
SBA C-PAD '99 11th Symposium on Compute r Architecture and High Performance Computing - Natal - Brazil 3

High Performance Application-Oriented
Operating Systems- the EPOS Approach*

Antônio Augusto Frohlich 1, Wolfgang Schroder-Preikschat2

1 GMDFIRST
Rudower Chaussee 5

12489 Berlin, Gcrrnany
guto@first.grnd.de

2 University of Magdeburg
Universiltitsplatz 2

39106 Magdeburg. Germany
wosch@cs.uni-magdeburg.de

Abstract-
This paper presents lhe EPOS approach to bring object-oriented op­

erating systerns closer to high performimce parallel applications. The
gap between them originates from the complexity of assembling an op­
erating system out of a complex collection of complex classes. EPOS
aims to deliver, whenever possible automatically, a customized runtime
support system for each application. In arder to achieve this, EPOS
introduces the concepts of scenario-independent system abstractions, s­
cenario adapters and inftated interfaces. An application designed and
implemented following lhe guidelines behind these concepts can be sub­
mitted to a tool that will proceed syntactical and data flow analysis to
cxtract a blueprint for lhe operating system. This blueprint is then re­
fined by dependency analysis against information about tbe execution
scenar-io acquired from lhe user via visual tools. Tbe outcome of tbis
process is a set of selective realize keys tbat will support the generation
of the application-oriented operating system.

Keywords- Object-oriented operating systerns, parallel operating
systcms, high performance computing.

I. INTRODUCTION

Until some years ago, high performance was an attribute
associated basically to platforms running scientific compu­
tations and databases. Nowadays, more and more applica­
tions demand for such platforms: virtual reality, Web servers
and even embedded systems are pushing hardware and sup­
port software for parallelism. In this context, many research
projects are trying to produce low overhead operating sys­
tems that do not impact applications as much as their all­
purpose relatives.

Our experiences developing runtime support systems for
parallel applications [SP94b] convinced us that adjectives
such as "all-purpose" and "generic" do not fit together with
"high performance" and "parallel", whereas different parai­
lei applications have quite different requirements regarding
the operating system. Even apparently ftexible designs, like
J.L-kernel based operating systems, may imply in waste o f re-

• This research bas been partially supponed by Federal University o f
Santa Catarina, by CAPES Foundation grant no. BEX 1083/96- 1 and by
Deutsche Forscbungsgemeinschaft grant no. SCHR 603/1-1.

sources that otherwise could be used by applications. These
observations regarding parallel applications must also hold
for any application demanding non-conventional support ser­
vices. Therefore, each application must have its own ruo­
time support system, specifically designed and implemented
to satisfy its requirements (and nothing but its requirements).

This paper presents the EPOS approach to deliver a high
performance, application-oriented operating system to each
parai lei application. The following sections describe the mo­
tivation for EPOS, its fundamentais, its design and its imple­
mentation. Afterwards, some preliminary results are present­
ed together with an outline for the project continuation.

11. MOTIVATION FOR EPOS

Automatic tailoring an operating system for a given appli­
cation is a challenging task that starts with the fabrication of
the building blocks that will be used to assemble the operat­
ing system. A straightforward approach to conceive building
blocks is to take on object orientation and its corresponding
tools. In this case, reusable operating system building block­
s are implemented by classes and are stored in a repository
(often a class library). This approach does not produce an
operating system, but a collection of classes that can be spe­
cialized and combined to yield a variety of operating system­
s.

Although effective, the development of operating systems
based on object-oriented building blocks brings along a new
issue: how to put the building blocks together. The intrinsic
nature of this approach also gives rise to a gap between that
what the building blocks repository offers and that what the
application programmers are looking for. Paradoxically, this
gap grows proportionally to the system evolution, since the
most the system evolves, the larger is the number of eompo­
nents in the repository and the more complex they are (due
to an increase in the abstraction levei).

Expecting an application programmer to browse a class

4 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

repository to select and adapt (by aggregation or inheritance)
the classes that would conduct to the best, or at least to a
good, operating system for his application is not realistic. E­
POS main goal is to automate the process of selecting and
adapting building blocks to yield an application-oriented op­
erating system.

EPOS is actually an extension of the PURE [SSPSS98]
family based operating system, since PURE supplies the
building blocks that EPOS utilizes to assemble application­
oriented operating systems. The approach followed by PURE
is to understand an opcrating system as a program fami­
ly [Par79] and to use object orientation [Weg86] as the funda­
mental implementation discipline. PURE building blocks are
implemented as C++ classes and are designed to be portable
and not to incur in unnecessary overhead. Therefore, PURE
classes are ideal to construct any sort of operating system.

However, PURE has not been conceived to be used by ap­
plication programmers. As an example of the complexity
of generating an operating system out of PURE classes, let
us consider a simple nucleus to support preemptive multi­
thrcading in a C 167 p,-controller: the nucleus would bc com­
prised by more than I 00 classes exporting o ver 600 method­
s [BGP+99]. Although the resulting nucleus would not be
largcr than 4 Kbytes, generating it is not a trivial task.

Ill. FUNDAMENTAL$ OF EPOS

In order to deliver application-oriented operating systems,
EPOS adhere to the following guidelines:

• High performance: EPOS shall give each application its
own runtime support system, which shall include only
those components that are really necessary to support
it. Operating system components shall be as adaptable
as possible, thus granting the lowest possible overhead.
Besides implying in tools to analyze and generate the
operating system, this goal also demands for a compre­
hensive repository of system components.

• lnvisibility: when requested to support thc execution of
parallel applications formerly implemented to run on a
UNIX system, specially those conforming to the MPI s­
tandard for message passing, EPOS shall support them
without being visible, i.e., without requiring any modi­
fication in the application 's source code. Invisibility is
achieved in EPOS by supporting some UNIX APls, in­
cluding runtime libraries (libc, libm, libstdc++
and libf2c), POSIX file handling, and MPI. Howev­
er, as EPOS does not share any development aspect with
UNIX, most of its invisibility is gained by either port­
ing libraries or implementing abstraction layers. For
instance, POSI X is supported by stubs that redirect file
operations to a file server running on an UO node, and
a subset of MPI is supported as an interface on top of
EPOS communication abstractions. The little scientific

character of this goal gives it a low priority.
• Static configuration: guided by the high performance

goal of EPOS, we decided that static configuration will
have priority over dynamic. This decision arises from
thc fact that very few dynamic reconfigurations, in a
high performance scenario, pay off the overhead to sup­
porl lhem. Even lhe adoplion of a dynamic prolotype
lhal would collect information about an ideal static sys­
lcm configuration has been suppressed, sincc the intrin­
sic overhead o f a dynamic system would distort the fig­
ures for lhe slalic one. Instead, EPOS shall take on pro­
filing to enable static rcconfiguration towards thc opti­
mal.

• Parallclism in distributed memory architeclures: EPOS
shall exlend PURE to include abstractions to support
parallel compuling in distributed memory architcctures.
This is an open goalthat starts with the definition of ab­
straclions for processes, synchronization and communi­
cation and shall evolve with applications.

IV. DESIGN OF EPOS

EPOS has been designed to reduce the gap between PURE
building blocks and parallel applications. Howevcr, dif­
ferently from PURE, that adopts the program families de­
sign strategy and relies on object orientation solely as an
implementation discipline, EPOS follows the fundamentai­
s of object-oriented design as proposed by Booch [Boo94].
The design strategy of EPOS defines three main elements:
scenario-independent system abstractions, scenario adapter­
s, and injfated interfaces. The two first elements tackle the
gap by hiding PURE building blocks and by supporting an
efficient way to construct application-ready systcm abstrac­
tions; the third element exports the system abstraction rcpos­
itory in a fashion tractable by application programmers.

A. Scenario-independent System Abstractions

By o bserving PURE class repository, we concluded that
severa I classes are noto f interestto application programmers.
Moreover, we concluded that, differently from an application
programmer, a system programmer could easily configure a
bulk of application-ready classes. In EPOS, we name these
application ready classes system abstractions and we define
that it is due to the system development team to construct
them. This definition, besides establishing a clear boundary
between PURE and EPOS, will render a system abstractions
repository with fewer components than the respective PURE
building blocks repository.

In tum, when we analyzed our first abstractions, we ob­
served that those designed to present the same functionali­
ty in different execution scenarios are indeed quite similar.
Moreover, abstractions conceived to support the same sce­
nario often differ from each other following a pattern. For

SBA C-PAD '99 11 rh Symposium ·on Compu ter Architecture and High Peiformance Computirrg - NatC!l - Brazil 5

instance, two rhread abstractions, one targeting a single-task
and thc other a multi-task environment, present severa! sim­
ilarities. Likewise, a rhread abstraction targeting a multi­
processor scenario reveals synchronization mechanisms that
can also be found in the mailbox abstraction, since invok­
ing methods of both abstractions implies in synchronizing
eventual parallel invocations (from differcnt processors). In
this way, we propose system abstractions to bc implement­
ed as independent from the execution scenario as possible.
These adaptable and scenario-independent system abstrac­
tions would then be put together with the aid of some sort
o f "glue" specific to each scenario. We named these "glues"
scenario adapters, since they will adapt an existing system
abstraction to a ccrtain execution sccnario.

8. Scenario Adapters

Being able to design and implement sccnario-independent
system abstractions gives us a chance to considerably save
development time, since many system abstraction can now
bc reused in different cxecution scenarios. However, writing
aspect independent abstractions and adapting them to new s­
cenarios is everything but trivial. So far, we succeeded in
adapting system abstractions to specific execution sccnarios
by wrapping them with scenario adapters. Actually, scenario
adaptcrs are not restricted to wrap system abstractions; they
can also wrap, when necessary, lower levei building block­
s. With this strategy we have implemented, for example, a
thread abstraction that can be adapted to be used with sin­
gle or with multiple address spaces, that can be linked to the
application or integrate a J..L-kcrnel, and that supports eithcr
local or remote invocation.

In general, aspects such as application/operating system
boundary crossing, concurrent invocation synchronization,
remote object invocation, dcbugging and profiling can be
easily modeled with the aid o f scenario adapters, thus making
system abstractions, even if not for complete, independent
from execution sccnarios.

The approach to write pieces of software that are inde­
pendent from certain aspects and !ater adapt them to a given
scenario has been referred to as Aspect-Oriented Program­
ming [KLM+97]. We refrain from using this expression bc­
cause for EPOS, differently from AOP, factors such as lan­
guages to describe aspects and tools to automatically adapt
components (weavers) are irrelevant. If ever present in E­
POS , AOP would give means, not goals. Currently, scenario
adapters are implemented in EPOS using the same language
used to implemen~ system abstractions, and mosto f them are
implemented by hand.

C. /nftated lnteifaces

The combination o f scenario-independent system abstrac­
tions and scenario adapters reduces the number of compo-

nents in the system abstraction repository, yields application­
ready abstractions and enables the automatic generation of
new abstractions. However, this is no t enough to bring the
process of operating system construction to the application
programmer levei. In EPOS, this task is due to a set of auto­
matic tools, in such a way that application programmers are
no longer requested to browse repositories and to special­
ize or combine classes. The concept of inftated inteifaces
cnables these tools and gives programmers a better way to
express their applications' needs.

An EPOS inftated inteiface embraces most of the consen­
sual definitions for a system abstraction. It is infiated bc­
cause it brings together not a single view of the abstraction
it exports, but a collection of its most usual representation­
s. Examples of infiated interfaces are thread, task, address
space and communication channel. The infiated interface for
the thread abstraction gathers severa! different views of it,
including, for example, pthreads and native P URE thread­
s. Multiple interfaces for an abstraction are only introduced
when incoherent views have to be exported. EPOS infiat­
ed interfaces are extracted from classical computcr science
books and system manuais, nevertheless, our users, i.e., ap­
plication programmers, are welcome to suggest modifica­
tions or extensions at any time.

The adoption of inflated interfaces for system abstractions
enables the application programmer to express his expecta­
tions regarding the operating system simply by writing down
well-known system object invocations (system calls in non
object-oriented systems). It is important to notice that in­
fiated interfaces are mere tools to expor! system abstractions.
They are never implemented as they are seen by the program­
mer, i.e., as a single class, but as a set of scenario specific
classes. When configuring the system, each infiated interface
is bound to one o f its scenario specific implementations.

D. Selective and Partia! Realize Relationships

In order to support system design based on infiated inter­
faces, we propose two new object-oriented design notations:
partia! realize and selecrive realize. Both notations represent
relationships taking place between an infiated interface and a
class that realizes that interface. However, as the name sug­
gests, a class ~articipating in a partia! realization implements
only a specific subset o f the corresponding inflated interface.
In this scope, selective realization means that only one of
severa) possible realizations is connected to the inflated in­
terface at a time. These two design notations are depicted in
figure I .

Each class joining a selective realize relationship is tagged
with a key. By defining a value for this key, a specific, usually
partia!, realization for that interface is selected. However,
during system design, these keys are not supposed to assume
any value, so that an inftated interface is considered to be

6 SBAC-PAD'99 Jlth Symposium on Computer Architecture and High Performance Computing- Natal - Brazil

<<Interface>>

(a)

<<Interface>>

. ... ' ;---------, ç
•

(b)

3 -

' '

Fig. I . Panial realize (a) and selective realize (b) rclationships.

bound to any of its realizations. The definition of selective
realize keys are due the operating system generator and are
not considered at design time.

Partial and selective realize design notations have their
counterparts for system implementation, so that configuring
an operating system can be done simply by defining values
for selective realize keys. These keys are defined in a sin­
g le configuration file and make conditional compilations and
"makefile" customizations o bsolete. Furthermore, the imple­
mentation of these relationships may be used to bind non
object-orie'nted inflated interfaces to object-oriented imple­
mentations. This is useful, for instance, to bind an applica­
tion written in Fortran or C to EPOS.

V. IM PLEMENTATION OF EPOS

With the design techniques described earlier, we can now
consider the automatic generation of an application-oriented
operating system. Our strategy begins top-down at the ap­
p lication, when the programmer implicitly specifies the op­
erating system requirements simply by designing and coding
his application while referring to the set of inflated interfaces
that exports the system abstractions repository. An applica­
tion designed and implemented in this fashion can then be
submitted to an analyzer (figure 2) that will conduct syntac­
tical and data flow investigations to determine which system
abstractions are really necessary and how they are invoked.
The outcome of this analysis is a blueprint for the operat­
ing system to be constructed, and will define, for instance,
the use of multi-tasking instead of single-tasking, o f multi­
threading instead of single-threading, of protected address s­
paces instead of a single unprotected address space and so
on.

Our primary operating system blueprint is, unfortunately,
not complete, since there are aspects that cannot be deduced
while analyzing the application. For example, the decision of
whether the operating system will include support for multi-

Application Code

code • new Segment(bufler, size)
task • new Task(code, data):
thread E new Thread(task, &entry

priority. SUSP. args):
mutex·>entry():
Mallbox mailbox » message:
message » file;

•
•

Fig. 2. Extracting an operating system blueprint.

tasking or not, cannot be made based only on the application.
Thc fact that the application does not show any evidence that
multiple processes may need to run concurrently in a sin­
gle processor does not necessarily mean that this situation
will not occur. The multi-tasking support may be required
becausc the applicat ion needs more processors than what is
avai lable. Severa(other relevant factors are often not ex­
pressed inside the application and therefore we still need user
intervention to describe the application 's execution scenario.
However, in EPOS , the description o f available resources is
due to the operating system development team and the inter­
action with the user is done through visual tools.

Refining thc operating system blueprint, by way o f depen­
dency analysis while taking in consideration the context in­
formation acquired from the user, renders a much more pre­
cise description o f how the ideal operating system for a given
application should look like. This refined blueprint can now
be used to bind the inflatcd interfaces referred in the applica­
tion to scenario specific implementations. For example, the
inflated thread interface from the first step may have included
remote invocation and migration, but reached the final step as
a simple single-task, priority-scheduled thread for a certain
IL-controller. The organ ization o f an application-oriented op­
erating system generated according to this model is depicted
in the figure 3.

It is important to understand that, at the early stages o f the
operating system developmcnt, very often a requircd system
abstraction will not yet be available. Even then, the proposed
strategy is of great value, since the operating system develop­
ers get a precise description for the missing system abstrac­
tions. In many cases, a missing system abstraction will be
quickly (automatically) adapted from another'Scenario using
the scenario adapters described earlier.

Only i f the operating system developers are not able to de­
li ver the requested system abstractions in a time considered
acceptable by the user, either because a system abstraction

SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 7

Fig. 3. Organization of an application tailored EPOS.

with that functionality have not yet been implemented for
any scenario, or because the requested scenario is radical­
ly different from the currently supported scenarios, the user
will be asked to select the best option from the available set
of system abstractions (scenario adapters) and to adapt his
program. In this way, our strategy ends where most config­
urable operating systems begin. Moreover, after some de­
velopment effort, the combination of scenario adapters and
system abstractions shall satisfy the big majority of parallel
applications.

VI. PRELIMI NARY RESULTS

So far we have implemented severa! system abstractions
and scenario adapters that have been put together to assem­
ble a few application-oriented operating systems. Perhaps,
the most interesting example we can now cite is a commu­
nication channel implemented for our c_luster of SMP PCs
interconnect by a Myrinet network [FSP98]. Very often we
face the assertion that moving communication to user levei
alone can bring the figures for communication close to the
best. However, this affirmation is usually stated in disregard
to the restrictions imposed by ordinary operating systems,
like Unix and Windows NT. These systems always operate
in multi-task mode, requiring the memory to be paged and
avoiding the direct use of DMA to transfer a user message
from host memory to the memory in the network adapter. A
copy to a contiguously allocated buffer or the translation of
addresses (for each memory page) has to be carried out.

However, i f we consider parallel applications, which usu­
ally run on a single-task-per-node basis, the multi-task "fea­
ture" of the operating system turns into pure overhead. For
multi-threaded applications, the situation is even worse, be­
cause the pipeline implemented by the most efficient user­
level communication packages for Myrinet running on U­
nix [PT98, THIS97]. which should hide the extra message
copy overhead,loses its effectiveness when the pipeline stage
responsible for the copy concurs with other threads for the
memory bus.

We measured performance o f the same communication ab-

straction in two execution scenarios: single-task and multi­
task. The communication abstraction is the same in both cas­
es, but a scenario adapter that performs a copy to a temporary
buffer wraps it in the second case. The figures for sending
messages from one node to another are depicted in figures 4
and 5, and show a difference, in favor o f the single-task con­
figuration, of about 22% for messages of 16 bytes and 46%
for 64 Kbytes messages. Besides demonstrating the feather­
weight structure o f EPOS, this example shows that it is worth­
while to give each application its own operating system.

;;;
~
.,
-~
"

" ' " .,
" ,.,

ª -5
~
;.

'O

" ..
.o

70

60

50

40

30

20

10

o

120

100

80

60

40

20

4

EPOS (single-taskl
EPOS (multi-task)

;
.........

...
...

.......................... ~-----~-~---------..'
8 16 32 64 128 256 512 1K 2K 4K

message size (byees)

Fig. 4. Time to senda message in EPOS.

Single-tGsk EPOS ~
Multi-task EPOS

o L-~~~--~._~~~--~~~~~~
4 8 16 32 64 128 256 512 lK 2K 4K BK 16K 32K 6 4K

message size tbytes)

Fig. 5. Send bandwidth in EPOS.

VII. RELATED WORK

Severa! research projects aim to detiver operating systems
that can be configured to better support a given application.
They usually follow one o f two strategies: kernel extensions
or component based system construction. We discuss some
of these projects according to the strategy they follow.

8 SBAC-PAD'99 llth Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

Operating system kernel extensions are usually accom­
plished by a J.L-kernel , which implements a small set of
functionality, and by a mechanism that enables applica­
tions to extend its functionality according to their needs.
SPIN [BSP+9s] supports system functions, written in a spe­
cific language, to be safely downloaded into the kernel from
any application. YtNO [SESS96) supports application code
to run in the kernel address space and uses software fault iso­
lation as a safety mechanism to avoid malicious extensions.
EXOKERNEL [EKJ95] focuses on the separation of protec­
tion and management so that physical resources are securely
exported to be managed by applications at user-level.

Projects in the second alternative, component based con­
struction, usually relies on an object-oriented framework that
supports system construction from a set of reusable classes.
CHOICES [CJR87), one of the pioneers with this strategy,
demonstrated the viability to build complex operating sys­
tems in an object-oriented framework. PEACE [SP94a] fol­
lows a family based design to implement an operating system
family that comprise members to deal with specific classes of
parallel applications. FLUX [FBB+97] abolishes the "core of
functionality" and defines a framework in which a large set
o f components can be used to assemble an operating system.

EPOS approach is orthogonal to the monolith/J.L­
kernelllibrary organization, since a proper organization can
be selected for each system. Just like in FLUX, the concept
of a core of functionality is absent in EPOS. It differs from
SPIN, Y!NO, EXOKERNEL and FLUX in the sense it aims to
detiver application-ready operating systems, while these sys­
tems only support constructing them. Similarly to CHOIC­
ES and PEACE, EPOS defines an object-óriented framework,
however, since it benefits from PURE fine-grain building
blocks to implement its system abstractions, EPOS frame­
work supports the construction of true appl ication-oriented
operating systems.

VIII . FURTHER WORK

The strategy to generate application-oriented operating
systems proposed by EPOS can drastically improve applica­
tion performance, because applications get only the operat­
ing system components they really need, and also because
these components are fine-tuned to the aimed execution sce­
nario. However, our strategy is not able to deliver an oprima/
operating system. Consider, for instance, the decision for
a thread scheduling policy: severa) thread implementations,
with different scheduling policies, may fit into the blueprint
extracted by our tools, as long as they match the selected
interfaces and satisfy the dependencies. Nevertheless, it is
unnecessary to say that there is an optimal scheduling policy
for a given set o f threads running in a given scenario.

The decision o f which variant o f a system abstraction to s­
elect when severa! accomplish the application 's requirements

is, in the current system, arbitrary. Further development of
EPOS shall include pro.filing primitives to collect runtime s­
tatistics. These statistics will then drive operating system re­
configurations towards the optimal. To grant an oprima/ sys­
tem, however, would imply in formal specification and vali­
dation of our system abstractions, what is not in the scope o f
EPOS.

IX . CONCLUSION

In this paper we presented the EPOS approach to deal with
the gap between object-oriented operating systems, specifi­
cally PURE, and high performance parallel applications. E­
POS utilizes PURE building blocks to implemcnt a set of
scenario-independent system abstractions that can be adapt­
ed to a given execution scenario with the aid of scenario
adapters. These abstractions are collected in a repository
and are exported to the application programmers via inftat­
ed interfaces. This strategy, besides drastically reducing the
number of exported abstractions, enables the programmers
to easily express their application 's requirements in regard to
the operating system.

An application designed and implemented according to
the strategy proposed in this paper can be submitted to a
tool that proceeds syntactical and data flow analysis to ex­
tract a blueprint for the operating system to be generated.
The blueprint is then refined by dependency analysis against
information about the execution scenario acquired from the
user via visual tools. The outcome of this process is a set
of selective realize keys that supports the compilation of the
application-oriented operating system.

The results obtained so far demonstrate the viability of
constructing application-oriented operating systems and al­
so the benefits an application can get by running on its own
system. However, EPOS is now closer to its beginning than
to its end: we have quite few scenario adapters implemented
and the tools described in this paper are under construction.

REFERENCES

[BGP+99] D. Beuche. A. Guerrouat, H. Papajewski, W. Schrder·
Preikschat, O. Spinczyk, and U. Spinczyk. The PURE Family
of Object-Oriented Oper.uing Systems for Deeply Embedded
Systems. In Procudings of rhe 2nd IEEE lnternational Sym­
posium on Object·Oriented Real-7ime Di.ttributed Computing,
St Maio, France, May 1999.

[Boo94] G. Booch. Object-Oriented Ana/ysis and Design with Applica·
rions. Benjamin/Cummings, Redwood City, USA, 1994.

[BSP+95] 8 . N. Bershad. S. Savage, P. Pardyak, E. G. Sirer, M. E. Fi­
uczynski, O. Becker. C. Chambers. and S. Eggers. Extensibil­
ity, Safety and Performance in the spin Operaúng System. In
Proceedings of the 15th ACM Symposium on Operating System
Principies, pages 267-284, Copper Mountain. USA, Decem­
ber 1995.

[CJR87] R. Campbell. G. Johnston. and V. Russo. Choices (Ciass Hier­
archical Open Interface for Custem Embedded Systerns). Op·
erating Systems Review, 21(3):9-17. 1987.

SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

[EKJ95] D. R. Engler. M. F. Kaashoek. and J. O'Toole Jr. Exokemt!l:
An Opcrating System Architecture for Application-Level Re­
source Management. In Pmceedings uftlre I 5tlr Symposium un
OperatiiiJ~ Systems Principies. December 1995.

[FBB+97] B. Ford. G. Back. G. Bcnson. J. Lepreau. A. Lin. and O. Shiv­
crs. The Flux OSKit: A Substratc for OS and Language Re­
search. In Pmceedi11gs 11j'tlre J6tlr ACM Symposium on Oper­

atiiiJ~ Systems Pri11ciples. Saint·Malo. France. October 1997.

[FSP98] A. A. Frohlich and W. SchrOder-Preikschat. SMP PCs: A Case
Study on Cluster Computing. In Proceedi11gs of the 2-Ith Eu·
mmicro Cot~feretlce- Worhlwp 011 Netw11rk ComJJUÚIIJI. pages
953-960. Viistcras. Sweden. August 1998.

[KLM+ 97] G. Kiczales. J. Lamping. A. Mendhekar. C.s Maeda. C. Lopes.
1. Loingtier. and J. lrwin. Aspect-Oriented Programming. In
Proceedi11gs of ECOOP'97. Lecture Notes i11 Computer Sei­

e/Ice. pages 220-242. Springer-Verlag. 1997.

(Par79) D. L. Parnas. Dcsigning Software for Easc of Extension and
Contraction. Tran.wction 1111 Software Engi11eeri11g. SE-5(2).
1979.

[PT98] L. Prylli and B. Tourancheau. BIP: a New Protocol Designcd
for High Performance Networking on Myrinct. In Proceeding.t
of the flltematiollal W11rhlwp tm Penu11al Computer bused
Network.t Of Workstation.t, Orlando. USA. April 1998.

[SESS96) M. Seltzcr. Y. Endo. C. Small. and K. Smith. Dealing with
Disaster: Surviving Misbehavcd Kemel Extensions. In Pro·
ceeding.t 11/ tire 1996 Sympo.tium on OperatinJ~ System Design
mrd lmplemellllllioll, 1996.

[SP94a) W. Schroder-Prcikschat. PEACE - A Software Backplane
for Parallel Computing. Parai/e/ Computi11g, 20: 1471-1485.
1994.

[SP94b) W. Schroder-Prcikschat. Tire wgictrl Desi!ill of Parai/e/ Oper·
ati11g Sy.ttem.t . Prenticc·Hall, 1994.

[SSPSS98] F. SchOn. W. SchrOdcr-Preikschat. O. Spinczyk. and
U. Spinczyk. Design Rationale of the PURE Object-Oriented
Embcdded Oper:uing System. In Pmceedi11g.t of tire lmer·
national IFIP WG /0.3/WG 10.5 Worhlwp 11n Di.ttributed
und Parai/e/ Embedded System.t, Paderbom. Germany. Octo·
ber 1998.

[THIS97] H. Tczuka. A. Hori. Y. lshikawa. and M. Sato. PM: An Oper·
ating System Coordinated High Performance Communic:uion
Library. Hi!(h· Performance Compuring and Netw11rkin}l '97.
April 1997.

[Weg86) P. Wcgncr. Classification in Object-Oriented Systems. SIG·
Pl.AN Notice.t. 21(10): 173-182. 1986.

9

