
Benefits and Challenges of a Physical Device Farm for Automated
Software Testing: A Case Study of the STELA Tool Implementation

Lennon Chaves∗
Sidia Institute of Technology

Manaus, Brazil
lennon.chaves@sidia.com

Flavia Oliveira∗
Sidia Institute of Technology

Manaus, Brazil
flavia.oliveira@sidia.com

Leonardo Tiago
Sidia Institute of Technology

Manaus, Brazil
leonardo.albuquerque@sidia.com

Renata Castro
Sidia Institute of Technology

Manaus, Brazil
renata.castro@sidia.com

ABSTRACT
Software testing ensures seamless user experience that is achievable
throughmanual or automated testing. Automated testing offers ben-
efits, such as time reduction and parallel task execution. Physical
device farms are used to conduct automated tests across different
Android versions. The Software Test Execution Lab for Automation
(STELA), designed as a Physical Device Farm, was recently imple-
mented at a software institute by an automation team. This tool,
housed in a lab with a capacity of 400mobile devices, aided the test-
ing team in executing automated tests. Interviews with 22 testing
team members highlighted time optimization and a simplified in-
terface as the primary benefits of STELA. Since its implementation,
approximately 979 tests have been conducted, saving approximately
1915 minutes. This study examines the pros and cons of using a
Physical Device Farm for software testing.

CCS CONCEPTS
• Software and its engineering→ Software verification and
validation; Software development process management; Pro-
cess validation; Software defect analysis; Software develop-
ment methods.

KEYWORDS
Software Testing, Physical Device Farm, Automated Testing, Expe-
rience Report

1 INTRODUCTION
In the field of software testing, it is evident that considerable effort
has been invested in devising tests for mobile devices, including
hardware and software, considering the multitude of mobile device
manufacturers, operating systems, and available device types [1].
Specifically, Android operating systems present several unique
aspects in application development, such as screen size, resolu-
tion, smartphone or tablet design, and diverse Android system
versions [1]. Consequently, difficulties encountered in software
testing have increased for various software platforms and mobile
devices, making it imperative to preemptively address issues before
end users discover them [1, 3].

∗Both authors contributed equally in this research.

In this context, a common strategy in the software industry is
utilizing emulated Device Farms, which are cloud services emu-
lating various mobile devices as if they were real [2]. This allows
testing without physical devices using cloud services such as AWS
Device Farm1 and Google Firebase Test Lab2. Virtual mobile devices,
essentially mobile devices emulated on servers using virtualization
techniques, are frequently used [2]. However, a drawback is that
these virtual devices may not accurately represent the behavior of
physical devices, potentially leading to false-positive results [2].

Another approach is the concept of a Physical Device Farm [2],
which uses the principle of using an infrastructure of real mobile
devices to perform tests on different kinds of devices and custom
software versions [1, 2]. The significant benefit of this strategy is
the employment of mobile devices with the necessary configuration
to perform tests in a specific scenario, collect log files from real
devices, and reproduce and understand real behaviors in a mobile
device that contrasts the simulation of scenarios through virtual
devices [2].

In particular, the present study provides an exploration of the ad-
vantages and disadvantages of integrating a Physical Device Farm
into the Institute of Research and Development, which comprises
a testing team that conducts functional tests on mobile devices,
specifically smartphones and tablets, using the Android operating
system. To this end, the test automation team developed a soft-
ware tool called the Software Test Execution Lab for Automation
(STELA) which was implemented in a laboratory equipped with 20
servers and 400 mobile devices. Initial research was conducted us-
ing STELA through a survey administered to a sample of test team
members, who represented a portion of the total testing team [4].
Although the findings were encouraging, this study identified areas
for improvement and potential avenues for future research and
development in STELA.

To achieve the goal of detailing the results of the developed
work, Section 2 describes the investigation of the use of STELA. In
Section 3, the results are discussed. Finally, in Section 4, the final
considerations are detailed.

1https://aws.amazon.com/device-farm/
2https://firebase.google.com/docs/test-lab

https://aws.amazon.com/device-farm/
https://firebase.google.com/docs/test-lab


Conference’17, July 2017, Washington, DC, USA Lennon Chaves, Flavia Oliveira, Leonardo Tiago, and Renata Castro

2 EXPLORATORY STUDY
2.1 Problem Context
To understand the context of projects validated by the test team,
tests were conducted during the development phase if the Android
operating systemwas for client projects, and the scope varied across
different tests [3], such as sanity, interoperability, exploratory, and
requirements tests from Latin American carriers. Each project rep-
resents a smartphone or tablet, and the Android version tested
varies with the software release embedded in the device. The test-
ing team handles all projects for clients in Latin American countries,
encompassing a variety of devices that differ by type and operating
system version. Clients also customize the operating system due to
the advantages provided by the Android open-source project3.

The testing team must meet significant daily demands to en-
sure that the test scope requirements are met. The test lifecycle
comprises planning, specification, execution, and validation. In
the planning stage, the team devises test cases based on the un-
derstood requirements by incorporating all the validation steps.
These cases were executed and validated to ensure that they met
the initial requirements. The scope of testing encompasses UI and
functional testing, covering mobile application features and An-
droid customization including app positioning, embedded versions,
device settings, connections, and various screens.

SELBOT, a Device Farm pilot tool developed in 2020 for mo-
bile device testing, has proven beneficial owing to its extensive
test scope, numerous devices requiring validation, and a high de-
mand for test execution on specific hardware and software versions.
However, SELBOT’s implementation faces maintenance difficulties,
non-scalable infrastructure, incomplete test validation, and an in-
ability to execute specific test suites, making it challenging to use
and insufficient for the testing team’s requirements.

2.2 STELA Device Farm
The Software Test Execution Lab for Automation (STELA) is an
implementation that serves as a Physical Device Farm designed to
ensure software quality through automated test execution. STELA
addresses a series of problems by minimizing the possibility of
human error, improving the efficiency of the test process, and re-
ducing costs and execution time. The testing team implemented
STELA in mid-August 2023. In particular, STELA was implemented
using VueJS4 and NodeJS5 as front-end, while the back-end was
developed using Python6 and Flask7. These technologies were es-
sential to ensure the scalability of STELA to attend a large number
of mobile devices during the test execution.

In this way, STELA possesses an architecture based on three
large modules:

(1) Test Request Analysis: consists in the validation of nec-
essary information to start the test execution, in which it is
determined if the test scope and the release are ready to be
validated by the testing team;

3https://developer.android.com/
4https://vuejs.org/
5https://nodejs.org/
6https://www.python.org/
7https://flask.palletsprojects.com/

(2) Device Management: combined with MoraySTF, which is a
tool used to control access and use of the mobile devices that
are connected to STELA. In this way, whenever a mobile
device is connected to a STELA client station, MoraySTF
manages access and uses it to perform tests.

(3) Automated Execution: performs the execution automat-
ically according to the type of tests that are necessary to
validate the software release. All automated test cases are
executed, evidence of the execution is collected, and they
are attached to the test management software (Jira8).

Regarding test execution, STELA initially prepares the device
according to the software that will be validated and then starts the
process of execution and validation of the tests. Soon after, the tests
are finished, and a test report is generated along with evidence that
will be attached to the test management system. Finally, STELA
ends the test execution by updating the test status so that the tester
knows that it has finished. Figure 1 illustrates how this process was
performed.

Figure 1: Test Execution Flow when using STELA

In this way, regarding the previous solution called SELBOT,
STELA differs in its sample management, the flexibility of its use
for test execution, and the monitoring of the tests’ progression and
scalability, as described in Table 1.

Table 1: How STELA differs from SELBOT

Feature SELBOT STELA

Analysis of test requests Yes Yes
Creation of test plans Yes Yes
Sample management No Yes
Flexible configuration No Yes
Automated test execution Yes Yes
Monitoring of test progress No Yes
Generation of test report Yes Yes
Scalability No Yes

It is important to highlight that this study does not consider
the use of a Virtual Device Farm owing to the confidentiality is-
sues surrounding the projects developed by the client; thus, it is
not possible to perform tests in the cloud, which in turn makes
STELA an adequate tool to perform tests in real devices developed
by the client. In addition, due to many vendor’s customization of
Android system, the STELA was implemented to reproduce the
particularities developed of the client’s project.

8https://www.atlassian.com/software/jira

https://developer.android.com/
https://www.atlassian.com/software/jira


Benefits and Challenges of a Physical Device Farm for Automated Software Testing: A Case Study of the STELA Tool ImplementationConference’17, July 2017, Washington, DC, USA

2.3 Study Characterization
The goal of this study is to identify the main results of the use of
STELA by a testing team that aims to validate different Android
software releases. To support this study, a survey was developed
to verify the viability of STELA use in a testing team with mobile
projects from a global client. This research involved the partic-
ipation of 22 testers of the test team and was designed with 10
questions, which involved the following topics: how is the tool
used, what are its benefits, its disadvantages, the challenges faced,
and the differences when compared to other approaches and sug-
gestions for improvements. In addition, the number of validations
performed by STELA’s automated test suite was noted, that is, the
number of tests performed on the Device Farm, with the goal of
presenting its adherence to the team. Finally, the results were based
on the lessons learned from the perceptions of the testing team.

3 FINDINGS AND LESSONS
The main paper contribution is on physical device farms, and for
this reason, the lessons learned were performed regarding the usage
of STELA by software testers. The interpretation and discussion of
the results are summarized below, divided by topics:

Time Optimization: The interviewees highlighted that parallel
execution improves efficiency. They valued the ability of the tool to
manage test requests and validation processes. This tool expedited
evidence collection, enabling the completion of more test requests.
A significant finding was the comparison of the duration of man-
ual versus automated tests using STELA to identify the potential
advantages.

Simplified Interface: The team members highlighted that one
of STELA’s key advantages is its streamlined interface with inte-
grated filters, providing users with greater flexibility. Users can
decide whether to configure the device themselves or have STELA
conduct the entire testing process, including validating test cases,
simplifying its usage. The layout of the tool was reportedly easy to
navigate for overseeing tests.

Dependence on the Automation: The participants in the sur-
veys also mentioned the potential to become dependent on the tool,
as when the system is offline, the entire process must be carried out
manually, which takes significantly more time and may necessitate
consulting tutorials if the tester does not recall how to perform the
task or has never done so without the aid of automation.

Dependence on External Systems: According to the survey,
the participants reported that STELA is reliant on external systems
(Jira), and that when the system is not operational, the tool cannot
be utilized. Furthermore, it was mentioned that due to this reliance
on other systems, the tool needs updates that require it to be taken
offline, and the test must be performed manually.

SELBOT versus STELA: The team employed SELBOT to man-
age and execute test requests, with 77.3% of the interviewees uti-
lizing it; however, only 41.2% performed test executions. The re-
maining users employ SELBOT solely to validate and manage the
test requests. Conversely, 81.8% of the 22 participants used STELA
for test execution, whereas 18.2% used it only to validate the test
requests. STELA offers many improvements over SELBOT, includ-
ing advanced filters, customizable test sets, clearer error comments,
and enhanced device preparation and test execution.

Test Execution: Since STELA’s implementation on the test-
ing team in August 2023, around 979 test executions have been
conducted using a Physical Device Farm for test automation. This
method has reduced test execution time by 1915 minutes, under-
scoring STELA’s significant benefit in decreasing testing duration
and enhancing the team’s efficiency in managing client projects.

4 CONCLUSIONS
This study examined the implementation of a Physical Device Farm
named STELA by a software testing team at the Institute of Re-
search and Development. The team manages various projects and
test scopes daily, utilizing STELA to execute tests across multiple
devices. STELA was deployed in a lab with 20 servers and a capac-
ity for 400 devices, automating device preparation, test execution,
evidence collection, and test request management. Introduced in
mid-August 2023, STELA’s effectiveness was assessed through on-
line surveys with 22 team members. Results indicate that STELA
optimizes time by parallelizing tasks and offers a more user-friendly
interface compared to the previous tool, SELBOT. Notably, even
team members who did not use SELBOT are now using STELA.
Since its implementation, STELA has conducted approximately 979
tests, reducing execution time by about 1915 minutes. This paper
highlights STELA’s achievements, including reduced testing time,
with further claims to be explored in future research. Future work
should expand automatic validation to include more test cases and
automate test request handling.

ACKNOWLEDGMENTS
This paper is a result of the Research, Development & Innovation
Project (ASTRO) performed at Sidia Institute of Science and Tech-
nology sponsored by Samsung Eletrônica da Amazônia Ltda., using
resources under terms of Federal Law No. 8.387/1991, by having its
disclosure and publicity in accordance with art. 39 of Decree No.
10.521/2020.

REFERENCES
[1] Haipeng Cai, Ziyi Zhang, Li Li, and Xiaoqin Fu. 2019. A large-scale study of

application incompatibilities in android. In Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis. 216–227.

[2] Hao Lin, Jiaxing Qiu, Hongyi Wang, Zhenhua Li, Liangyi Gong, Di Gao, Yunhao
Liu, Feng Qian, Zhao Zhang, Ping Yang, and Tianyin Xu. 2023. Virtual Device
Farms for Mobile App Testing at Scale: A Pursuit for Fidelity, Efficiency, and
Accessibility. In Proceedings of the 29th Annual International Conference on Mobile
Computing and Networking. Association for Computing Machinery, New York, NY,
USA, Article 45, 17 pages. https://doi.org/10.1145/3570361.3613259

[3] Goutam Kumar Saha. 2008. Understanding software testing concepts. Ubiquity
2008, February, Article 2 (feb 2008), 1 pages. https://doi.org/10.1145/1361367.
1348484

[4] Janice Singer, Susan E. Sim, and Timothy C. Lethbridge. 2008. Software Engineering
Data Collection for Field Studies. Springer London, London, 9–34. https://doi.org/
10.1007/978-1-84800-044-5_1

https://doi.org/10.1145/3570361.3613259
https://doi.org/10.1145/1361367.1348484
https://doi.org/10.1145/1361367.1348484
https://doi.org/10.1007/978-1-84800-044-5_1
https://doi.org/10.1007/978-1-84800-044-5_1

	Abstract
	1 Introduction
	2 Exploratory Study
	2.1 Problem Context
	2.2 STELA Device Farm
	2.3 Study Characterization

	3 Findings and Lessons
	4 Conclusions
	Acknowledgments
	References

