• Inconsistency is when the same term or word is translated
with different words that have the same meaning as seen on
Figure 1e.

• Missing translation happens when for some reason there
are strings on screen that do not follow the locale set and
instead presents strings or part of strings that were not trans-
lated and still follows the source. Example in Figure 1f.

(a) Ellipsis (b) Truncation

(c) Overlapping (d) Not Localized

(e) Inconsistency (f) Missing translation

Figure 1: Common i18n/L10n issues

2.2 String validation

Among the validation activities carried out by L10n/i18n testers is
to validate newly added strings or modified strings. These activities
can be triggered for a few reasons. Adding a new string is neces-
sary when a feature is implemented or when a screen is added or
modified. A modification to the string is made, for example, when
a localization issue is found, and its value needs to be changed to
make the string appropriate. In both cases, the strings needs to be
validated to make sure that it did not cause a L10n issue.

For instance, consider Figure 2, which contains screens in the
Korean locale from an Android app. The navigation flow (order
of the screens during app usage) follows from the leftmost screen
to the rightmost one. Suppose a tester needs to validate the string
마치다 (on the third screen). To reach that screen, the tester will
need prior knowledge of the app’s features and the actions that
trigger the screen containing the string to be validated. Typically,
in L10n testing, the tester does not have proficiency in all locales
supported by the software [1]. Therefore, to begin testing, the tester
might first need to explore the app in a locale they are comfortable
with and also know the value of the string마치다 in that locale.
Once the tester locates the string in the app, they can set the app
locale to Korean and validate it in the UI. In this example, we have
only three screens; however, the more extensive the app, the more
time and effort will be required to complete the validation.

Figure 2: L10n testing example.

Couto and Miranda [7] highlight the importance of the L10n
testing as the issues can be easily detected by the end-users. Hence
it’s notable the great scope that L10n testing has and its impor-
tance. It is also essential to highlight that L10n testing is much
more than testing strings, it covers cultural aspects, UI elements
in general, and also functionalities. However, according to Ramler
and Hoschek [13], there is a shortage of automated tool support for
localization testing.

Therefore, L10n testing would certainly benefit from the devel-
opment of a tool that could assist in the process of finding the
precise screens where the target strings needs to be validated. Such
a tool would ease the workload for testers while simultaneously
increasing the effectiveness of the string finding process.

TString: a tool to locate the target string’s screen based on automatic exploration SAST 2024, September 30–October 04, 2024, Curitiba, PR, Brazil

3 BACKGROUND

3.1 L10n/i18n testing

Localization and Internationalization testing entails validating tex-
tual content to make sure that problems similar to those illustrated
in Section 2.1 do not occur in the software. Additionally, L10n/i18n
testing also ensures that contents such as currency, date, time, units
of measurement, and UI elements alignment are adhering to the
locales requirements.

According to Rajkuma [12], L10n testing is divided into the 5
phases illustrated in Figure 3:

• Pre-localization test: Assurance that the testers are going
to have all the necessary documentation before starts.

• Regional test: Names, colors and etc. must be in accordance
with the specific standard of each region/country.

• Language test: Grammar, punctuation and other aspects
are adequate.

• Appearance and Layout test: Check the interface layout.
(e.g., RTL).

• Functionality test: Verify if the localized application func-
tions correctly.

 Pre-Localization
 Test

Regional
Test

Language
Test

 Appearance
& Layout

Test

 Functionality
 Test

Figure 3: Localization Testing (adapted from [12]).

The fourth phase (Appearance and Layout test) shows that the
scope of L10n testing extends beyond textual content validation to
include the orientation of UI components on screen. For instance,
some languages are written and read from the left to the right (LTR)
and some are written and read from the right to the left (RTL).
As depicted in the Figure 4, the difference in reading direction is
apparent in the Arabic and English languages. Arabic, being an
RTL language, requires that elements are positioned differently
from English, which is an LTR language. L10n/i18n testing must
consider and accommodate such differences to ensure that the UI
is also appropriately adapted to cater to the needs of the target
audience.

It is also important to ensure that regional aspects, such as date
format, are in accordance with the needs of the target audience. The
Unicode common Locale Data Repository (CLDR)1 , is used to know
the correct format of dates, numbers, currencies, times, and time
zones from different locales [4]. For example, for the locale pt_BR
(Brazil > Portuguese), the correct format of date is dd/mm/yyyy.
It means that the date January 2, 2024 should be presented as
02/01/2024 for pt_BR locale. However the same date for ko_KR
(South Korea > Korean) should be presented as 2024.01.02.

Localization/Internationalization testing is essential to ensuring
that software can properly meet the diverse needs of audiences,
regardless of their locale. This entails not just verifying the textual
content but also taking other crucial factors into account, like the
UI elements and regional aspects.

1https://cldr.unicode.org/index

Figure 4: Example of RTL [3].

3.2 DroidBot

DroidBot [10] is as a lightweight UI-guided test input generator
that can interact with Android applications. It is an open source tool
that provides to the users autonomy to use custom scripts along
with the exploration. DroidBot performs a combination of random
and systematic techniques to explore the app’s functionality. Whilst
exploring Android applications, DroidBot captures screenshots
and takes dumps of the app’s screen contents. The files produced by
the DroidBot exploration are used as input for our tool (TString)
described next.

4 TSTRING

TString is a tool that has been developed aiming to simplify the
string validation process. It’s a tool that uses DroidBot outputs,
such as screen captures and a JavaScript file containing information
about the screens (activity, package, content, etc.). The tool accepts
as input, for search, a text or a list of strings.

4.1 Droidbot exploration Workflow

The files from DroidBot are the result of an already performed
execution of the tool. This execution is a sub process, from TString
workflow, that is named DroidBot Exploration. The exploration is
initiated when a new Android Application Pack (apk) is detected
on the repository. The apk will be downloaded and DroidBot will
explore that app version, generating the files that are used as an
input for TString. The overview of this process is presented in
Figure 5

4.2 TStringWorkflow

The first step in the TString process requires the user to input
either a string content or a directory to a file that contains a list

SAST 2024, September 30–October 04, 2024, Curitiba, PR, Brazil Lais Felipe, Breno Miranda, and Maria Couto

New apk version

Downloads the apk

Stops the
exploration

Explores the
application

Generates a folder with the
exploration outputs

Figure 5: DroidBotWorkflow.

of string contents. Once the input is provided, the tool accesses
the reports generated by DroidBot, converts the report (utg.js)
into two JSON files (nodes and edges) and searches for the content
provided by the user. Then, the software generates an HTML file,
named TString.html, which contains the results of the search. The
is illustrated in Figure 6, providing a visual representation of the
tool’s workflow.

4.3 Walk-through

Figure 7 illustrates the main screen of TString. The first step
required for using TString involves entering the string that the
user wants to search for in the designated text box. Alternatively,
the user can opt for a directory (path) that points to a file that
contains a list of strings. The interface offers two options to choose
from: "Search for one string" or "Search for more than one string",
providing users with the flexibility to select the most appropriate
search method for their needs.

Once the user has decided on the search method they wish to
use, the next step is to select the application, the app’s version and
also the locale they want to employ for the search. Then the user
will click on "Confirm" to perform the search. It is essential to note
that the search can only be executed on versions that have been
previously covered by the DroidBot exploration sub process and
are available on its repository. This is because the outputs generated
during the exploration phase are indispensable for the execution of
TString.

After executing the search, TString generates an HTML report
that presents the results. The generated report provides a step-by-
step guide, outlining the sequence of screens that must be navigated
to locate the specific string content entered by the user. Figure 8
provides an example of TString report. In the first example, the
tester needs to validate the string “Weitere Informationen” for the
locale de_DE (German, Germany). The report indicates that three
steps are required to reach this string. First, on the home screen,
the tester clicks “Weiter” to proceed to the next screen. On the
second screen, the tester clicks “Weiter” again, and finally, the

String Validation

Insert the string or the list,
chooses the input, chooses the

app and the apps version

Search for
text?

Loads the list
 of strings

Droidbot
exploration

js and
image files

from
droidbot

Loads the js and
image files from

droidbot

Converts js file to
JSON files (nodes

and edges)

Search for the
correspondent

activities and images
for the imput

Generate TString.html
with the results

Close the
application

No

Yes

24/7

Figure 6: TString Workflow.

Figure 7: TString main screen

string is visible and can be validated on the third screen. The report
includes screenshots of the app’s screens, which assist the tester
in quickly validating the content. In the second example, the tester
must validate the string “Datenbank verschlüsseln”. Starting from
the main screen, the tester clicks “Weiter” to reach the next screen.

TString: a tool to locate the target string’s screen based on automatic exploration SAST 2024, September 30–October 04, 2024, Curitiba, PR, Brazil

On the second screen, the tester needs to disable the toggle to
reveal the target string, which is displayed on the third screen. In
this example, the report highlights an issue: the target string is
truncated. Based on this information, the tester could promptly
identify the problem and submit a change request.

5 EVALUATION

To evaluate the effectiveness of TString in assisting localization
and internationalization testers with identifying screens contain-
ing specific strings for validation, we utilized the System Usability
Scale [5]. We recruited software testers from an industrial part-
ner that performs localization and internationalization testing on
mobile devices.

The testers were introduced to TString through a comprehen-
sive demonstration that showcased the main interface, input op-
tions, and the tool’s report generation capabilities within a real-
world scenario. Following the demo, the testers were asked to com-
plete the SUS questionnaire, providing their impressions and feed-
back on the proposed tool.

5.1 System Usability Scale (SUS)

System Usability Scale is a ten-item scale to evaluate usability.
Brooke [5] has proposed to use 10 statements that cover a variety
of aspects of system usability and the participants then rate their
level of agreement with each statement based on a Likert scale scale
ranging from 1 to 5, with 1 indicating strong disagreement and 5
indicating strong agreement. Brooke [5] proposed the following
statements:

(1) I think that I would like to use this system frequently
(2) I found the system unnecessarily complex
(3) I thought the system was easy to use
(4) I think that I would need the support of a technical person

to be able to use this system
(5) I found the various functions in this system were well inte-

grated
(6) I thought there was too much inconsistency in this system
(7) I would imagine that most people would learn to use this

system very quickly
(8) I found the system is very cumbersome to use
(9) I felt very confident using the system
(10) I needed to learn a lot of things before I could get going with

this system

In our SUS questionnaire, the statements 1 to 8 were adopted as
proposed by Brooke [5]. Statements 9 and 10 were slightly adjusted
to better reflect the context in which the questionnaire was applied:

(9) I would feel very confident using the system
(10) I will need to learn a lot of things before I can get going with

this system

After the participants have evaluated the statements above on the
range level of agreement from 1 to 5, the SUS score is calculated as
follows: each item (statement) score will range from 0 to 4. For each
of the odd numbered item the score contribution is the scale position
minus 1. For each of the even numbered item, the contribution is
5 minus the scale position. After that the scores are added and

multiplied by 2.5 to obtain the overall value of SUS. The final SUS
score will be on the range of 0 to 100 [5].

For interpreting the results of the SUS we adopt the acceptability
score classification and grading scale from Bangor et al. [2] (Fig-
ure 9). For scores below 50, the usability of the evaluated system
lies into the not acceptable range and could be classified as worst
imaginable or poor. On the other hand, systems with scores from 70
and up lie in the acceptable range and their rating can vary across
good, excellent, and best imaginable.

5.2 Participants

We recruited localization and internationalization testers from an
industrial partner that collaborated with our study. The testing
team at this company consists of five members, one of whom is the
technical leader who is not a target user of our proposed tool. The
four team members who are actively involved in L10n/i18n testing
on a daily basis were invited to participate through a recruitment
form. All four testers completed the form and voluntarily agreed to
participate in our study.

Table 1 presents the demographic data of the participants. All
of them have an educational background in IT, specializing in soft-
ware testing. Regarding their experience in L10n/i18n testing, two
participants are at the senior level, with three to four years of expe-
rience, while the other two are at the junior level, with one year of
experience. The participants’ ages ranged from 24 to 27 years.

5.3 Results and Discussion

After the participants finish their evaluation through the SUS ques-
tionnaire, the scores were calculated as explained in Section 5. The
SUS scores for each participant are shown in Table 1. As the ques-
tionnaire was anonymous, each participant is referred as “P” +
number.

The arithmetic average of the results was 96.8 putting TString
in the acceptable range and classifying its usability somewhere
between excellent and best imaginable. In addition to that, the indi-
vidual scores ranged from 92.5 (excellent) to 100 (best imaginable).

Participant Age Exp. Level Years in SW
Testing

SU

P1 24 Senior 4 95.0
P2 26 Senior 3 100
P3 27 Junior 1 100
P4 24 Junior 1 92.5
System Usability average 96.8

Table 1: Participant’s demographic information and SUS

scores based on each survey answer

5.4 Threats to Validity

Throughout the course of this study, we encountered several chal-
lenges that threatened the external validity of our findings. One
significant threat stems from the limited number of participants,
as only four L10n/i18n testers completed our SUS questionnaire. It
is important to note that in the industrial context where our study
was conducted, the testing team responsible for L10n/i18n test-
ing consists of five members. One of these members, the technical

SAST 2024, September 30–October 04, 2024, Curitiba, PR, Brazil Lais Felipe, Breno Miranda, and Maria Couto

TString Report — Results for your search:

String (Weitere Informationen) — 1 screen found

String (Datenbank verschlüsseln) — 1 screen found

Figure 8: Example of a report generated by TString

TString: a tool to locate the target string’s screen based on automatic exploration SAST 2024, September 30–October 04, 2024, Curitiba, PR, Brazil

Figure 9: Acceptability score classifications and grading scale

SUS according to [2]

leader, is not a daily user of our tool, and thus was not included
as a target participant. Consequently, while the number of partici-
pants may seem small in absolute terms, it actually represents 80%
of the entire testing team, or 100% of the potential tool users. To
fully address this limitation, additional empirical studies, ideally
conducted across different companies, will be necessary.

Moreover, the Hawthorne effect [11] presents another potential
threat to validity. Given that participants were aware of their in-
volvement in the study, their behavior might have been influenced,
potentially leading to more favorable evaluations of our proposed
tool. Such behavior changes due to observation may not accurately
represent their usual usage patterns, which could skew the results
and diminish the reliability of our findings. To mitigate this threat,
we plan to conduct additional studies that include control groups
to better isolate the effect of the tool itself.

Finally, while we acknowledge the valuable contributions and
insights gained within the specific context of our investigation,
we recognize that our conclusions cannot be generalized without
further experimentation and validation in a broader set of circum-
stances.

6 RELATEDWORK

6.1 Test Automation

Zhifang et al. [17] introduce the idea of testing a framework that
utilizes a combination of model-based testing and user interface
testing to automate the testing process on mobile devices. The
authors point out the importance of testing automation to improve
the quality of software on mobile devices.

Wang and Wu [14] proposes a framework that utilizes Appium,
an open-source mobile automation tool, to automate the testing
process on mobile applications. The framework is tested on a sam-
ple mobile application, and the results show the effectiveness and
efficiency of the proposed method. It provides insights on the use
of Appium for automation testing. The authors indicate that us-
ing a tool to automate the testing activity can make it be more
convenient, be more efficient and reduce costs.

Ayyal Awwad and Slany[1] present an automated bidirectional
localization testing approach for Android apps. The study discusses
the importance of automated testing in order to support localization
testing, given that developers and translators are usually different
people. The study addresses specific challenges associated with
BiDi-languages, particularly Arabic. The solution present differenti-
ate itself by not only focusing in translation and adoption of locales,
but a complete consideration for BiDi-language issues in general.

The proposed approach effectively identify issues related to design,
translation and cultural aspects based on the locale conventions.

6.2 L10n Testing

Leiva and Alabau [9] debate the importance of visual contextual-
ization in user interface (UI) localization. A study was conducted in
which they compared the effectiveness of UI localization with and
without visual contextualization. The authors present four hypothe-
ses: H1. Visual context improves localization quality; H2. When the
UI is available, translations are finished later; H3. In-place localiza-
tion leaves strings untranslated; and H4. Visual context improves
translator’s productivity. The results showed that visual contextual-
ization significantly improved the localization quality and reduced
user confusion.

Couto and Miranda [6, 7] highlight the challenges on training
novices testers on L10n/i18n testing. They present a tool to assist
this process. The purpose of the proposed tool is to replicate the
failures discovered in i18n/l10n testing by seeding errors in the
string files of mobile open source apps. The seeded application
helps the novice testers can become familiar with the procedure
and communicate with i18n/l10n failures while still in the training
phase.

Velásquez et al.[8] discuss the challenges of internationalizing
(i18n) mobile apps, specifically focusing on the impact of translating
UI strings on Android apps’ graphical user interfaces (GUIs). To
translate appsmanually for different languages, it’s time-consuming
and prone to errors, which can result in unexpected changes and
bugs in the UI. The authors analyzed 31 Android apps and their
translated versions to identify how translating English strings into
seven different languages affects Android app GUIs. It was identi-
fied various i18n-related changes and bugs. A taxonomy of these
changes and bugs is presented, and the authors discuss the implica-
tions for developers and researchers.

7 CONCLUSIONS AND FUTUREWORK

This paper introduces TString, a tool designed to assist localization
and internationalization testers in identifying screens containing
specific strings for validation. For the task of exploring an Android
app while capturing the strings for each screen TString leverages
DroidBot.

The primary goal of TString is to reduce the manual effort
associated with L10n/i18n testing activities. We conducted a pre-
liminary evaluation to assess the tool’s usefulness in an indus-
trial context. Four software testers who are actively engaged in
L10n/i18n testing on a daily basis were invited to provide feedback
on TString using the System Usability Scale (SUS). The results of
our evaluation indicate a high level of acceptance among testers
for using TString to support their daily validation tasks.

Looking ahead, we plan to enhance TString with the capability
to automatically highlight potential L10n/i18n faults. This improve-
ment would enable testers to prioritize the most critical strings and
screens, further streamlining the validation process.

ACKNOWLEDGMENTS

This work was supported by the research cooperation project be-
tween Motorola Mobility Comércio de Produtos Eletrônicos Ltda

SAST 2024, September 30–October 04, 2024, Curitiba, PR, Brazil Lais Felipe, Breno Miranda, and Maria Couto

(a Lenovo Company) and CIn-UFPE, and by a grant from the Na-
tional Council for Scientific and Technological Development (Grant
CNPq-Universal 408651/2023-7).

REFERENCES

[1] Aiman M. Ayyal Awwad andWolfgang Slany. 2016. Automated Bidirectional Lan-
guages Localization Testing for Android Apps with Rich GUI. Mobile Information
Systems 2016 (2016), 13 pages.

[2] Aaron Bangor, Philip T. Kortum, and James T. Miller. 2008. An Empirical Evalu-
ation of the System Usability Scale. International Journal of Human-Computer
Interaction 24 (2008), 574–597. https://doi.org/10.1080/10447310802205776

[3] BIDIRECTIONALITY. [n. d.]. https://m2.material.io/design/usability/
bidirectionality.html#mirroring-layout

[4] Francis Bond and Ryan Foster. 2013. Linking and extending an open multilin-
gual wordnet. In Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). 1352–1362.

[5] John Brooke. 1995. SUS: A quick and dirty usability scale. Usability Eval. Ind. 189
(11 1995).

[6] Maria Couto and Breno Miranda. 2023. An Industrial Experience Report on
the Challenges in Training Localization and Internationalization Testers. In
Proceedings of the 8th Brazilian Symposium on Systematic and Automated Software
Testing (Campo Grande, Brazil) (SAST ’23). Association for Computing Machinery,
New York, NY, USA, 3 pages. https://doi.org/10.1145/3624032.3624045

[7] Maria Couto and Breno Miranda. 2023. l10n-trainer: a Tool to Assist in the Train-
ing of Localization (l10n) and Internationalization (i18n) Testers. In Proceedings of
the XXXVII Brazilian Symposium on Software Engineering (Campo Grande, Brazil)
(SBES ’23). Association for Computing Machinery, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3613372.3613420

[8] Camilo Escobar-Velásquez, Michael Osorio-Riaño, JuanDominguez-Osorio, Maria
Arevalo, and Mario Linares-Vásquez. 2020. An Empirical Study of i18n Collateral

Changes and Bugs in GUIs of Android apps. In 2020 IEEE International Conference
on Software Maintenance and Evolution (ICSME). 581–592. https://doi.org/10.
1109/ICSME46990.2020.00061

[9] Luis Leiva and Vicent Alabau. 2014. The impact of visual contextualization on
UI localization. (04 2014). https://doi.org/10.1145/2556288.2556982

[10] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2017. DroidBot: a
lightweight UI-Guided test input generator for android. In 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-C). 23–26.
https://doi.org/10.1109/ICSE-C.2017.8

[11] Rob McCarney, James Warner, Steve Iliffe, Robbert Van Haselen, Mark Griffin,
and Peter Fisher. 2007. The Hawthorne Effect: a randomised, controlled trial.
BMC medical research methodology 7 (2007), 1–8.

[12] Rajkumar. 2023. A complete beginners guide to localization testing. https:
//www.softwaretestingmaterial.com/localization-testing/

[13] Rudolf Ramler and Robert Hoschek. 2017. Process and Tool Support for Interna-
cionalization and Localization Testing. Product-Focused SW Process Improvement
(2017), 385–393.

[14] Junmei Wang and Jihong Wu. 2019. Research on Mobile Application Automation
Testing Technology Based on Appium. In 2019 International Conference on Virtual
Reality and Intelligent Systems (ICVRIS). 247–250. https://doi.org/10.1109/ICVRIS.
2019.00068

[15] Xin Xia, David Lo, Feng Zhu, Xinyu Wang, and Bo Zhou. 2013. Software Interna-
tionalization and Localization: An Industrial Experience. Proceedings of the IEEE
International Conference on Engineering of Complex Computer Systems, ICECCS,
222–231. https://doi.org/10.1109/ICECCS.2013.40

[16] Chunsheng Zhao, Zhiyong He, and Wei Zeng. 2010. Study on International Soft-
ware Localization Testing. 2010 Second World Congress on Software Engineering 2
(2010), 257–260.

[17] Liu Zhifang, Liu Bin, and Gao Xiaopeng. 2010. Test Automation on Mobile Device.
In Proceedings of the 5th Workshop on Automation of Software Test (Cape Town,
South Africa) (AST ’10). Association for Computing Machinery, New York, NY,
USA, 1–7. https://doi.org/10.1145/1808266.1808267

https://doi.org/10.1080/10447310802205776
https://m2.material.io/design/usability/bidirectionality.html#mirroring-layout
https://m2.material.io/design/usability/bidirectionality.html#mirroring-layout
https://doi.org/10.1145/3624032.3624045
https://doi.org/10.1145/3613372.3613420
https://doi.org/10.1109/ICSME46990.2020.00061
https://doi.org/10.1109/ICSME46990.2020.00061
https://doi.org/10.1145/2556288.2556982
https://doi.org/10.1109/ICSE-C.2017.8
https://www.softwaretestingmaterial.com/localization-testing/
https://www.softwaretestingmaterial.com/localization-testing/
https://doi.org/10.1109/ICVRIS.2019.00068
https://doi.org/10.1109/ICVRIS.2019.00068
https://doi.org/10.1109/ICECCS.2013.40
https://doi.org/10.1145/1808266.1808267

	Abstract
	1 Introduction
	2 Context and Motivation
	2.1 Common L10n/i18n issues
	2.2 String validation

	3 Background
	3.1 L10n/i18n testing
	3.2 DroidBot

	4 TString
	4.1 Droidbot exploration Workflow
	4.2 TString Workflow
	4.3 Walk-through

	5 Evaluation
	5.1 System Usability Scale (SUS)
	5.2 Participants
	5.3 Results and Discussion
	5.4 Threats to Validity

	6 Related Work
	6.1 Test Automation
	6.2 L10n Testing

	7 Conclusions and Future Work
	Acknowledgments
	References

