
Reducing the Allocation of Software Testing Demand: A Study on
the Pros and Cons using STELA Tool

Flavia Oliveira
Sidia Institute of Technology

Manaus, Brazil
flavia.oliveira@sidia.com

Leonardo Tiago
Sidia Institute of Technology

Manaus, Brazil
leonardo.albuquerque@sidia.com

Lennon Chaves
Sidia Institute of Technology

Manaus, Brazil
lennon.chaves@sidia.com

ABSTRACT
The speed at which new technology is developed and implemented
in commercial products directly impacts the flow and rhythm of the
software test field. In the context of global software development,
different companies follow their unique approaches to assign their
test demands to their employed testers; however, the dependency
on a fully manual process that is prone to human error leads to a
growing trend of possible issues, given that demand is expected
to grow even more, making it even harder to keep up with them.
To address this problem, we performed a study to determine the
significance of the time gain and effort reduction when comparing
the assignment task performed manually and automatically with
support from the STELA tool developed within the research and
development institute in which this study was conducted. Analy-
sis of the data obtained through the collection of execution time
and one-on-one interviews with the main assigners of a test team
within the institute shows that using automation to simplify the
assignment task not only makes it more efficient, with a reduction
of 54% in the time invested when compared to manual execution,
but also reduces the possibility of human error, even though the
tool itself is prone to occasional errors.

CCS CONCEPTS
• Software and its engineering→ Software verification and
validation; Software development process management; Pro-
cess validation; Software defect analysis; Software develop-
ment methods.

KEYWORDS
Software Testing, Automated Process, Test Management

1 INTRODUCTION
Software tests help ensure that software is stable and works with
quality when it reaches the end users [5]. However, given the cur-
rent state of globalization, there are teams working from different
locales in different time zones to develop products, a work setting
known as Global Software Development (GSD) [4]. This scenario
impacts the product’s development directly, with new technologies
being developed and incorporated into products in parts of the
world, while needing to be tested by people on the other side of the
planet.

Therefore, in order to avoid any conflicts during development
that may compromise the release of the product, the demand for
test requests - which are documents received by the test teams that
specify what needs to be validated - needs to be well managed,
so that all tests are performed with quality and, consequently, the
product has a healthy development cycle [1].

Within an institute of research and development, test requests
are assigned by project leaders and received by the test team, who
perform functional and exploratory tests [2]. Furthermore, in the
software test team, the process of validating the information present
in the request and determining whether they are all correct before
starting the test is known as acceptance, and the process of dele-
gating the request execution to a tester according to their availabil-
ity and knowledge is known as assignment. In this context, each
project represents a smartphone or tablet device with the Android
operating system1.

However, the management of acceptance and assignment can be
costly, especially when there are many test requests, because of the
necessity of manual verification of all information contained within
the request, including, but not limited to, checking the environment,
type of device, and scenario in which the test needs to be performed,
and determining who from the test team is available and has the
theoretical and practical knowledge needed to perform the test.

All of these validations need to be made in a task management
system known as Jira2, and the information is spread between many
different pages, so the amount of clicking, screen transitions, and
searching for specific data can reach an exorbitant amount when
the demand is very high. To minimize the manual effort required to
validate the test requests, the automation team, which is composed
of members of the test team, developed a module for managing the
test requests within the STELA tool.

Thus, this work presents an experience report on the use of
the STELA tool to manage the demand for test requests by a test
team within a research and development institute, with the goal of
highlighting the time gain and effort reduction achieved through
the use of automation to perform complex and repetitive tasks, and
consequently resulting in an overall better test cycle.

The remainder of the paper is organized as follows: Section
2 presents the assignment module of the STELA tool; Section 3
presents the obtained results and discussions, and lastly, Section 4
presents the conclusions we reached.

2 STELA TOOL
In the institute in which this research was performed, the projects
under development have a leader, who is responsible for delivering
the software releases which must be tested by the team responsible
for testing. The test requests are made through the Jira platform,
where it is possible to follow the project and view information
about the type of test being performed, its due date, the software’s
ID, the version of the operational system, among others.

1https://www.android.com/
2Jira, available at: developer.atlassian.com

https://www.android.com/
developer.atlassian.com


Conference’17, July 2017, Washington, DC, USA Flavia Oliveira, Leonardo Tiago, and Lennon Chaves

Within the test team, a small group is responsible for checking
the test request, confirming if all the necessary information is filled
in. The members of this group are called "assigners". The members
of the test team who receive the test request and perform the tests
are referred to as "testers" in this paper.

The assigners were also responsible for managing the tester’s
test demands. Therefore, if the information on the request is deemed
correct, the assigner checks if testers are available to execute the
test and assigns the request to the selected tester.

The manual process of accepting a request is shown in Figure 1,
which starts when a test request is created by the project leader.

Figure 1: Manual Management Process

In step 1, the assigner checks if there are any pendencies in the
request’s main page, such as missing information from the test en-
vironment or the application that needs to be tested, unavailability
of the files needed to perform the test, and incoherence with the
history of prior tests.

In step 2, the assigner performs acceptance, the request’s test
scopes are separated by category, and for each category, the corre-
sponding test cycle must be created, which contains all test cases
to be performed.

Finally, in step 3, the categories are divided into tasks to be
performed by the tester, containing summarized information from
the request and features so that the tester can interact with the page
and indicate their progress, make comments and attach evidence
of the test execution.

To minimize the time spent assigning test requests, a module that
manages and supports the acceptance of requests was developed
using the STELA tool and made available to the team by the end
of January 2024. STELA is a system developed by the automation
team to manage and control test executions.

The tool’s management module was developed using VueJS3
and TypeScript4 for the front-end, and Python5 for the back-end,
however further details of the implementation (such as the source
code itself) cannot be disclosed because the institute in which the
study was conducted possesses strict confidentiality policies for
code developed within the institute.

The process of automatic acceptance with support from STELA
is illustrated in Figure 2.
3https://vuejs.org/
4https://www.typescriptlang.org/
5https://www.python.org/

Figure 2: Automated Management Process

As illustrated in Figure 2, after the creation of the request, STELA
automatically checks the test request’s information fields and the
software release made available. In this way, there are two possible
statuses that STELA provides to test requests:

• PASS: With the PASS status, it is possible to accept a test
request within STELA, and the creation of the test task is
performed automatically;

• FAIL: A test request with this status possesses discrepancies,
and the tool indicates which information fields need to be
fixed.

It is important to highlight that STELA’s request management
module is viewed by both the assigners and the project leaders, so
they can also see the request’s status and act on it. In the case of
FAIL status, the project leader can find the discrepancy and act on
a correction. It is also considered good practice for the assigners to
monitor this module to check if there are new test requests that the
team needs to work on, and when finding the FAIL status, contact
the project leader to inform them of the discrepancies, so that they
can be fixed and the acceptance can be performed.

3 RESULTS
To perform the experiments, 4 participants who were responsible
for this task for over a year and had experience with both the man-
ual process and support from STELA were selected. It is important
to emphasize that the number of assigners is small given that only
this group is responsible for distributing the demand for the team.
Thus, the sample selected for this study was representative of partic-
ipants within the context of this study. During the study period, the
assigners measured the time for accepting a request both manually
and using the automatic acceptance in STELA. In all, 65 assigned
test requests were considered and accepted with and without the
use of the tool.

It is noteworthy that the requests covered different types of
devices and test scopes. The process of assigning requests may
sometimes require negotiations and adjustments, which leads to
an even greater time cost for resolving the discrepancies before
proceeding with acceptance. Therefore, to measure the time spent,
the median was used as the measurement of the central tendency
because it is not affected by outliers [3]. Considering the time spent
by the selected assigners to accept the requests, the results are
compiled in Table 1. Manually, it is possible to observe a total time
of 74𝑚𝑖𝑛20𝑠 to assign requests, while with support from STELA,
the total time was 33𝑚𝑖𝑛49𝑠 .



Reducing the Allocation of Software Testing Demand: A Study on the Pros and Cons using STELA Tool Conference’17, July 2017, Washington, DC, USA

Table 1: Time for accepting requests

Form of Acceptance Total time Median

Manual 74𝑚𝑖𝑛20𝑠 65𝑠
Automated 33𝑚𝑖𝑛49𝑠 30𝑠

Thus, with the data displayed in Table 1 it is possible to see
a reduction of approximately 54% with the use of the tool when
compared to the manual process. Besides the experiments made to
determine the time gain, the participants of this study were inter-
viewed6 to assess the perceptions of the assigners regarding the
tool. All participants signed an Informed Consent Form, ensuring
that they consented to use the information obtained in the inter-
views to develop this study while maintaining their anonymity. The
following is a discussion of the interpretations.

Perceptions regarding the Manual Process: Based on the
interviews, it is valid to affirm that the time they had been on the
team and the experience acquired during this time did not lead
to higher efficiency in the process of manually assigning requests,
indicating how high is the cost of time and effort for this task. It
is valid to mention that his cost is not only associated with the
task itself, but also with Jira, the system in which it is performed.
Participants emphasized that manual flow requires many clicks and
screen transitions, extending the time and increasing complexity,
which could cause them to make mistakes, given that it is a task
performed every day.

Perceptions regarding the Automated Process: Based on the
perceptions of the participants regarding the manual process, it is
possible to understand why all of them agreed that the automation
of the assignment task within the STELA tool made their job much
easier, as the tool performs the analysis of the request’s necessary
information in Jira, assertively points out discrepancies, moves the
important information to the task that will be received by the tester,
and is able to accept multiple requests at once.

Opportunities for Improvement: That all being said, there
are still cases in which the STELA tool can fail and make the as-
signer have to do more work, such as when - as mentioned in the
interviews - it was mentioned that the system can slow down and
crash, and when this happens it is necessary to check all of the
requests it was working on individually, as it does not say which of
them have discrepancies and what is said discrepancy, an opinion
shared between 75% of the interviewed team members, which show
how the tool violates some aspects of user experience and interface,
and also how it is still prone to issues due to the Jira system.

4 CONCLUSIONS
This study examines a software test team’s use of an automation
module to manage the demand within the STELA tool. The research
institute’s test team receives numerous daily test requests, requiring
significant time for the assigners to verify the information before
acceptance and assignment. Team assigners were interviewed to
assess the tool’s impact. They suggested improvements such as
an execution report to identify errors, but all agreed that the tool
accelerates the process and reduces manual clicks. Additionally, the
6https://zenodo.org/records/11658222

assigners compared the time spent accepting requests manually
with STELA. The median values exhibited a reduction of approxi-
mately 54% with the automated tool.

It is important to highlight the aspects that threaten the validity
of this study: 1) The research was developed in an institute with
confidentiality policies and a specific context of development; 2) The
study had a small sample of participants, as the group of assigners
was small (only four members); 3) This study did not consider how
the type of project or test scope would affect the time spent; 4)
The participants mentioned that more clicks were necessary when
working manually, however the exact amount was not measured,
so this was affirmed only based on their perception.

For future work, it is suggested to perform experiments focused
on understanding the impact of using an automation tool to accept
requests in specific test scopes, as the differences between the
information that needs to be checked for each test scopemay impact
the acceptance process and it is also suggested to perform a study
with novice members to understand the impact of using the tool
without an experience bias.

ACKNOWLEDGMENTS
This paper is a result of the Research, Development & Innovation
Project (ASTRO) performed at Sidia Institute of Science and Tech-
nology sponsored by Samsung Eletrônica da Amazônia Ltda., using
resources under terms of Federal Law No. 8.387/1991, by having its
disclosure and publicity in accordance with art. 39 of Decree No.
10.521/2020.

REFERENCES
[1] Tulasi Anand, Chittoor Reddy, and VS Mani. 2016. System testing optimization in

a globally distributed software engineering team. In 2016 IEEE 11th International
Conference on Global Software Engineering (ICGSE). IEEE, 99–103.

[2] Marcio Delamaro, Mario Jino, and Jose Maldonado. 2013. Introdução ao teste de
software. Elsevier Brasil.

[3] Luiz Paulo Fávero and Patrícia Belfiore. 2017. Manual de análise de dados: estatística
e modelagem multivariada com Excel®, SPSS® e Stata®. Elsevier Brasil.

[4] Babur HayatMalik, Saeed Faroom,MuhammadNaumanAli, Nasir Shehzad, Sheraz
Yousaf, and Hammad Saleem. 2018. Geographical distance and communication
challenges in global software development: A review. International Journal of
Advanced Computer Science and Applications 9, 5 (2018).

[5] Yi Zhao, Yun Hu, and Jiayu Gong. 2021. Research on international standardization
of software quality and software testing. In 2021 IEEE/ACIS 20th International Fall
Conference on Computer and Information Science (ICIS Fall). IEEE, 56–62.

https://zenodo.org/records/11658222

	Abstract
	1 Introduction
	2 STELA Tool
	3 Results
	4 Conclusions
	Acknowledgments
	References

