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Abstract-
This paper presents lhe EPOS approach to bring object-oriented op­

erating systerns closer to high performimce parallel applications. The 
gap between them originates from the complexity of assembling an op­
erating system out of a complex collection of complex classes. EPOS 
aims to deliver, whenever possible automatically, a customized runtime 
support system for each application. In arder to achieve this, EPOS 
introduces the concepts of scenario-independent system abstractions, s­
cenario adapters and inftated interfaces. An application designed and 
implemented following lhe guidelines behind these concepts can be sub­
mitted to a tool that will proceed syntactical and data flow analysis to 
cxtract a blueprint for lhe operating system. This blueprint is then re­
fined by dependency analysis against information about tbe execution 
scenar-io acquired from lhe user via visual tools. Tbe outcome of tbis 
process is a set of selective realize keys tbat will support the generation 
of the application-oriented operating system. 

Keywords- Object-oriented operating systerns, parallel operating 
systcms, high performance computing. 

I. INTRODUCTION 

Until some years ago, high performance was an attribute 
associated basically to platforms running scientific compu­
tations and databases. Nowadays, more and more applica­
tions demand for such platforms: virtual reality, Web servers 
and even embedded systems are pushing hardware and sup­
port software for parallelism. In this context, many research 
projects are trying to produce low overhead operating sys­
tems that do not impact applications as much as their all­
purpose relatives. 

Our experiences developing runtime support systems for 
parallel applications [SP94b] convinced us that adjectives 
such as "all-purpose" and "generic" do not fit together with 
"high performance" and "parallel", whereas different parai­
lei applications have quite different requirements regarding 
the operating system. Even apparently ftexible designs, like 
J.L-kernel based operating systems, may imply in waste o f re-
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sources that otherwise could be used by applications. These 
observations regarding parallel applications must also hold 
for any application demanding non-conventional support ser­
vices. Therefore, each application must have its own ruo­
time support system, specifically designed and implemented 
to satisfy its requirements (and nothing but its requirements). 

This paper presents the EPOS approach to deliver a high 
performance, application-oriented operating system to each 
parai lei application. The following sections describe the mo­
tivation for EPOS, its fundamentais, its design and its imple­
mentation. Afterwards, some preliminary results are present­
ed together with an outline for the project continuation. 

11. MOTIVATION FOR EPOS 

Automatic tailoring an operating system for a given appli­
cation is a challenging task that starts with the fabrication of 
the building blocks that will be used to assemble the operat­
ing system. A straightforward approach to conceive building 
blocks is to take on object orientation and its corresponding 
tools. In this case, reusable operating system building block­
s are implemented by classes and are stored in a repository 
(often a class library). This approach does not produce an 
operating system, but a collection of classes that can be spe­
cialized and combined to yield a variety of operating system­
s. 

Although effective, the development of operating systems 
based on object-oriented building blocks brings along a new 
issue: how to put the building blocks together. The intrinsic 
nature of this approach also gives rise to a gap between that 
what the building blocks repository offers and that what the 
application programmers are looking for. Paradoxically, this 
gap grows proportionally to the system evolution, since the 
most the system evolves, the larger is the number of eompo­
nents in the repository and the more complex they are (due 
to an increase in the abstraction levei). 

Expecting an application programmer to browse a class 
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repository to select and adapt (by aggregation or inheritance) 
the classes that would conduct to the best, or at least to a 
good, operating system for his application is not realistic. E­
POS main goal is to automate the process of selecting and 
adapting building blocks to yield an application-oriented op­
erating system. 

EPOS is actually an extension of the PURE [SSPSS98] 
family based operating system, since PURE supplies the 
building blocks that EPOS utilizes to assemble application­
oriented operating systems. The approach followed by PURE 
is to understand an opcrating system as a program fami­
ly [Par79] and to use object orientation [Weg86] as the funda­
mental implementation discipline. PURE building blocks are 
implemented as C++ classes and are designed to be portable 
and not to incur in unnecessary overhead. Therefore, PURE 
classes are ideal to construct any sort of operating system. 

However, PURE has not been conceived to be used by ap­
plication programmers. As an example of the complexity 
of generating an operating system out of PURE classes, let 
us consider a simple nucleus to support preemptive multi­
thrcading in a C 167 p,-controller: the nucleus would bc com­
prised by more than I 00 classes exporting o ver 600 method­
s [BGP+99]. Although the resulting nucleus would not be 
largcr than 4 Kbytes, generating it is not a trivial task. 

Ill. FUNDAMENTAL$ OF EPOS 

In order to deliver application-oriented operating systems, 
EPOS adhere to the following guidelines: 

• High performance: EPOS shall give each application its 
own runtime support system, which shall include only 
those components that are really necessary to support 
it. Operating system components shall be as adaptable 
as possible, thus granting the lowest possible overhead. 
Besides implying in tools to analyze and generate the 
operating system, this goal also demands for a compre­
hensive repository of system components. 

• lnvisibility: when requested to support thc execution of 
parallel applications formerly implemented to run on a 
UNIX system, specially those conforming to the MPI s­
tandard for message passing, EPOS shall support them 
without being visible, i.e., without requiring any modi­
fication in the application 's source code. Invisibility is 
achieved in EPOS by supporting some UNIX APls, in­
cluding runtime libraries (libc, libm, libstdc++ 
and libf2c), POSIX file handling, and MPI. Howev­
er, as EPOS does not share any development aspect with 
UNIX, most of its invisibility is gained by either port­
ing libraries or implementing abstraction layers. For 
instance, POSI X is supported by stubs that redirect file 
operations to a file server running on an UO node, and 
a subset of MPI is supported as an interface on top of 
EPOS communication abstractions. The little scientific 

character of this goal gives it a low priority. 
• Static configuration: guided by the high performance 

goal of EPOS, we decided that static configuration will 
have priority over dynamic. This decision arises from 
thc fact that very few dynamic reconfigurations, in a 
high performance scenario, pay off the overhead to sup­
porl lhem. Even lhe adoplion of a dynamic prolotype 
lhal would collect information about an ideal static sys­
lcm configuration has been suppressed, sincc the intrin­
sic overhead o f a dynamic system would distort the fig­
ures for lhe slalic one. Instead, EPOS shall take on pro­
filing to enable static rcconfiguration towards thc opti­
mal. 

• Parallclism in distributed memory architeclures: EPOS 
shall exlend PURE to include abstractions to support 
parallel compuling in distributed memory architcctures. 
This is an open goalthat starts with the definition of ab­
straclions for processes, synchronization and communi­
cation and shall evolve with applications. 

IV. DESIGN OF EPOS 

EPOS has been designed to reduce the gap between PURE 
building blocks and parallel applications. Howevcr, dif­
ferently from PURE, that adopts the program families de­
sign strategy and relies on object orientation solely as an 
implementation discipline, EPOS follows the fundamentai­
s of object-oriented design as proposed by Booch [Boo94]. 
The design strategy of EPOS defines three main elements: 
scenario-independent system abstractions, scenario adapter­
s, and injfated interfaces. The two first elements tackle the 
gap by hiding PURE building blocks and by supporting an 
efficient way to construct application-ready systcm abstrac­
tions; the third element exports the system abstraction rcpos­
itory in a fashion tractable by application programmers. 

A. Scenario-independent System Abstractions 

By o bserving PURE class repository, we concluded that 
severa I classes are noto f interestto application programmers. 
Moreover, we concluded that, differently from an application 
programmer, a system programmer could easily configure a 
bulk of application-ready classes. In EPOS, we name these 
application ready classes system abstractions and we define 
that it is due to the system development team to construct 
them. This definition, besides establishing a clear boundary 
between PURE and EPOS, will render a system abstractions 
repository with fewer components than the respective PURE 
building blocks repository. 

In tum, when we analyzed our first abstractions, we ob­
served that those designed to present the same functionali­
ty in different execution scenarios are indeed quite similar. 
Moreover, abstractions conceived to support the same sce­
nario often differ from each other following a pattern. For 
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instance, two rhread abstractions, one targeting a single-task 
and thc other a multi-task environment, present severa! sim­
ilarities. Likewise, a rhread abstraction targeting a multi­
processor scenario reveals synchronization mechanisms that 
can also be found in the mailbox abstraction, since invok­
ing methods of both abstractions implies in synchronizing 
eventual parallel invocations (from differcnt processors). In 
this way, we propose system abstractions to bc implement­
ed as independent from the execution scenario as possible. 
These adaptable and scenario-independent system abstrac­
tions would then be put together with the aid of some sort 
o f "glue" specific to each scenario. We named these "glues" 
scenario adapters, since they will adapt an existing system 
abstraction to a ccrtain execution sccnario. 

8. Scenario Adapters 

Being able to design and implement sccnario-independent 
system abstractions gives us a chance to considerably save 
development time, since many system abstraction can now 
bc reused in different cxecution scenarios. However, writing 
aspect independent abstractions and adapting them to new s­
cenarios is everything but trivial. So far, we succeeded in 
adapting system abstractions to specific execution sccnarios 
by wrapping them with scenario adapters. Actually, scenario 
adaptcrs are not restricted to wrap system abstractions; they 
can also wrap, when necessary, lower levei building block­
s. With this strategy we have implemented, for example, a 
thread abstraction that can be adapted to be used with sin­
gle or with multiple address spaces, that can be linked to the 
application or integrate a J..L-kcrnel, and that supports eithcr 
local or remote invocation. 

In general, aspects such as application/operating system 
boundary crossing, concurrent invocation synchronization, 
remote object invocation, dcbugging and profiling can be 
easily modeled with the aid o f scenario adapters, thus making 
system abstractions, even if not for complete, independent 
from execution sccnarios. 

The approach to write pieces of software that are inde­
pendent from certain aspects and !ater adapt them to a given 
scenario has been referred to as Aspect-Oriented Program­
ming [KLM+97]. We refrain from using this expression bc­
cause for EPOS, differently from AOP, factors such as lan­
guages to describe aspects and tools to automatically adapt 
components (weavers) are irrelevant. If ever present in E­
POS , AOP would give means, not goals. Currently, scenario 
adapters are implemented in EPOS using the same language 
used to implemen~ system abstractions, and mosto f them are 
implemented by hand. 

C. /nftated lnteifaces 

The combination o f scenario-independent system abstrac­
tions and scenario adapters reduces the number of compo-

nents in the system abstraction repository, yields application­
ready abstractions and enables the automatic generation of 
new abstractions. However, this is no t enough to bring the 
process of operating system construction to the application 
programmer levei. In EPOS, this task is due to a set of auto­
matic tools, in such a way that application programmers are 
no longer requested to browse repositories and to special­
ize or combine classes. The concept of inftated inteifaces 
cnables these tools and gives programmers a better way to 
express their applications' needs. 

An EPOS inftated inteiface embraces most of the consen­
sual definitions for a system abstraction. It is infiated bc­
cause it brings together not a single view of the abstraction 
it exports, but a collection of its most usual representation­
s. Examples of infiated interfaces are thread, task, address 
space and communication channel. The infiated interface for 
the thread abstraction gathers severa! different views of it, 
including, for example, pthreads and native P URE thread­
s. Multiple interfaces for an abstraction are only introduced 
when incoherent views have to be exported. EPOS infiat­
ed interfaces are extracted from classical computcr science 
books and system manuais, nevertheless, our users, i.e., ap­
plication programmers, are welcome to suggest modifica­
tions or extensions at any time. 

The adoption of inflated interfaces for system abstractions 
enables the application programmer to express his expecta­
tions regarding the operating system simply by writing down 
well-known system object invocations (system calls in non 
object-oriented systems). It is important to notice that in­
fiated interfaces are mere tools to expor! system abstractions. 
They are never implemented as they are seen by the program­
mer, i.e., as a single class, but as a set of scenario specific 
classes. When configuring the system, each infiated interface 
is bound to one o f its scenario specific implementations. 

D. Selective and Partia! Realize Relationships 

In order to support system design based on infiated inter­
faces, we propose two new object-oriented design notations: 
partia! realize and selecrive realize. Both notations represent 
relationships taking place between an infiated interface and a 
class that realizes that interface. However, as the name sug­
gests, a class ~articipating in a partia! realization implements 
only a specific subset o f the corresponding inflated interface. 
In this scope, selective realization means that only one of 
severa) possible realizations is connected to the inflated in­
terface at a time. These two design notations are depicted in 
figure I . 

Each class joining a selective realize relationship is tagged 
with a key. By defining a value for this key, a specific, usually 
partia!, realization for that interface is selected. However, 
during system design, these keys are not supposed to assume 
any value, so that an inftated interface is considered to be 
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<<Interface>> 
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Fig. I . Panial realize (a) and selective realize (b) rclationships. 

bound to any of its realizations. The definition of selective 
realize keys are due the operating system generator and are 
not considered at design time. 

Partial and selective realize design notations have their 
counterparts for system implementation, so that configuring 
an operating system can be done simply by defining values 
for selective realize keys. These keys are defined in a sin­
g le configuration file and make conditional compilations and 
"makefile" customizations o bsolete. Furthermore, the imple­
mentation of these relationships may be used to bind non 
object-orie'nted inflated interfaces to object-oriented imple­
mentations. This is useful, for instance, to bind an applica­
tion written in Fortran or C to EPOS. 

V. IM PLEMENTATION OF EPOS 

With the design techniques described earlier, we can now 
consider the automatic generation of an application-oriented 
operating system. Our strategy begins top-down at the ap­
p lication, when the programmer implicitly specifies the op­
erating system requirements simply by designing and coding 
his application while referring to the set of inflated interfaces 
that exports the system abstractions repository. An applica­
tion designed and implemented in this fashion can then be 
submitted to an analyzer (figure 2) that will conduct syntac­
tical and data flow investigations to determine which system 
abstractions are really necessary and how they are invoked. 
The outcome of this analysis is a blueprint for the operat­
ing system to be constructed, and will define, for instance, 
the use of multi-tasking instead of single-tasking, o f multi­
threading instead of single-threading, of protected address s­
paces instead of a single unprotected address space and so 
on. 

Our primary operating system blueprint is, unfortunately, 
not complete, since there are aspects that cannot be deduced 
while analyzing the application. For example, the decision of 
whether the operating system will include support for multi-

Application Code 

code • new Segment(bufler, size) 
task • new Task(code, data): 
thread E new Thread(task, &entry 

priority. SUSP. args): 
mutex·>entry(): 
Mallbox mailbox » message: 
message » file; 

• 
• 

Fig. 2. Extracting an operating system blueprint. 

tasking or not, cannot be made based only on the application. 
Thc fact that the application does not show any evidence that 
multiple processes may need to run concurrently in a sin­
gle processor does not necessarily mean that this situation 
will not occur. The multi-tasking support may be required 
becausc the applicat ion needs more processors than what is 
avai lable. Severa( other relevant factors are often not ex­
pressed inside the application and therefore we still need user 
intervention to describe the application 's execution scenario. 
However, in EPOS , the description o f available resources is 
due to the operating system development team and the inter­
action with the user is done through visual tools. 

Refining thc operating system blueprint, by way o f depen­
dency analysis while taking in consideration the context in­
formation acquired from the user, renders a much more pre­
cise description o f how the ideal operating system for a given 
application should look like. This refined blueprint can now 
be used to bind the inflatcd interfaces referred in the applica­
tion to scenario specific implementations. For example, the 
inflated thread interface from the first step may have included 
remote invocation and migration, but reached the final step as 
a simple single-task, priority-scheduled thread for a certain 
IL-controller. The organ ization o f an application-oriented op­
erating system generated according to this model is depicted 
in the figure 3. 

It is important to understand that, at the early stages o f the 
operating system developmcnt, very often a requircd system 
abstraction will not yet be available. Even then, the proposed 
strategy is of great value, since the operating system develop­
ers get a precise description for the missing system abstrac­
tions. In many cases, a missing system abstraction will be 
quickly (automatically) adapted from another'Scenario using 
the scenario adapters described earlier. 

Only i f the operating system developers are not able to de­
li ver the requested system abstractions in a time considered 
acceptable by the user, either because a system abstraction 
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Fig. 3. Organization of an application tailored EPOS. 

with that functionality have not yet been implemented for 
any scenario, or because the requested scenario is radical­
ly different from the currently supported scenarios, the user 
will be asked to select the best option from the available set 
of system abstractions (scenario adapters) and to adapt his 
program. In this way, our strategy ends where most config­
urable operating systems begin. Moreover, after some de­
velopment effort, the combination of scenario adapters and 
system abstractions shall satisfy the big majority of parallel 
applications. 

VI. PRELIMI NARY RESULTS 

So far we have implemented severa! system abstractions 
and scenario adapters that have been put together to assem­
ble a few application-oriented operating systems. Perhaps, 
the most interesting example we can now cite is a commu­
nication channel implemented for our c_luster of SMP PCs 
interconnect by a Myrinet network [FSP98]. Very often we 
face the assertion that moving communication to user levei 
alone can bring the figures for communication close to the 
best. However, this affirmation is usually stated in disregard 
to the restrictions imposed by ordinary operating systems, 
like Unix and Windows NT. These systems always operate 
in multi-task mode, requiring the memory to be paged and 
avoiding the direct use of DMA to transfer a user message 
from host memory to the memory in the network adapter. A 
copy to a contiguously allocated buffer or the translation of 
addresses (for each memory page) has to be carried out. 

However, i f we consider parallel applications, which usu­
ally run on a single-task-per-node basis, the multi-task "fea­
ture" of the operating system turns into pure overhead. For 
multi-threaded applications, the situation is even worse, be­
cause the pipeline implemented by the most efficient user­
level communication packages for Myrinet running on U­
nix [PT98, THIS97]. which should hide the extra message 
copy overhead,loses its effectiveness when the pipeline stage 
responsible for the copy concurs with other threads for the 
memory bus. 

We measured performance o f the same communication ab-

straction in two execution scenarios: single-task and multi­
task. The communication abstraction is the same in both cas­
es, but a scenario adapter that performs a copy to a temporary 
buffer wraps it in the second case. The figures for sending 
messages from one node to another are depicted in figures 4 
and 5, and show a difference, in favor o f the single-task con­
figuration, of about 22% for messages of 16 bytes and 46% 
for 64 Kbytes messages. Besides demonstrating the feather­
weight structure o f EPOS, this example shows that it is worth­
while to give each application its own operating system. 
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Fig. 4. Time to senda message in EPOS. 
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Fig. 5. Send bandwidth in EPOS. 

VII. RELATED WORK 

Severa! research projects aim to detiver operating systems 
that can be configured to better support a given application. 
They usually follow one o f two strategies: kernel extensions 
or component based system construction. We discuss some 
of these projects according to the strategy they follow. 
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Operating system kernel extensions are usually accom­
plished by a J.L-kernel , which implements a small set of 
functionality, and by a mechanism that enables applica­
tions to extend its functionality according to their needs. 
SPIN [BSP+9s] supports system functions, written in a spe­
cific language, to be safely downloaded into the kernel from 
any application. YtNO [SESS96) supports application code 
to run in the kernel address space and uses software fault iso­
lation as a safety mechanism to avoid malicious extensions. 
EXOKERNEL [EKJ95] focuses on the separation of protec­
tion and management so that physical resources are securely 
exported to be managed by applications at user-level. 

Projects in the second alternative, component based con­
struction, usually relies on an object-oriented framework that 
supports system construction from a set of reusable classes. 
CHOICES [CJR87), one of the pioneers with this strategy, 
demonstrated the viability to build complex operating sys­
tems in an object-oriented framework. PEACE [SP94a] fol­
lows a family based design to implement an operating system 
family that comprise members to deal with specific classes of 
parallel applications. FLUX [FBB+97] abolishes the "core of 
functionality" and defines a framework in which a large set 
o f components can be used to assemble an operating system. 

EPOS approach is orthogonal to the monolith/J.L­
kernelllibrary organization, since a proper organization can 
be selected for each system. Just like in FLUX, the concept 
of a core of functionality is absent in EPOS. It differs from 
SPIN, Y!NO, EXOKERNEL and FLUX in the sense it aims to 
detiver application-ready operating systems, while these sys­
tems only support constructing them. Similarly to CHOIC­
ES and PEACE, EPOS defines an object-óriented framework, 
however, since it benefits from PURE fine-grain building 
blocks to implement its system abstractions, EPOS frame­
work supports the construction of true appl ication-oriented 
operating systems. 

VIII . FURTHER WORK 

The strategy to generate application-oriented operating 
systems proposed by EPOS can drastically improve applica­
tion performance, because applications get only the operat­
ing system components they really need, and also because 
these components are fine-tuned to the aimed execution sce­
nario. However, our strategy is not able to deliver an oprima/ 
operating system. Consider, for instance, the decision for 
a thread scheduling policy: severa) thread implementations, 
with different scheduling policies, may fit into the blueprint 
extracted by our tools, as long as they match the selected 
interfaces and satisfy the dependencies. Nevertheless, it is 
unnecessary to say that there is an optimal scheduling policy 
for a given set o f threads running in a given scenario. 

The decision o f which variant o f a system abstraction to s­
elect when severa! accomplish the application 's requirements 

is, in the current system, arbitrary. Further development of 
EPOS shall include pro.filing primitives to collect runtime s­
tatistics. These statistics will then drive operating system re­
configurations towards the optimal. To grant an oprima/ sys­
tem, however, would imply in formal specification and vali­
dation of our system abstractions, what is not in the scope o f 
EPOS. 

IX . CONCLUSION 

In this paper we presented the EPOS approach to deal with 
the gap between object-oriented operating systems, specifi­
cally PURE, and high performance parallel applications. E­
POS utilizes PURE building blocks to implemcnt a set of 
scenario-independent system abstractions that can be adapt­
ed to a given execution scenario with the aid of scenario 
adapters. These abstractions are collected in a repository 
and are exported to the application programmers via inftat­
ed interfaces. This strategy, besides drastically reducing the 
number of exported abstractions, enables the programmers 
to easily express their application 's requirements in regard to 
the operating system. 

An application designed and implemented according to 
the strategy proposed in this paper can be submitted to a 
tool that proceeds syntactical and data flow analysis to ex­
tract a blueprint for the operating system to be generated. 
The blueprint is then refined by dependency analysis against 
information about the execution scenario acquired from the 
user via visual tools. The outcome of this process is a set 
of selective realize keys that supports the compilation of the 
application-oriented operating system. 

The results obtained so far demonstrate the viability of 
constructing application-oriented operating systems and al­
so the benefits an application can get by running on its own 
system. However, EPOS is now closer to its beginning than 
to its end: we have quite few scenario adapters implemented 
and the tools described in this paper are under construction. 
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