
Smart Test Execution of Android Compatibility Tests
Alice Castro, Heryck Barbosa, Abda Albuquerque, Roger Porty
{alice.castro,heryck.barbosa,abda.albuquerque,roger.porty}@sidia.com

Sidia Institute of Science and Technology - SIDIA
Manaus, AM, Brazil

ABSTRACT
With technology and internet expansion, the demand for software
services has increased. As a result, these services have shifted from
individual machines to being hosted on servers for remote access.
This paper presents Smartgate, a web service that processes tasks
from our request manager, accepting or rejecting them and start-
ing Normal Exception (NE) scope tests. It provides early results
to reduce the execution time of tests carried out by engineers and
avoids human errors in the process, whether during system devel-
opment or on the part of the test engineer. The data available in
the task needs to be reviewed and validated for Smartgate to start
correctly. Now, Smartgate has gained space in our software testing
process after serving 53.16% of Normal Exception requests created
and submitted from 2021 to 2023.

CCS CONCEPTS
• Software and its engineering→ Operational analysis; Soft-
ware as a service orchestration system.

KEYWORDS
Software Test, Test Automation, MoraySTF, Micro-services, Google
Tests, Android Tests, Mobile Software

1 INTRODUCTION
The smartphone market has experienced exponential growth in
recent years. In 2023, Samsung and Apple each produced a stagger-
ing 226.6 million and 234.6 million units, respectively [7]. With the
constant emergence of new technologies, manufacturers regularly
release and update new smartphone models. Consequently, soft-
ware testing is crucial during system development to ensure the
flawless performance of smartphones and to prevent the delivery of
malfunctioning features. This testing plays a pivotal role in main-
taining the high standard expected by consumers in the dynamic
smartphone market [6].

When it comes to testing software for Android devices, it is
essential to adhere to the requirements and guidelines set forth
by Google, the owner of the system. These guidelines are detailed
in the Compatibility Definition Document (CDD) [3]. The testing
process encompasses a variety of approaches, including manual
tests and automated tests. The Compatibility Test Suite (CTS) [4] is
an automated test that works through scripts, and is one of the tests
provided by Google. This test suite ensures that the software meets
standards required for compatibility and performance on Android
devices.

As technology has advanced and the internet has expanded, the
demand for software services has increased. Consequently, these
services have transitioned from being processed on individual users’

machines to being hosted on servers, making them more easily ac-
cessible remotely. To address evolving demands, developers have
employed new development methods and software architectures,
such as the micro-services architecture. This modern approach
emphasizes breaking down the system into small, independent
services, thereby creating distributed applications that can commu-
nicate with each other through APIs (as noted in the [1]).

This paper presents our tool named Smartgate, a web service
developed by the Google Approval team at the Sidia Institute of
Science and Technology. Smartgate is a tool that handles tasks from
our request manager, conducting acceptance or rejection processes
and initiating NE scope tests. It comprises six distinct services:
Kira, GA Web, Watcher, MoraySTF, DoligoRota, and Task Man-
ager System. In essence, Smartgate validates test requests, triggers
automated tests, and forwards the results to the analyst for fur-
ther action. Notably, it has successfully processed 53.16% of NE
requests submitted between 2021 and 2023, marking a significant
advancement in our software testing process.

2 BACKGROUND
Our team at Sidia Institute encountered several challenges that
needed to be resolved: the time required to set up the testing envi-
ronment due to the multiple smartphone models, which sometimes
required extra hours at night or on weekends; the requirement for
human validation of test requests; the need for testers to initiate
and execute automated tests; and the wasted human effort when
tests were canceled. In addition to this daily challenge, we faced a
larger one - how to conduct tests during the COVID-19 lockdown.
At that time, we required a tool to automatically initiate tests with-
out human intervention, as there were a limited number of people
in the office. Therefore, since the end of 2020, Smartgate has been
developed to meet our needs, whose purpose is to increase produc-
tivity by eliminating the need of engineers in the beginning of test
process and, as outcome, providing results as clear as possible with
the minimum number of failed test cases.

3 RELATEDWORK
The article Automatic Flash Tool for Mobile Devices discusses a
project where the authors designed an automated tool specifically
for flashing Android OS images onto smartphones. To accomplish
this, they implemented a system using a Raspberry Pi board and
a hardware interface. This system is capable of running a service
that can flash Android OS onto as many as 4 connected devices
simultaneously.

The team achieved significant time savings using this automation
tool, allowing them to redirect their efforts to other tasks. Addition-
ally, they were able to schedule automated executions at the end of
the day, resulting in improved efficiency [2].



SAST 2024, September 30th to October 04th, 2024, Curitiba, Paraná Castro et al.

3.1 Consideration
In contrast to the study by Correia et al. [2], Smartgate has the
capability to interact with multiple smartphones on a daily basis.
This system utilizes micro-services and does not rely on specific
hardware, such as Raspberry Pi and JIG, to communicate with
smartphones. Smartgate is designed to function within a laboratory
environment (Figure 1), where it can access about 120 Linux com-
puters and hubs to flash Android OS image about 2500 smartphones
and test it. The only human involvement necessary is to connect
models that have not yet been linked to the hubs.

Figure 1: Smartgate Laboratory

Both projects share the same goal: to accelerate execution time,
enabling testers to allocate their attention to other aspects of soft-
ware testing.

4 SMARTGATE ARCHITECTURE
The proposed solution is related to the Android Compatibility Test
Process for mobile devices. The goal is to ensure that all core func-
tions of the system are working correctly and as expected, taking
into account the Android version and the device’s hardware speci-
fications, in line with the predefined standards set by Google.

Creating a system that handles technical information related
to the software of different models and contains a large amount
of data requires modularization to better distribute activities. This
is necessary due to the interactions between frameworks, which
involve the main steps: Task Validation and Test Execution.

The testing process begins with a test requisition containing
sensitive data about the software to be tested. It is crucial to care-
fully review this information. The micro-service (Kira) system will
validate and either accept or reject the task. If rejected, the system
will provide details on the issues with the request (Figure 2).

Once the task is accepted, the system will send information to
the device laboratory. The laboratory manages all devices used
for testing purposes, providing information on device availability
and installing the required software for compatibility testing. If
there are no available devices, the system must notify through a
web service interface that additional devices need to be added. If
devices are available, the software will be installed on the specific
model, and the system should also provide progress updates. Once
this step is completed, the system will commence test execution

(micro-service DoligoRota) based on the test scope specified in the
previously created task.

The web service (GA Web) interface should display all back-
ground processes, such as accepted tasks and their current status,
and allow users to view sensitive information enabling them to
monitor progress. It should also provide test plan configuration, in-
cluding device allocation logic and the number of devices dedicated
to each test scope, as well as the ability to view live test execution
via transmission from a Linux agent, and to display error messages
specifying the issue whenever they occur.

During the execution phase, the system consults the defined
strategy on the web service to allocate the appropriate number of
devices and perform tests using the latest tools available on the
Linux agents, using the most current tools according to the type
of test requested. Once the initial test results are generated, the
system will automatically re-run them to reduce the number of
failed and not executed tests, as the primary goal of compatibility
validation is to pass all test cases. If some test cases does not pass,
the system will provide the result anyway. The system must upload
the results generated on Task Manager after the execution step.

Figure 2: Smartgate Architecture

Smartgate consists of the following services:
• Kira: Service responsible for reviewing requests created on
global management system, checking binary information,
creating and updating manager task and registering task
information into the web service to provide follow-up to
testers.

• GA Web: It is a web service that shows status transitions of
tasks as they pass by all the steps of acceptance, execution,
retry, and submission. It also contains a test plan as a test
view streamed from a Linux agent.

• Watcher: Service that provides communication between all
system’s modules. It is main purpose is to commute data as
the process goes by.



Smart Test Execution of Android Compatibility Tests SAST 2024, September 30th to October 04th, 2024, Curitiba, Paraná

• MoraySTF: Service that manages devices inside device lab-
oratory. It is responsible to provide availability status and
flashing procedure whenever a new task is added to the web
service board [5].

• DoligoRota: Service responsible for running new test execu-
tion from Google tradefed (CTS, GTS and STS) and retrying
generated results.

• Task Manager System: Global system that manages compat-
ibility tasks. The proposed system gets initial data from it
and concludes the process steps uploading and performing
task transitions.

5 SMARTGATE TIMELINE
At the end of 2020 and in 2021, the Smartgate concept was developed
to conduct testing during the COVID-19 pandemic. Initially, the
Doligorota service carried out the first CTS and GTS execution of
NE scope based on requests from the activities board using devices
from a smaller version of the device laboratory. At that time, the
validation and acceptance of the requests were done manually. The
tests performed were then attached to the request so the engineer
could proceed and complete the process.

In 2022, we proudly introduced new features. The integration
with the global management system allowed the creation of Kira,
which accepts or rejects the requests, but we started validation in
another scope. And with the expansion of the device laboratory,
dynamic device allocation has been implemented.

The following year, improvements and new implementations
brought more agility and robustness to the project. In 2023, Kira
began to validate and accept or reject NE requests.

And now, in 2024, Smartgate starts to execute STS in NE follow-
ing the rule when it is mandatory to run.

6 RESULTS
Themain goal of Smartgate was tomanage pending requests, reduce
the time it takes to start these requests, and free up testers to focus
on other aspects of software testing, like manual tests on mobile
devices. Figure 3 demonstrates that Smartgate has been successful
in saving testers time over the years. Although still in the prototype
stage, we conducted tests at the end of 2020 to validate the project
concept. In 2021, with a small laboratory comprising about 150
mobile devices, we were able to process 390 requests.

In September 2022, our project seized an opportunity to upgrade
it is the laboratory and acquired roughly 2500 mobile devices of
variousmodels. It successfully fulfilled 1101 requests. In 2023, Smart-
gate managed to handle a little over half of the 864 requests. The
decrease in the number of requests was due to the introduction of
new models with new requirements for testing. From 2021 to 2023,
Smartgate served 53.16% of the requests created and submitted by
our team. With these results, Smartgate has gained space in our
software testing process.

In addition to the numbers, Smartgate achieved other significant
gains from the results: Initial human need to prepare the devices
and start the tests removed, no prejudice if tasks is cancelled, results
provided in advance, and reduced working time on weekends.

Figure 3: Number of requests executed by Smartgate over the
years.

7 CONCLUSION
Over the years, we have focused our efforts and expertise on ad-
vanced activities in the realm of software quality. We are committed
to implementing process improvements to ensure an exceptional
experience for the end user. It is evident that Smartgate has ef-
fectively fulfilled it is purpose of enhancing productivity, directly
influencing delivery times and result quality.

In future work, we intend to incorporate other test scopes into
Smartgate, which also have details for review and require more
devices to execute in less time. Just as we reach the end of the
process for the NE scope, we will go step by step to reach the same
end for the SMR and Full Submission scopes.

ACKNOWLEDGMENTS
The authors are grateful for the support offered by SIDIA R&D
Institute in Smartgate project. This work was partially supported by
Samsung, using resources of Informatics Law for Western Amazon
(Federal LawNo. 8.387/1991). Therefore, the present work disclosure
is in accordance as foreseen in article No. 39 of number decree
10.521/2020.

REFERENCES
[1] Nuha Alshuqayran, Nour Ali, and Roger Evans. 2016. A systematic mapping

study in microservice architecture. In 2016 IEEE 9th international conference on
service-oriented computing and applications (SOCA). IEEE, 44–51.

[2] Luiz Correia, Thales Silva, and Gabriel Villacrez. 2021. Automatic Flash Tool for
Mobile Devices. In 2021 International Conference on Electrical, Computer, Commu-
nications and Mechatronics Engineering (ICECCME). IEEE, 1–5.

[3] Android Developer. 2024. Compatibility Definition Document. Retrieved Jun 06,
2024 from https://source.android.com/docs/compatibility/cdd

[4] Android Developer. 2024. Compatibility Test Suite. Retrieved Jun 06, 2024 from
https://source.android.com/docs/compatibility/cts

[5] Klinsman M Gonçalves, Yasmine G Vaz, Eberth F Cruz, Rafael E Silva, Lineker
Souza, Fábio M Azevedo, Eduardo D Sardinha, Paulo Fonseca, and Cícero AL
Pahins. 2020. Using a tool-based approach to comply with smartphone user manual
regulations in latin America countries. In Proceedings of the 15th International
Conference on Global Software Engineering. 101–105.

[6] Mika V Mäntylä, Bram Adams, Foutse Khomh, Emelie Engström, and Kai Petersen.
2015. On rapid releases and software testing: a case study and a semi-systematic
literature review. Empirical Software Engineering 20 (2015), 1384–1425.

[7] Fábio Matos. 2024. Metrópoles: Apple bate Samsung e assume lider-
ança na produção mundial de celulares. Retrieved Jun 06, 2024 from
https://www.metropoles.com/negocios/apple-bate-samsung-e-assume-
lideranca-na-producao-mundial-de-celulares

https://source.android.com/docs/compatibility/cdd
https://source.android.com/docs/compatibility/cts
https://www.metropoles.com/negocios/apple-bate-samsung-e-assume-lideranca-na-producao-mundial-de-celulares
https://www.metropoles.com/negocios/apple-bate-samsung-e-assume-lideranca-na-producao-mundial-de-celulares

	Abstract
	1 Introduction
	2 Background
	3 Related Work
	3.1 Consideration

	4 Smartgate Architecture
	5 Smartgate Timeline
	6 Results
	7 Conclusion
	Acknowledgments
	References

