
Reducing Rework in Automotive Software through
Simulation-Guided Verification

Larissa Pestana
Stellantis

Recife, Brazil
larissa.pestana@stellantis.com

Breno Miranda
Federal University of Pernambuco

Recife, Brazil
bafm@cin.ufpe.br

ABSTRACT
The development of automotive software predominantly follows
the V-cycle, where each development phase has a corresponding
verification phase. However, integration verification, which con-
siders system complexity, only occurs at the end of the cycle. This
results in a disparity between software verification and system
verification, where functionally validated code during development
becomes dysfunctional during system verification. The lack of ade-
quate preparation leads to significant rework, with algorithm errors
being identified only at the end of the cycle, delaying the transition
from development to the initial phase of the V-cycle and increas-
ing both costs and time. This research initially explores multiple
verification approaches. After analyzing their relevance to the ad-
dressed issue, the focus is placed on Simulation-Guided Verification,
which has the potential to transform the V-cycle into a W-cycle or
V-INC (Verification Incremental Cycle), by inserting in-loop verifi-
cations at each development phase. Techniques such as Model-in-
the-Loop (MiL), Software-in-the-Loop (SiL), Processor-in-the-Loop
(PiL), Hardware-in-the-Loop (HiL), and Virtual-in-the-Loop (ViL)
are employed for continuous and iterative verifications, ensuring
early fault detection and significantly reducing rework, thereby
enhancing the efficiency of automotive software verification.

KEYWORDS
Automotive Software Verification, Simulation-Guided Verification,
V-Cycle, Integration Verification, In-Loop Verification Techniques
(MiL, SiL, PiL, HiL, ViL).

1 INTRODUCTION
The automotive industry’s increasing complexity of embedded sys-
tems necessitates revised verification and validation processes. Rig-
orous validation stages are essential to ensure quality, safety, and
functionality in critical systems, from propulsion to advanced driver
assistance. Traditionally, the V-cycle is used, but its linear approach
is rigid, slow to adapt to changes, has long feedback cycles, and
is inefficient for complex systems. These limitations result in high
costs and increased risk of failures during final verification.

To overcome the V-cycle’s limitations, Liu et al. [5] proposed the
W-cycle and V-INC (Verification Incremental Cycle). The W-cycle
includes early verification and validation, allowing early defect
detection and reducing correction costs. A system model is built
and tested before implementation, enabling quicker corrections.
The V-INC cycle is more iterative and incremental, continuously
developing, refining, and integrating models and test cases, with
simulations running throughout the lifecycle to verify the system
virtually and avoid delays until integration and system testing
phases.

The increasing challenges and costs of automotive software de-
velopment have prompted studies to identify critical points needing
attention. Falcini and Lami [2] conducted an empirical study on
system and software testing practices using the Automotive SPICE
methodology, as described by VDA QMC Working Group 13 / Au-
tomotive SIG [9], a process assessment and improvement model
specific to the automotive industry.

Results indicated that software unit verification (SWE.4) and soft-
ware integration verification (SWE.5) often have lower performance
ratings due to informal verification activities and poorly defined
testing strategies. The research also highlighted a significant dis-
parity in quality between system testing and software testing, with
system testing being more mature. Research on development cy-
cle methodologies (V-cycle, W-cycle, V-INC) and critical software
testing areas shows inefficiencies in software verification during de-
velopment and integration. Algorithmic errors are often identified
only during final system verification, leading to significant rework.
This underscores the need to improve early-stage verification and
validation practices, a focus of this research.

2 VERIFICATION CYCLE APPROACHES
2.1 Static Code Analyzer
The static code analyzer is themost common tool in automotive soft-
ware verification, identifying errors like variable type mismatches.
However, it cannot verify properties dependent on the software’s
dynamic behavior in real environments. While detecting syntactic
and logical errors, it doesn’t guarantee full system functionality
under real conditions. This research aims to ensure the reliability
of automotive software in complex, dynamic scenarios.

2.2 Formal Methods
Formal Methods are rigorous mathematical techniques used to ver-
ify specific properties of computational systems, ensuring their
correct and safe behavior. TORODOV et al.[8] explore the appli-
cation of three main Formal Methods techniques in the context of
automotive software: abstract interpretation, model checking, and
deductive proofs.

2.2.1 Abstract interpretation. identifies runtime errors, such as
division by zero and out-of-bounds array access, by computing
abstract representations of the code without the need for actual
execution.

2.2.2 Model checking. verifies whether a formal model of the sys-
tem satisfies specific properties expressed in temporal logic. This
method is effective in identifying failures through counterexamples,
which show paths that violate the verified properties.

https://orcid.org/0009-0009-3163-2450
https://orcid.org/0000-0001-9608-9393


SAST 2024, September 30–October 04, 2024, Curitiba, PR, Brazil Larissa Pestana and Breno Miranda

2.2.3 Deductive proofs. establish mathematical properties of for-
mal models, offering a more expressive approach. However, they
require a high level of expertise and do not provide direct coun-
terexamples when a property is violated.

Formal Methods detect errors more efficiently than traditional
testing and should be gradually incorporated. While they provide
high confidence in system correctness, they face scalability chal-
lenges and barriers like the learning curve for engineers and imple-
mentation costs in the automotive sector.

2.3 Simulation-Guided
Simulation-guided verification ensures the correctness and reliabil-
ity of automotive control systems, particularly powertrain controls,
by combining simulation and optimization to identify undesirable
behaviors and meet specified requirements. Accurate models of
the system and its environment are created and simulated under
various conditions to estimate behavior. Kapinski et al. [4] discuss
using simulations to validate functional behavior, adjust control
parameters, and estimate performance.

Verification is iterative: a simulation engine generates behaviors,
and an optimizer searches for inputs and parameters that may
cause failures. This can be done using Open-Loop and Closed-Loop
approaches.

2.3.1 Open-Loop. The system model is tested in isolation, with-
out feedback from the environment or the controlled plant. In this
context, the plant is represented by the vehicle. The system inputs
are provided without considering the system’s responses over time.
The objective of open-loop testing is to validate whether the con-
troller, in this case, the Electronic Control Unit (ECU), meets the
basic functional requirements under predefined conditions.

2.3.2 Closed-Loop. the entire system is simulated, including the
controller (such as the Electronic Control Unit - ECU) and the plant
(the vehicle itself), allowing for dynamic feedback between them. In
this context, the controller, which is the ECU, sends commands to
the vehicle system (the plant), and the resulting feedback from the
vehicle’s behavior is used to continuously adjust the controller’s
output. This replicates real operating conditions of the system,
where the controller dynamically monitors and adjusts the plant’s
response to its inputs. This method offers a more accurate repre-
sentation of the system’s behavior under real operating conditions.
The closed-loop testing configurations include: Model-In-The-Loop
(MIL), Software-In-The-Loop (SIL), Processor-In-The-Loop (PIL),
Hardware-In-The-Loop (HIL).

Closed-loop is the approach that fits the requirements of this
study, which seeks improvements for software verification before
integration with simulations closer to system verification.

2.4 Simulation-Guided in Closed-Loop
2.4.1 Model-In-The-Loop (MiL). MiL is an initial approach in the
verification process where both the controller and the plant are
represented by software models. This allows engineers to test the
control system design in a detailed virtual environment before
implementing it in real hardware. MiL simulations are executed
on a host PC, offering flexibility to quickly modify and adjust the
models. This approach enables the early identification of design

errors, providing detailed and flexible validation of the controller
in a safe and controlled environment. The main advantages of MiL
include the ability to test multiple operational scenarios and the
ease of integration with other software development tools, such as
Simulink.

2.4.2 Software-In-The-Loop (SiL). SiL involves implementing the
controller with production code while modeling the plant in soft-
ware, testing the actual code in a simulated environment. This
validates controller logic and identifies implementation issues be-
fore hardware integration. The main advantage is ensuring the
controller meets performance and functionality requirements.

Jeong et al. [3] conducted a case study using SiL for initial testing
of complex automotive systems, employing the AUTOSAR method-
ology to configure and model software components and map them
to electronic control units. The virtual functional bus layer simu-
lates communication and interaction between components using
shared memory and an event manager. To integrate SiL simulation
with a vehicle simulator, the authors connected the code simulator
to the vehicle simulator, allowing testing of control functions using
the vehicle’s sensors and actuators, reproducing the physical effects
of automotive software actions in a virtual environment.

2.4.3 Processor-In-The-Loop (PiL). PiL involves executing produc-
tion code on target hardware (e.g., the vehicle’s ECU) while the
plant is simulated on a host PC. The controller and plant commu-
nicate via a direct link, such as Ethernet or CAN bus. PiL tests
the interaction between production code and control hardware in
a near-real environment, identifying issues not evident in earlier
MiL and SiL phases. Its main advantage is validating production
code performance on target hardware in real-time, ensuring correct
system function under real conditions.

Muttenthaler et al. [6] propose automatic verification of hard-
ware/software integration in microcontroller environments. Tests
are executed on the host, interacting with the HIL system and com-
municating with the microcontroller via a debugger, eliminating
extensive instrumentation. The methodology enables functional
verification of software components using a PiL setup, automating
hardware/software integration verification. A test platform verified
low-level driver software components in their microcontroller envi-
ronment. Results showed automated testing was significantly faster
than manual testing, reducing costs and increasing verification
efficiency.

2.4.4 Hardware-In-The-Loop (HiL). HiL is the most advanced and
realistic approach in the verification cycle. In this configuration,
both the controller and the plant are represented in hardware. The
controller receives electronic inputs from the virtual plant (simu-
lated in hardware) and sends outputs to it. This creates a highly
realistic test environment that simulates the behavior of the entire
system under conditions nearly identical to those found in a real
vehicle. HiL is essential for system verification, the final validation
of the system before implementation in a real vehicle, as it allows
testing the performance of the controller and the plant under dy-
namic and complex operational conditions. The main advantages
of HiL include the ability to conduct extensive and realistic tests
without the risks and costs associated with real vehicle testing.



Reducing Rework in Automotive Software through Simulation-Guided Verification SAST 2024, September 30–October 04, 2024, Curitiba, PR, Brazil

2.5 Special Loop: Virtual Verification
The need for real systems for testing throughout the development
cycle has led the automotive industry to research Virtual HiL, which
simulates HiL for system verification. Researchers from General
Motors and universities conducted a feasibility study on the Auto-
motive Virtual Verification Ecosystem. Ågren et al. [1] identified
significant benefits of virtual verification, including early software
integration tests, early error detection, and increased test repeata-
bility. However, adoption faces challenges such as the lack of high-
fidelity modeling technology and a global strategy.

Collaboration between industry and academia is necessary to
overcome these challenges. Advances in virtual verification re-
search are essential. A significant advance was made through col-
laboration between Mentor, a Siemens company, and Ain-Shams
University. Safar et al. [7] discusses an integrated framework for
virtual verification and validation (VVV) of complete automotive
systems. The proposed framework simulates the system at three
levels: System on Chip, Electronic Control Unit, and system level. It
emulates real systems, including hardware and software, efficiently
managing increasing system complexity. A case study demonstrates
the framework’s ability to design, simulate, trace, profile, and debug
AUTOSAR software using virtual platforms.

3 RESULTS
Integrating MiL, SiL, PiL, and HiL into the V-cycle provides a ro-
bust, iterative verification and validation process, enabling early
error detection and continuous validation at various abstraction
levels. The initial V-cycle is sequential and parallel, while the W-
cycle features overlapping V-cycles, with verification cycles on both
sides. Each development stage in the sequential line has a software
verification cycle, maintaining continuous validation and verifi-
cation. Sequentially, the initial V-cycle should be overlaid by the
verification V-cycle with the following loops for each development
stage:

• High-Level Design is initially addressed with MiL, perform-
ing initial simulations to verify core concepts and function-
alities.

• Low-Level Design, MiL is also used, but with a focus on de-
tailed model simulations, allowing the validation of specific
system components.

• Software Development stage, Unit Testing is carried out
using SiL, where the code is thoroughly verified.

• Software Integration, the Validation of Software Integration
is conducted using SiL, ensuring that the different software
modules work correctly together.

• Partial System Integration phase, PiL is employed to test the
production code directly on the ECU hardware, allowing the
identification of integration issues between software and
hardware.

• System Verification stage, HiL is used for realistic validation
and verification of the complete system with a simulated
vehicle, replicating real operational conditions.

The W-cycle uses simulation loops for continuous and iterative
verification at each development stage. V-INC involves iterative
verification and validation with closed-loop testing during software
development, aiming for cycles that resemble system verification.

Virtual HiL combines HiL’s advantages with virtual technology, en-
abling cost-effective use during development phases. This approach
ensures continuous and efficient verification, rigorously testing
automotive software from early development to full integration,
significantly reducing risks and costs of late-detected failures.

4 FUTURE RESEARCH
Future research should implement closed-loop simulations in spe-
cific automotive software partitions, comparing software quality
using metrics like early error detection, system robustness, cor-
rection efficiency, and cost-effectiveness. Additionally, exploring
virtual HiL for early-stage verification could improve error detec-
tion, scalability, and economic benefits. This research could advance
verification and validation practices in automotive software devel-
opment.

ACKNOWLEDGMENTS
This work was partially supported by a grant from the National
Council for Scientific and Technological Development (Grant CNPq-
Universal 408651/2023-7).

REFERENCES
[1] S. Magnus Agren, Eric Knauss, Paolo Giusto, Grant Soremekun, Rogardt Hel-

dal, and Daniela Damian. 2020. The Automotive Virtual Verification Ecosys-
tem: Impediments and Enablers. IEEE Software 37, 5 (2020), 67–76. https:
//doi.org/10.1109/MS.2019.2905228

[2] Fabio Falcini andGiuseppe Lami. 2021. System and Software Testing inAutomotive:
an Empirical Study on Process Improvement Areas. In 2021 14th IEEE Conference
on Software Testing, Verification and Validation (ICST). 253–262. https://doi.org/10.
1109/ICST49551.2021.00035

[3] Sooyong Jeong, Yongsub Kwak, and Woo Jin Lee. 2016. Software-in-the-Loop
simulation for early-stage testing of AUTOSAR software component. In 2016
Eighth International Conference on Ubiquitous and Future Networks (ICUFN). 59–63.
https://doi.org/10.1109/ICUFN.2016.7536980

[4] James Kapinski, Jyotirmoy Deshmukh, Xiaoqing Jin, Hisahiro Ito, and Ken Butts.
2015. Simulation-guided approaches for verification of automotive powertrain
control systems. In 2015 American Control Conference (ACC). 4086–4095. https:
//doi.org/10.1109/ACC.2015.7171968

[5] Bohan Liu, He Zhang, and Saichun Zhu. 2016. An Incremental V-Model Pro-
cess for Automotive Development. In 2016 23rd Asia-Pacific Software Engineering
Conference (APSEC). 225–232. https://doi.org/10.1109/APSEC.2016.040

[6] Florian Muttenthaler, Stefan Wilker, and Thilo Sauter. 2021. Lean automated
hardware/software integration test strategy for embedded systems. In 2021 22nd
IEEE International Conference on Industrial Technology (ICIT), Vol. 1. 783–788.
https://doi.org/10.1109/ICIT46573.2021.9453538

[7] Mona Safar, Magdy A. El-Moursy, Mohamed Abdelsalam, Ayman Bakr, Keroles
Khalil, and Ashraf Salem. 2019. Virtual Verification and Validation of Automotive
System. In Journal of Circuits, Systems and Computers, Vol. 28. 1950071. https://doi.
org/10.1142/S0218126619500713 arXiv:https://doi.org/10.1142/S0218126619500713

[8] Vassil Todorov, Frédéric Boulanger, and Safouan Taha. 2018. Formal Verification
of Automotive Embedded Software. In 2018 IEEE/ACM 6th International FME
Workshop on Formal Methods in Software Engineering (FormaliSE). 84–87.

[9] VDA QMC Working Group 13 / Automotive SIG 2017. Automotive SPICE Process
Assessment Model (version 3.1 ed.). VDA QMCWorking Group 13 / Automotive
SIG. Available at: https://www.vda-qmc.de/en/publications/software-process-
assessment-automotive-spice/.

https://doi.org/10.1109/MS.2019.2905228
https://doi.org/10.1109/MS.2019.2905228
https://doi.org/10.1109/ICST49551.2021.00035
https://doi.org/10.1109/ICST49551.2021.00035
https://doi.org/10.1109/ICUFN.2016.7536980
https://doi.org/10.1109/ACC.2015.7171968
https://doi.org/10.1109/ACC.2015.7171968
https://doi.org/10.1109/APSEC.2016.040
https://doi.org/10.1109/ICIT46573.2021.9453538
https://doi.org/10.1142/S0218126619500713
https://doi.org/10.1142/S0218126619500713
https://arxiv.org/abs/https://doi.org/10.1142/S0218126619500713
https://www.vda-qmc.de/en/publications/software-process-assessment-automotive-spice/
https://www.vda-qmc.de/en/publications/software-process-assessment-automotive-spice/

	Abstract
	1 Introduction
	2 Verification Cycle Approaches
	2.1 Static Code Analyzer
	2.2 Formal Methods
	2.3 Simulation-Guided
	2.4 Simulation-Guided in Closed-Loop
	2.5 Special Loop: Virtual Verification

	3 Results
	4 Future research
	Acknowledgments
	References

