
10 SBAC-PAD'99 1 lth Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

A Survey of Load Balancers in Modern
Multi-Threading Systems

Prasad Kakulavarapu1, José Nelson Amaral2

1 McGill University
School o f Computer Science

Montréal, Canada
prasad@cs.mcgill.ca

2 University of Delaware
CAPS Lab. Dept. ofEiectrical and Computer Engineering

Newark. USA
amaral @capsl.udel.edu

Ab.ftract-
Multithreaded architectures are a feasible approach to exploit par

allelism in both regular and irregular applications. Today a large col
lection of multi-threading architcctures with difTerent threaded mod·
eis, and implementation platforms are available. These architectures
provide support for multithreading either at hardware levei, with CUS·

tomized functional units, or at the software levei, as emulators written
in some high-levellanguage. The later approach is usually preferred be·
cause of its favorable price tag, speed of devclopment, and portability.
In this articlc wc review some of these arehitectures focusing in their
capabilities to provide load balancing for irregular, data·parallel and
recursive applications. The paper is anchored on a description of ou r
own implcmcntation of load balancers for EARTH - Efficient Architec
ture for Running THreads. Most of thc multithreading architectures
that we revicw are software emulations bascd on off-the·shelf hardware
and compiler technologies.

Keywords- Fine-grain parallelism, multithreading, non·blocking
threads, context-switching, runtime system, distributed memory, dy
namic load balancing.

I. INTRODUCTION

In the classical strict data-ftow model of computation, an
instruction is enabled for execution when ali its operands
are available [15], [19], [14], [26] . To enforce the enabling
condition, the instructions that produce such operands must
be able to send a synchronization signal to ali the instruc
tions that will consume the recently produced result. This
model proved unyielding for the implementation o f machines
based on current standard off-the-shelf hardware and com
piler technology. However many research groups have suc
cessfully implemented a modelo f computation that is a direct
evolution of the classical data-ftow model: fine grain multi
threading. In the Jater, the unit of computation is no longer an
instruction, but a code-block formed by many instructions.
An instantiation of the code-block running on a processing
node is called a thread, thus the name multi-threading for
these systems. Threads, and not individual instructions, are
enabled by synchronization signals. The main motivation for
the design of multi-threading system is the overlapping of
communication and synchronization latencies with compu-

tation.

Around the same time that architectures derived from the
data-ftow model were proposed, thc term thread started to
be used to refer to multiple contexts of computation in op
erating systems. These threads rcpresent different lines of
control that are active at the same time within an OS pro
cess. We refer to such threads as OS-threads. Well known
OS-thread systems include POSIX Threads, Solaris Threads,
and NT Threads. OS-threads share ali thc resources of a pro
cess such as memory space, files, and device drivers. How
ever, each thread has its own set of registers, and its own
stack, which are either stored in heap memory (as in POSIX
or Solaris threads) or in kernel space (as in NT thrcads).
Context-switching between these threads is far easier than
that between processes, as there is no need to save and re
store memory pointers and other process related resources.
Only the contents of the thread specific stack and register
set need to be swapped at context-switch time. Program
ming applications at the levei of these threads, rather than at
the process levei is advantageous because of the high-speed
context-switching among threads. In this article, we study
multithreaded systems that are implemented on top of OS
threads.

There is a major historical difference between the fine
grain threads discussed earlier and OS-threads. Fine grain
threads are generated from code-blocks that grow upwards
from the data-ftow single instruction. A fine grain thread is
the largest unit of code that can run without incurring any
Jong Jatencies due to dependence on other pieces of code or
on data stored remotely. OS-threads grow downward from
the process abstraction in operating system. An OS-thread is
the smallest segmento f code that can share a set o f resources
with the other threads of the same process. Typically OS
threads exploit parallelism at a coarser grain than fine grain
threads, and thus must execute a higher number of instruc
tions between thread switchings.

In the multi-threading systems that we discuss in this pa-

SBAC-PAD'99 IIth Symposium on Compute r Archirecture and High Performance Computing- Natal- Brazil 11

per, each processing unit issues instructions from a single
thread at any time 1 • An alternative multi-threading system is
called simultaneous multi-rhreading (SMT). In an SMT sys
tem a single processor is capable o f issuing instructions from
multi pie threads simultaneously [11]. Machines with such
an organization use multi pie threads of computation to hide
the latency incurred due to the fetching of data from the local
memory. An example o f the !ater is the Tera machine [I].

Both shared and distributed memory based platforms are
considered in this study. These platforms are implemented
with off the shelf computers and use threads of computation
to hide latencies associated with either the fetching of data
from remate regions of the memory, or synchronizing among
other threads. These platforms do not use multi-threading to
hide the latency caused by a cache miss, i.e., as long as the
memory address referenced is in the memory hierarchy of
the local processing node, the reference is regarded as a local
access.

This paper is organized as follows. Section 11 reviews
preemptive, cooperative, blocking, and non-blocking thread
models. Section III categorizes modern implementations of
multi-threading system in language-based and library-based
systems. In section III-A we present an extended discussion
of EARTH, Cilk, and TAM, three multi-threading system
with extensive effort on language support. In section III-B
we review many multi-threading systems whose implemen
tation is based on function libraries and that rely on OS
threads. Section IV concludes the paper.

II. THREADING MODELS

Fine-grain multi-threading architectures might be charac
terized by their threading model. Threads can adopt the co
operative multithreading model, where threads voluntarily
rclease the CPU, or the preemptive model where threads can
utilize the CPU only as long as certain conditions specified
by the scheduler are valid. Cooperative threads can be 11011-
blockillg o r blocki11g. In a non-blocking system, threads must
run until completion. Under a blocking threading model
a thread can block when an operation with long or unpre
dictable latency is encountered in the application. In this
case the machine state has to be saved to be restored)ater.
In a preemptive threading model, the scheduler determines
the running time of a thread based on its scheduling policy,
which may be based on priority, time-slices ora combination
o f both. In a preemptive threading system, threads are always
blocking, and threads enter the blocked state either due to an
operation in the program or due to a scheduling decision.

In a non-blocking and non-preemptive thread model, oper
ations with long or unpredictable latencies must be executed
in a split-phasejashio11. The first phase of the operation, also

1 When these systems are implemented on top of super-scalar/super
pipelincd proccssors muhiple instructions belonging to the sarne thread can
be issued at one time.

referred to as the issuing of the operation is performed in
one thread, while the second phase, sometimes referred to as
the consumption o[the result of the operation is performed
in another thread. When such a thread model is chosen, a
mechanism must be provided to enable the issuing thread to
specify which one is the consuming thread. There is no need
to preserve machine state during context-switch time.

Neither cooperative blocking thread model nor a preemp
tive threading model are very attractive for fine-grain multi
threading architectures because the remova) of the context
of a thread from the processing unit requires that the con
tents of the registers and the stack must be saved in a tem
porary user-area before context-switching, and these must be
reloaded again when the suspended threads are enabled at a
latter time. In addition, this model might be unyielding for
the implementation of machine-independent multi-threaded
platforms. Also dynamic and irregular applications might
cause excessive waste of cycles when mapped to a blocking
thread model.

III. IMPLEMENTATIONS OF MULTI-THREADING

PLATFORMS

The multi-threading systems that we discuss in this pa
per are software emulations of architectures. Most of these
emulations are based on off-the-shelfhardware and compiler
technology. Thcse systems can be broadly divided in two
classes.

La11guage-Based Systems: These systems are based on
the support of a custam runtime system. The runtime
system interacts with the hardware and the system levei
software in the machine and provides a standard inter
face for portable implementations ofthe multi-threading
program environment. Language-based systems often
offer a language with multi-threaded constructs, and a
source-to-source translator to convert this language to
a standard and broadly supported language, such as c.
The threading model can be determined by the language
designer keeping in mind the requirements and seman
tics of the intended application domain. This design
methodo1ogy frees the threading mode1 from many con
straints or 1imitations to the mu1tithreading features that
cou1d be imposed by the underlying OS platform. The
advantage o f 1anguage-based systems is that threads are
usually non-blocking and execute in user space. Thus
overheads associated with thread creation and thread
switching are reduced, resulting in very light-weight
threads. Due to the mínima! thread specific storage
required, it is possible to have a very high number of
threads active at the same time. These systems can be
implemented efficiently in both shared and distributed
memory platforms. Examples of systems in this class
include EARTH [18]. [22], [17]. [26]. [20]. [16], Ci1k
[13), TAM [9] and Athapascan-1 [7].

12 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

Library-Based Systems: These systems provide a library
of multi-threaded primitives to manage user levei
threads on top o f OS threads. In this approach the man
agement of threads requires a few system calls, which
is costly in terms of execution cycles. In most in
stances the blocking threaded model is used, which lim
its the number of simultaneously aclive threads as the
thrcad context and related data structures have to be
retained. Most of the thread library packages that we
found in the literature are designed for shared memory
or distributcd shared memory systems. One exception
is thc Chant library [24) that extends the POSIX stan
dard for light-weight threads with functionality for dis
tributed memory environments. Examples of systems
based on library o f primitives include Nano-threads [2],
Ariadne [23], Opus [24), Structure Thread Library [27],
and Active Threads [29].

A. Language-Based Systems

In this section we present three fi ne grain multi-threading
systems. Each of these systems supports non-block.ing, non
preemptive threads. First we describe our own home-grown
EARTH system. The development of EARTH started at the
McGill University in Montreal, Canada, and continues at the
University of Delaware, USA. The original inspiration for
EARTH has been derived from the McGill Datafiow Ma
chine [15]. The research around EARTH h as spawned o ver
many fields including the development of pre-processors,
runtime systems, Janguage development, application stud
ies, source-to-source compi lers, and dynamic Joad balancers.
Recently an evolutionary path for the EARTH system was
envisioned chartering the progressive development of further
customized platforms [26). The EARTH system has been
implemented on the MANNA machine, IBM SP2, Beowulf
and on a SUN SMP cluster.

Leiserson et ai. at MIT developed Cilk, an algorithmic
multi-threaded Janguage currently designed for symmetric
multiprocessors (SMP's). Central to Cilk's development is
the scheduling o f multi-threaded computations using a work
stealing mechanism. The Cilk computation model and its
implementation are described in [5). Earlier releases of Cilk
implement the memory model called "dag consistency" [4).
Cilk is a succinct extension to C and has the "C elision prop
erty": when ali the Cilk constructs are removed from a Cilk
code, what remains is a legal C code. The most recent release
of Cilk is described in [13]. The Cilk group is well known
for their implementation of world-class chess programs on
the Cilk platform. A unique feature of Cilk is the develop
ment of a novel debugging tool , called "Nondeterminator",
that finds data races in the execution of programs [8].

The Threaded Abstract Machine project [9] at the Univer
sity of California, Berkeley presents an execution model in
which the compiler controls the synchronization, schedul-

ing and storage management. The role of the compiler in
scheduling and management ofthreads is emphasized to take
advantage of criticai processor resources such as register
storage and exploit considerable inter-thread locality. TAM
was one of the first multithreaded systems that were built
through software emulation with minimal hardware support.
The compiler translates programs written in the functional
Janguage ld in to an intermediate language called TLO, which
includes code generated for thread support [25] in a dis
tributed memory environment. An important feature in TAM
is the introduction of inlets which are specialized message
handlers to support inter-frame communications. These in
lets are generated by the compiler, one for every value to be
received.

A. I The EARTH Model

A thread in EARTH is a set of instructions that are ex
ecuted sequentially. Interacting threads sharing context are
grouped into rhreaded functions, and are represented in the
EARTH runtime system as tokens. Applications execute in
global memory space comprising the local memories on ali
the nodes in the system. Applications in EARTH are written
in Threaded-C, a multithreaded variant of C. Fig. I shows a
typical activation graph for a Threaded-C program.

o Thread

Threadtd funclion

Fig. I. A generic activation graph for a Threaded-C prograrn.

Three important features characterize the EARTH
modcl [18], [26]:

Synchronization Slots: Conceptually, each processing
node has a table of synchronization slots. Any threaded
function can allocate a slot, initialize its counter and its
reset value, associate the slot n to a thread, and pass
the address o f the slot to other threaded functions. Syn
chronization signals are sent to slots. Each arriving sig
nal causes the slot counter to be decremented. When the
counter reaches zero the associated thread is enabled for
execution and the counter is reset to the specified reset
value. The versatility of the synchronization slots al
lows for the construction of generic call graphs, such as
the one illustrated in Figure 1.

Synchronization Unir: The EARTH model assumes that
a functional unit is provided to implement communi-

SBAC-PAD'99 Jlth Symposium on Computer Architecture and High Performance Computing- Natal - Brazil 13

cation, synchronization, and dynamic load balancing
functions. The functions o f the SU can be implemented
by a second processor in the processing node, by cus
tom hardware, or it can be emulated in software when
the EARTH system is implemented on clusters o f off the
shelf computers, such as the IBM-SP2 and the Beowulf
implementations.

Dynamic Load Balancer: Balancing the work load for
irregular and data-parallel applications in fine-grain
multi-threading architectures might be challenging.
Seven distinct dynamic Joad balancing algorithms have
bcen implementcd for EARTH and their performance
is studied in [6). Central to the implemcntation of
EARTH's Joad balancers is the instantiation of threads
as migratable tokens, and the implementation o f a stor
age mechanism that behaves as a stack operatable on
both ends, as illustrated in Figure 2 [20), [6) . Locality is
favored with this mechanism, because tokens generated
locally are more likely to be executed in the local pro
ccssing unit while tokens that arrive from other nodes
are more likely to migrate.

c
o
-~
(.)

a.
0..
~

Run-Time System

Fig. 2. Internai Queues in lhe EARTH Runlime System

EARTH has dynamic Joad balancers tailored for fine-grain
multi-threading. The balancers aim to ensure that ali nodes
are busy, rather than trying to distribute the workload equally
among ali the nodes in the system. Three kinds of balancers
are implemented: receiver-initiated, sender-initiated and hy
brid balancers. Significant performance gains have been ob
tained with load balancing [6). The results have also demon
strated the difficulty in designing a single load balancer that
performs well for ali applications. As an important result of
this study, hybrid balancers that rely on history information
have been suggested for best performance and scalability in
applications representing irregular, structured and recursive
parallelism.

A.2 The Cilk Multi-threaded Language

The Cilk multi-threaded Janguage [13) is an extension to
C, and processes user-Jevel fine-grain, non-blocking threads
in a shared memory environment. The Cilk compiler gener
ates two versions of target C code for each Cilk procedure

- a fast clone and a slow clone. The fast clones are meant
for local execution of a procedure, and the slow clones are
used as units for dynamic load balancing. The Cilk runtime
system [5) employs a randomizing, work-stealing scheduler
and operates on a double-ended queue that is similar to the
token queue in the EARTH runtime system [18). Such queu
ing structure was developed carlier in the ADAM architec
ture [21).

The Cilk threading model is very amenable for the so
lution of divide-and-conquer problems, and is most suited
for fully-strict computations [5). While the directed-acyclic
graph formed from a Cilk multi-threaded computation al
lows communications between parent and child procedures,
it does not support communications between threads belong
ing to different Cilk procedures that are at the same levei in
the activation graph. In contrast, the EARTH threaded model
enables the implementation of any arbitrary activation graph
through the exchange o f synchronization slot addresses. The
efficiency o f the Cilk scheduler is analytically studied in [3).

A.3 The Threaded Abstract Machine

A TAM program is a collection of code-blocks, simi
lar to EARTH programs which are collections of threaded
functions [9). Each code-block, like a threaded function in
EARTH, consists of severa) threads. However, a code-block
also includes code for the inlets. Since an activation frame
corresponding to a code-block is allocated on a processor, ali
the threads belonging to a code-block execute on the same
processor. The distribution of this workload onto the pro
cessors in the system is decided by the TAM compiler [25].
A quantum in TAM is the number of threads belonging to
a code-block that are enabled for execution at any particular
instant of time. Ali the threads in a quantum are executed
consecutively, and values defined and used within a thread
can be retained in processor registers.

An important contribution of TAM is the definition of
an abstract machine with a multilevel scheduling hierarchy.
This hierarchy created a collection of synchronization mech
anisms with different costs and capabilities available for the
compiler. The early experiments with TAM demonstrated
that significant locality exist in the access pattern of data
among the many small threads that the system handles [I 0).
Another important contribution of TAM is the definition of
a program graph and a dual graph to represent a fine grain
multi-threaded program [25].

B. Library-Based Systems

In this section we present multi-threaded systems that are
implemented on top of operating system based threads. Al
though such systems might be more portable because they
can run in any machine that supports the underlying operat
ing system, they pay a high price on the cost of system calls
to implement thread switching.

14 SBAC-PAD'99 1 lth Symposium on Compute r Architecture and High Performance Computing- Natal- Brazil

B.l Distributed Filaments

The distributed Filaments system [12] offer multithreaded
primitives to implement fine-grain threads in a distributed
shared memory model. The Filaments runtimé system imple
ments distributed shared memory with no hardware support
over distributed memory systems. The threads are block
ing in nature, and favor irregular, data-parallel and recur
sive applications. There are multiple server threads per
node, and each server thread executes a set of sharing con
text filaments (called a pool). In the case of irregular and
data-parallelthreads, the programmer/compiler has to assign
context-sharing filaments to pools on different nodes so as
to maintain locality and equal task distribution. However,
a simple receiver-initiated scheduler distributes workload in
the case of recursive threads. This balancer queries other
nodes in a round-robin fashion to steal work. A filament
blocks when a long latency operation is encountered. Fila
ments allow the programmer/compiler to enable/disable load
balancing.

B.2 The Opus Language

The Opus language [24] provides Fortran language exten
sions to support task and data parallelism. Independent tasks,
representing coarse-grain parallelism, communicate and syn
chronize through monitor-like structures called shared-data
abstractions. The Opus runtime system relies on a light
weightthread package called Chant, to support multithread
ing functionality in a distributed memory environment. The
Chant thread package extends the pthreads interface with
primitives for remote communications and remote thread op
erations by using existing communication library (MPI stan
dard). Workload has to be mapped onto different nodes by
the programmer/compiler according to locality constraints of
the tasks as there is no runtime dynamic load balancing sup
port.

B.3 Nano-Threads

The Nano-Threads [2) are user-level threads built on
top of kernel threads. The Nano-threads library provides
primitives to support multithreading efficiently in a multi
user/multiprocessor environment with shared memory. A
compiler takes as input C/Fortran programs with Nano
Threads keywords, and generates target C/Fortran code
(Nano-Threads) along with code to manage an intermedi
ate representation o f varying leveis o f parallelism in the ap
plication, called the Hierarchical Task Graph. The associ
ated code chooses the appropriate granularity for execution
at runtime, depending on the availability of resources. Each
Nano-Thread is associated with a per-thread-counter and a
nano-thread descriptor. Nano-Threads block so that child
threads can access local variables from the address space of
the parent nano-thread. Ali enabled Nano-threads are placed

in globally accessible and manageable ready queue called
GQ (FIFO). To preserve locality, each node has its own lo
cal queue (FIFO) that is accessible from ali nodes. The ob
jective of load balancing in the Nano-Threads system is to
distribute the load equally among ali the nodes. This is a dif
ferent goal from the load balance goal adopted on EARTH,
where the aim is to keep ali processors busy, thereby mini
mizing balancer overheads in an extremely fine-grain envi
ronment. Another potential balancing overhead may be the
contention problems for controlling the global queue which
may degrade scalability o f the system.

B.4 Active Threads

The Active threads library [29] define an interface for
supporting fine-grain, non-preemptive, blocking threads over
traditional kernel threads. They can be used to hand code ap
plications, oras virtual machine target for compilers o f paral
lellanguages. Threads sharing context are grouped into bun
dles. Each bundle has its own scheduler and the scheduler
may be chosen by the application from a set of schedulers
distributed with the aclive threads package. The scheduler
maps active threads onto processor thread dispatch buffers
for each processor. Though the fastthreading primitives en
sure low overheads for thread operations, the multithreading
overheads for thread initialization, context-switching, thread
stack management and synchronization are quite high for ir
regular applications employing fine-grain threads.

B.5 Concert, Structured Threads and Ariadne

The Concert runtime system [28) proposes close coupling
with the compiler and hardware to overcome overheads as
sociated with thread management and communication in a
distributed memory environment, especially when dealing
with fine-grain threads for dynamic and irregular applica
tions. The hybrid stack-heap execution mechanism over
comes multithreading overheads, and the pull-based mes
saging technique minimizes communication overheads. The
structured threads library [27] provides multithreading sup
port on top of kernelthreads in Windows NT. Ariadne [23] is
a thread library that is modeled for process-oriented parallel
and distributed simulations. Ariadne threads run on top of
the kernel threads, and are implemented in both shared and
distributed memory environments. The internai scheduling
policy is based on priority queues, i.e. a highest priority non
blocked thread gets executed first. This library is suited for
coarse-grain parallelism.

IV. CONCLUSION

This paper studied the threaded model and its implemen
tation, with emphasis on dynamic load balancing in mod
em multithreaded multiprocessor systems. These various
systems are classified on the basis of their runtime sys
tem support into language and library based systems. The

SBAC-PAD'99 1 lth Symposium on Computer Architecture and High Performance Computing - Natal- Brazil 15

blocking/non-blocking nature o f threads and their scheduling
policies are presented as major yardsticks used to differenti
ate among the various multithreaded models.

The user-level threads in Ianguage-based systems are more
suited to model fine-grain parallelism than those from the
library-based systems. This is duc to the high thread man
agement and switching costs in the library based threads.
The language-based systems provide high ftexibility to the
languagc designer. However, the blocking nature of threads
from the library based threads make them ideal to model
more real-world applications where the coarser nature of
thc threads overcome the high synchronization and context
switching costs. With the incrcasing popularity of the SMP
clusters, the ideal scenario that is emerging is to support non
blocking threads on top of the kernel threads [12], [2], [27].

V. ACKNOWLEDGMENTS

Thc authors would like to thank current and former mem
bers of the ACAPS Lab, McGill University, and the CAPSL
Lab, University o f Delaware for their insight, ideas and help.
Spccial thanks are dueto Prof. Guang R. Gao, Universi ty of
Dclaware, for the insightful discussions on the design aspects
of Janguage-based multithreaded systems. The authors also
acknowledge the partia! support from DARPA, NSA, NSF
(under grants NSF-CISE-9726388 and NSF-MIPS-9707125)
and NASA. The initial EARTH work was partially supported
by the Natural Sciences and Enginecring Research Council
(NSERC) o f Canada.

R EFERENCES

[I] Robcn Alvcrson. David Callahan, Daniel Cummings. Brian Koblenz,
Allan Ponerfield. and Bunon Smith. The Tem Computer System. In
Proc .. of frlll. Conf on Supercomputing, Am.vterdam, The Netherlands.
pages 1-6, June 1990.

121 Eduard Ayguadc'. Mario Fumari. Maurizio Giordano, Hans-Christian
Hoppe, Jesus Laba.na. Xavier Ma.norell. Nacho Navarro, Dim
itrios Nikolopoulos. Theodore Papatheodorou, and Eleftherios Poly
chronopoulos. Nano-Threads: Programming Model Specification. In
Deliverable Ml.Dl. ESPRJT Project NANOS (No. 21907). University
of Potras, July 1997.

131 Robcn Blumofe and Charles Leiserson. Scheduling Multithreaded
Computations by Work Stealing. In Proc. of the 35th Annual Sym
posium fffl foundations of Compute r Science (FOCS), Sama Fe. New
Mexico, pages 356-368, Novembcr 1994. ·

[4) Robcn D. Blumofc. Matteo Frigo. Christopher F. Joerg. Charles E.
Leiserson, and Keith H. Randall. An analysis of dag-consistent dis
tributed shared-memory algorithms. In Proceedings of the 8th An
nual ACM Symposium on Parai/e/ Algorithms and Archittctures, pages
297-308, Padua, ltaly, June 24-26, 1996. SIGACT/SIGARCH.

[5) Robcn D. Blumofe, Christopher F. Joerg, Bmdley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An
Efficient Multithrcaded Runtime System. Journal of Parai/e/ and Dis
tributed Computing, 37(1):55-69, August 1996.

[6) Haiying Cai, Olivier Maquelin, Prasad Kakulavarapu, and Guang R.
Gao. Design and Evaluation of Dynamic Load Balancing Schemes
under a Fine-grain Multithrcaded Execution Model. In Proc. of the
Multithreaded Execution Architecture and Compilation Workshop. Or
lando, Florida, January 1999.

[7) Gerson G. H. Cavalheiro, Francois Galilee, and Jean-Louis Roch.
Athapascan-1 : Parallel Programming with Asynchronous Tasks. In
Proc. ofWorkshop on Multithreading, Yale University, 1998.

[8) Guang-len Cheng, Mingdong Feng, Charles E . Leiserson, Keith H.
Randall, and Andrew F. Stark. Detecting Data Races in Cilk Progmms
that Use Locks. In Proc. of lOth Annua/ ACM Symposium on Parai
lei Algorithms and Architectures (SPAA '98), Puerto Vallarta, Mexico,
pages 298-309. June 1998.

[9) David E. Culler, Anurag Sah, Klaus Erik Schauser, Thorsten von
Eicken, and John Wawrzynek. Fine-grain Parallelism with Mínima!
Hardware Suppon: A Compiler-Controlled Threaded Abstract Ma
chine. In Proc. of tire Fourth fntl. Corif. on Architectural Support for
Programming Languages and Operating Systems, Santa Clara. CA,
April 1991.

[10) David E. Culler, Anumg Sah, Klaus Erik Schauser, Thorsten von
Eicken, and John Wawrzynek. Fine-grain parallelism with minimal
hardware suppon: A compiler-controlled threaded abstract machine.
In Proceedings of the Fourth fnternational Conference on Architec
tura/ Support for Programming Languages and Operating Systems,
pages 164-175, Santa Clara, Califomia, April 8-11, 1991. ACM
SIGARCH. SIGPLAN, SIGOPS, and the IEEE Computcr Society.
Compute r Architecture News, 19(2), April 1991 ; Operating Systems
Review, 25, April 1991; SIGPU.N Notices, 26(4), Apri1 1991.

[11) Susan Eggers, Joel Emer, Henry Levy, Jack Lo, Rebecca Starnm, and
Dean Tullsen. Simultaneous Muhithrcading: A Platform for Next
generation Processors. In Proc. of IEEE Micro , pages 12-18. scpt
1997.

[12) Vinccnt W. Freeh, D::wid K. Lowcnthal. and Gregory R. Andrews. Dis
tributed Filaments: Efficicnt Fine-Grain Parallclism on a Cluster of
Workstations. In Proc. of the First Sympo.vium on Operating Systems
Design and lmplemematio11. Usenix Association. November 1994.

I 13] Mattco Frigo. Charles E. Leiscrson, and Keith H. Randall. The lm
plementation of the Cilk-5 Multithreadcd Language. In Proc. of ACM
SIGPU.N Conjere11ce 011 Programming Language Design a11d fmple
memation, June 1998.

[141 Guang R. Gao. An Efficient Hybrid Dataflow Architecture Model.
Journa/ of Paral/elism, 19(4). December 1993.

I 15] Guang R. Gao. Herben H. J. Hum, and Yue-Bong Wong. Parallel
Function lnvocalion in a Dynamic Argumcnt-Fetching Dataflow Ar
chitecture. In Proc. of PARBASE-90: fntl. Conf. on Databasu. Parai
lei Architecture.v, and their Applicatio11s, Miami Beach, Florida, pagcs
11 2-1 16, March 1990.

[16) L. J. Hcndren. X. Tang, Y. Zhu, G. R. Gao, X. Xue, H. Cai, and P. Ouel
let. Compiling C for the EARTH Multithrcaded Architecture. In Proc.
of the 1996 Conf 011 Parai/e/ Architectures a11d Compilation Tech
niques (PACT'96}, Boston, Mass.l11tl. Joumal of Parai/e/ Program
mi11g, pages 12-23. October 1996.

[1 7) Hcrben H. J. Hum, Olivier Maquelin, Kevin B. Theobald, Xinmin
Tian, Guang R. Gao. and Laurie J. Hendren. A study of the EARTH
MANNA multithreaded system. /nternational Joumal of Parai/e/ Pro
gramming, 24(4):3 19-347, August 1996.

[18) Herben H. J. Hum, Olivier Maquelin, Kevin B. Theobald, Xinmin
Tian. Xinan Tang, Guang R. Gao, Phil Cupryk. Nasser Elmasri, Lau
ric J. Hendren, Albeno Jimenez, Shoba Krishnan, Andres Marquez.
Sharnir Merali, Shashank S. Nemawarkar, Prakash Panangaden, Xun
Xue, and Yingchun Zhu. A design study of the EARTH multiproces
sor. In Lubomir Bic, Wim Bohm, Paraskevas Evripidou, and Jean
Luc Gaudiot, editors, Proceedings ofthe IFIP WG 10.3 Working Con
ftrence on Parai/e/ Archiucturu and Compilation Techniques, PACT
'95, pages 59-68, Limassol, Cyprus, June 27-29. 1995. ACM Press.

[19) Herben Hing-Jing Hum. The Super-Actor Machine: a Hybrid
Datajfowlvon Neumann Architecture. PhD thesis, McGill University,
Montréal, Québec, May 1992.

[20) Prasad Kakulavarapu, Olivier Maquelin, Jose Nelson Amaral, and
Guang R. Gao. A Runtime System for Fine-grain Multithreaded Mul
tiprocessor Systems. In Technical Memo 24. CAPSL. University of
Delaware, may 1999.

[21) Olivier C. Maquelin. Load Balancing and Resource Management
in the ADAM Machine. In Second Workshop on Dataflow Comput
ing, Hamilton lsland, Austra/ia, 1992, Publislred in Advanced Topics
in Datajfow Computing and Multithreading. Lubomir Bic. Guang R.
Gao, Jean-Luc Gaudiot editors, IEEE Computer Society, 1995.

[22) Olivier C. Maquelin, Herben H. J. Hum, , and Guang R. Gao. Costs
and Benefits of Multithreading with Off-the-Shelf RISC Processors.

16 SBAC-PAD'99 I lth Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

In Proc. of tlze First lnternational EURO-PA R Confuence, No. 966 in
Lecture Notes in Computer Science, Stockholm, Sweden, pages 11 7-
128, August 1995.

[23] Edward Mascarenhas and Vemon Rego. Ariadne: Architecture of a
Ponable Threads System supponing Thread Migration. Software -
Practice and Experience, 26(3):327-356, March 1996.

[24) Piyush Mehtotra and Matthew Haines. An Overview ofthe Opus Lan
guage and Runtimc System. Technical rcpon. May 1994.

[25) K1aus Erik Schauser, David E . Culler, and Thorsten von Eickcn.
Compiler-Controlled Mu1tithreading for Lenient Parallel Languages.
In Proc. of FPCA '91 Conference on Functiona/ Programming Lan
guages tmd Compute r Arclzitecture, Springer Verlag, aug 1991.

[26] Kevin B. Theobald. EARTH - An Efficient Architecturc for Running
THrcads. In Ph.D Tlzesis. Sclzool of Compute r Science. McGi/1 Uni
versil)\ Momreal. Quibec. March 1999.

(27] John Thomley, K. Mani Chandy. and Hiroshi lshii. A Systcm for
Structurcd High-Performance Multithreaded Programming in Win
dows NT. In Proc. of tlze 2nd USENIX Windows NT Symposium, pp.
67-76, Seaule, Washington. August 1998.

[28] John Plcvyak Vijay Karamcheti and Andrcw A. Chien. Runtime
Mechanisms for Efficient Dynamic Multithrcading. Journa/ of Par
aliei and Distributed Computing, 37:21--40, August 1996.

[29] Boris Weissman. Active Thrcads: an E)(tensible and Ponable Light
Weight Thread System. Technical rcpon. September 1997.

