
Validation of Image Content Using LLMs and RAGs: A Strategy
for Ensuring Compliance in Software Testing

Wendell Marques
Sidia Institute of Technology

Manaus, Brazil
wendell.marques@sidia.com

Caina Oliveira
Sidia Institute of Technology

Manaus, Brazil
caina.oliveira@sidia.com

Carol Fernandes
Sidia Institute of Technology

Manaus, Brazil
carol.fernandes@sidia.com

Luiz Ribeiro
Sidia Institute of Technology

Manaus, Brazil
luiz.ribeiro@sidia.com

Edluce Veras
Sidia Institute of Technology

Manaus, Brazil
edluce.leitao@sidia.com

Gabriel Sampaio
Sidia Institute of Technology

Manaus, Brazil
gabriel.cruz@sidia.com

Kaua Sanches
Sidia Institute of Technology

Manaus, Brazil
kaua.sanches-e@sidia.com

Renan Peres
Sidia Institute of Technology

Manaus, Brazil
renan.peres-e@sidia.com

ABSTRACT
This article presents an approach for validating content in images
using large language models (LLMs) and retrieval-augmented gen-
eration (RAGs) as essential tools. The proposal aims to enhance
software testing processes by ensuring compliance and accuracy
of visual data used. Through the integration of these technologies,
the study demonstrates how it is possible to automate content ver-
ification in images, identifying inconsistencies and ensuring that
data meet established standards. Additionally, the challenges and
limitations of this approach, as well as its practical applications in
software testing scenarios, are discussed. The results indicate that
the combination of LLMs and RAGs offers an efficient and scalable
solution for visual content validation, significantly contributing to
the quality and reliability of testing processes.

KEYWORDS
RAG, LLM, Software Engineering, Testing

1 Introduction
The use of LLM has become extremely prevalent in recent years,
driven by the wide range of possibilities they offer. A language
model predicts sequences of characters, words, or sentences based
on previous or adjacent context[1]. The best solution to improve
LLM accuracy and credibility, avoiding the effort required by com-
plex fine-tuning is represented by RAG[8], which is becoming a
popular paradigm in LLM’s systems. The underlying idea of the
RAG approach is the merging of LLMs knowledge with specialized,
vast, and dynamic data coming from external repositories [8]. The
initial query triggers external search algorithms to retrieve relevant
information. This data is then sent to LLMs prompts for additional
context[7]. According to this, the RAG approach combines infor-
mation retrieval mechanisms with In-Context Learning (ICL) [6]
to improve the LLMs performance. In this work, we leverage LLM
and RAG to develop a tool for image reviewing in the context of
software test validation. The main goal of this research is to create
a general RAG system for ensuring compliance in software testing.

2 Contextualization
This study came from necessity to assist the development and re-
quirements validation team of clients from an institute that creates
solutions for mobile products in the Latin American market. After
implementing software requirements, these need to be tested and
validated for approval. One key requirement involves embedding a
technical image that displays the product name along with a specific
technical code that varies per model. Previously, an experimental
tool called Image Test Review (ITR) was developed using computer
vision techniques with OpenCV for non-textual elements and OCR
for textual elements, demonstrating promising time savings in in-
dustrial processes. For this paper, a new tool named ITR-e-LLL
(Image Test Review Enhanced by LLMs) is proposed. This tool inte-
grates the use of LLM and RAG concepts to evaluate which LLM
performs better in image review within a software test validation
context.

3 Proposal
The proposal assumes that a technical image contains specific texts
indicating the associated mobile product model, which must be
extracted and verified for correctness from an embedded image in
the software.

LLM have shown potential in solving text-to-SQL (Structured
Query Language) tasks in databases [3], receiving natural language
questions as input and, based on a specific database table, return-
ing as output an SQL instance that answers user questions. Our
proposal takes as input an initial text composed of [model name,
technical code], and based on a CSV database, it returns as out-
put Python code for access, rather than SQL. Our approach will
follow the strategy adopted in [2], where a Pretrained Language
Model architecture is refined to meet the needs of the text-to-SQL
task, and it uses this schema to achieve logical form accuracy and
execution accuracy metrics to validate the solution. Within our
scope, it is defined a predictive database that includes the code
associated with the product to facilitate comparisons of logical and
execution accuracy metrics. RAG is employed solely to retrieve



SAST’25, September 22–26, 2025, Recife, PE Marques et al.

Figure 1: ITR-e-LLM Proposal

the relevant product-code mapping that enables subsequent valida-
tion of whether the embedded image content on the device meets
the required compliance standards. Additionally, in the context of
binary classification, We will evaluate the measure Mathew Corre-
lation Coefficient (MCC) in our proposal. The study proposed in
[4] has demonstrated that MCC provides more reliable assessments
than accuracy or F1 score, specially when the class distribution is
skewed.

The ITR-e-LLM proposal, as illustrated in Figure 1, consists of
the following stages: 1) Test Dataset: It is composed by a collection
of test images containing a variable mix of product models and
technical codes as textual content. The collection integrates both
correct and incorrect image sets through an image review process;
2) Predictive database(PD): Using RAG concept, a CSV database
containing the product name and its certification code is created as
a base for evaluating available images for testing; this method en-
sures that every product, once homologated by its target market’s
regulatory agency, is assigned a unique code upon successful certi-
fication; 3) Image Text Extraction: Using a product homologation
image, we utilize the multimodal model‘gemma3(27B)’ to describe
as text the image content, specifically the product and code details.
The extracted information is analyzed, and if meets the criteria for
successful content, it proceeds to a verification process to ensure
data integrity; 4) Validation Architecture (VA): Initially, a ques-
tion is executed to determine whether the certification code belongs
to the product. The LLM converts this question into a Python code
expression. A parser, component that processes the Python code
expression generated by the LLM, then executes the query in PD
(Predictive Database) and evaluates the result. Finally, the LLM
transforms the result into a natural language answer, providing
a binary decision: correct or incorrect. As the goal of this study
is to determine which LMM demonstrates the best performance,
the VA employs two available LLMs for comparison: llama3.1 and
qwen2.5-coder:14b. We intentionally used only our internal server
running Ollama with two robustly configured models, omitting any
external models to avoid information leakage and ensure controlled
integration without internet access.

4 Methodology
With the solution concept well defined, we proceed to the next
steps planned to execute the experiments aimed at evaluating the

solution, primarily focusing on the performance of LLMs in the ver-
ification process. The method proposed in this article is explained
below: 1) Dataset: It consists of 500 images, with 250 containing
correct technical information and the remaining 250 containing
incorrect information. This means we have a small dataset, but it is
balanced in terms of quantity; 2) ITR-e-LLM development: A tool
to review image tests embedded in mobile software was developed
using the Python programming language, leveraging gemma3:27b,
llama3.1, and qwen2.5-coder:14b. To ensure the accuracy of Python
code generation for database querying, specific examples were in-
corporated into the architecture. Additionally, adjustments were
made to the prompts, and a more precise context was introduced
to minimize the variability in the responses. Five-shot prompting
was utilized, employing the Llama3.1:8b and Qwen2.5-coder:14b
models. The temperature parameter (random seed) was set to 0
to minimize randomness in the outputs; 3) Validation and Eval-
uation: It consists to execute the tool using each llama3.1 and
qwen2.5-coder:14b for test verification. The collected data are then
summarized and analyzed. Additionally, some metrics are used to
evaluate the performance of each verification LLM.

The machine configuration setup for running LLM verification
includes an 8-core CPU, 48GB of RAM, a 40GBGPU, and a 1TB ROM
disk. The experiments follow the 5-fold cross-validation procedure
described in [5] , where the testing is performed with splits pre-
selected (100 images chosen randomly, not balanced) to eliminate
cases of images from the same dataset appearing in the testing set
in the same fold. For images splits we execute the VA for each LLM
verification.

To evaluate LLMs performance we adopted the metrics used in
[2], where logical accuracy is Acclf = Nlf/N and execution accuracy
is Accex = Nex/N, N is the total number of images, Nlf is the number
of queries that have an exact string match with the ground truth
query, and Nex represents the number of queries that, when exe-
cuted, produce the correct outcome. Additionally, the performance
of the binary classification model’s results was evaluated by MCC
[4].

5 Results
After analyzing experiment results, some technical questions were
formulated to determinate the best LLM for image review. RQ1.



Validation of Image Content Using LLMs and RAGs: A Strategy
for Ensuring Compliance in Software Testing SAST’25, September 22–26, 2025, Recife, PE

What is the feedback after applying the selected LLMs to the avail-
able dataset for software image review? RQ2. Which LLM per-
formed better? RQ3. What are the possible ways to improve per-
formance and efficiency for selected LLM?

Table 1: Metrics (%)

Model Med Accex Med Acclf Med MCC
Llama3.1 94.6 92.4 90.5
Qwen2.5-coder(14b) 95.5 93.6 93.6

RQ1: After applying the selected LLMs, the experience indicates
that both models performed well in terms of execution and logical
accuracy, as shown in Table 1. However, there were variations
in performance across different experiments, and after analyzing
the logs extracted from each fold, some challenges were observed:
1. Model and code extraction errors: The highest number of
errors was found during the extraction of the model and image
code during the fourth fold. This suggests that the LMM used to
extract text from images had difficulty interpreting some technical
images. 2. Server disconnection issues: There were instances of
server disconnection during some folds, demonstrating a potential
reliability issue in the verification process. 3. Syntax Errors in
GeneratedCode: Two syntax errors were found in the Python code
generated solely by LLaMA3.1, indicating that LLaMA3.1 requires
refinement to generate syntactically correct code.

RQ2: Based on the metrics, Qwen2.5-coder:14b performed better
than Llama3.1. Acclf: Qwen2.5-coder:14b achieved a median of
93.6%, compared to Llama3.1’s 92.4%. Accex:Qwen2.5-coder:14b
scored a median of 95.6%, while Llama3.1 scored 94.6%. MCC:
Qwen2.5-coder:14b had a higher median of 93.6%, compared to
Llama3.1’s 90.5%. This indicates that Qwen2.5-coder:14b demon-
strated more reliable and consistent performance across the metrics.

RQ3: The strategy can be: 1. Improve Image Text Extraction:
Invest in more robust technique or fine-tune the model specifically
to reduce errors in the fourth fold. 2. Handling Server Disconnec-
tions: Implement mechanism to ensure continues server connec-
tivity during the verification process. 3. Syntax Error Reduction:
Fine-tune Llama3.1 to check syntax errors in generated code, includ-
ing more examples to generate python code during training phase.
Prompt engineering: Refine prompts and context to reduce vari-
ability and improve code generation and verification results. Larger
Dataset Testing: Evaluate the ITR-e-LLM performance on larger
dataset to ensure representative testing folds, reducing the risk of
biased results.

6 Conclusion and Future works
ITR-e-LLM architecture was created to compare two verification
LLMs within image review process for mobile software test. The
approach involved stratifying text [product, code] into 5-fold cross-
validation procedure, converting the text to Python code, and exe-
cuting this code in database. The database results are then trans-
formed into binary natural language answers, indicating whether
test image was correct or incorrect. The experiments were done
to determine which model demonstrates superior performance,
calculating Logical Accuracy (Acclf) , Execution Accuracy (Accex)

and Mathew Correlation Coefficient (MCC) metrics on both se-
lected LLMs. Qwen2.5-coder:14b outperformed Llama3.1 across all
metrics, demonstrating high reliability and consistency, achieving
median MCC of 93.6%, median Accex of 95.5% and median Acclf of
93.6%. Challenges identified during the experiments such as image
extraction errors, server disconnections issue, and syntax issues in
generated Python code highlight areas for improvement.

Before this automated approach, manual verification was con-
ducted by testers who were responsible for reviewing images and
validating certification codes in a CSV database. With ITR-e-LLM,
the process becomes automatic, only requiring updates to the CSV
database whenever a new product is homologated, significantly
reducing human intervention. Initial experiments were conducted
on a limited dataset, without feedback from end-users or addi-
tional comparison with OpenCV+OCR process. Additionally, this
approach demonstrated the potential of using LLMs for mobile
software image review, providing great results and excellent in-
sights into model performance, highlighting areas for continuous
optimization. Future work should focus on enhancing image text ex-
traction, ensuring server stability, refining prompt engineering, and
expanding dataset testing to optimize performance and scalability.

ARTIFACT AVAILABILITY
ITR-e-LLM cannot be shared due to industrial restrictions and con-
fidentiality constraints.

ACKNOWLEDGMENTS
This paper is a result of the Research, Development & Innovation
Project (ASTRO) performed at Sidia Institute of Science and Tech-
nology sponsored by Samsung Eletrônica da Amazônia Ltda., using
resources under terms of Federal Law No.8.387/1991, by having
its disclosure and publicity in accordance with art.39 of Decree
No.10.521/2020.

REFERENCES
[1] Emily M Bender and Alexander Koller. 2020. Climbing towards NLU: On meaning,

form, and understanding in the age of data. In Proceedings of the 58th annual
meeting of the association for computational linguistics. 5185–5198.

[2] Vanessa Câmara, Rayol Mendonca-Neto, André Silva, and Luiz Cordovil-Jr. 2023.
DBVinci–towards the usage of GPT engine for processing SQL Queries. In Pro-
ceedings of the 29th Brazilian Symposium on Multimedia and the Web. 91–95.

[3] Peter Baile Chen, Fabian Wenz, Yi Zhang, Devin Yang, Justin Choi, Nesime Tatbul,
Michael Cafarella, Çağatay Demiralp, and Michael Stonebraker. 2024. BEAVER:
an enterprise benchmark for text-to-sql. arXiv preprint arXiv:2409.02038 (2024).

[4] Davide Chicco and Giuseppe Jurman. 2020. The advantages of the Matthews
correlation coefficient (MCC) over F1 score and accuracy in binary classification
evaluation. BMC genomics 21 (2020), 1–13.

[5] André Ramos Fernandes Da Silva, Lucas Marcondes Pavelski, Luiz Alberto
Queiroz Cordovil Júnior, Paulo Henrique De Oliveira Gomes, Layane Menezes
Azevedo, and Francisco Erivaldo Fernandes Junior. 2022. An evolutionary search
algorithm for efficient ResNet-based architectures: a case study on gender recog-
nition. In 2022 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1–10.

[6] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia,
Jingjing Xu, Zhiyong Wu, Tianyu Liu, et al. 2022. A survey on in-context learning.
arXiv preprint arXiv:2301.00234 (2022).

[7] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai,
Jiawei Sun, MengWang, and Haofen Wang. 2024. Retrieval-augmented generation
for large language models: A survey, 2024. URL https://arxiv. org/abs/2312.10997
(2024).

[8] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al.
2020. Retrieval-augmented generation for knowledge-intensive nlp tasks. Advances
in neural information processing systems 33 (2020), 9459–9474.


	ABSTRACT
	1 Introduction
	2 Contextualization
	3 Proposal
	4 Methodology
	5 Results
	6 Conclusion and Future works
	REFERENCES

