
SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Braúl 17

Performance Portability of XL HPF Compiler
on IBM SP2 and SMP Multiprocessors

Abderrazek Zaafrani 1 , Xinmin Tian2*

1 Motorola Labs
1301 E Algonquin Rd.

Schaumburg. IL 60196, USA
{c azO 12@email.mot.com}

2 Intel Microcomputcr Software Labs
3600Juliette Lanc, SC12-301
Santa Clara. CA 95052. USA
{ Xinmin.Tian}@ intel.com

Absrrucr-
High Performance Fortran (HPF) is a data-parallel programming

language that allows lhe programmer to specify lhe data decomposition
onto the processors while the compiler takes care of the tedious tasks
of communication generation and computation partitioning. Shifting
some o f the complex tasks from lhe use r to lhe compíler should encour­
age programmers to write and port code to parallel machines especially
if the compiler implements these tasks efficiently. In this paper, perfor­
mance results and analysis of a subset of lhe SPEC92 is presented for
the XL HPF compiler on IBM SP2 machines. In addition to obtain­
ing good performance from lhe com pile r, one o f lhe the ma in concerns
of HPF users is portability. Experimental results and analysis are pre­
sented in this paper to investigate performance portability (consistency)
first across multiprocessor architectures and then across compilers. For
performance portability across multiprocessor machines, lhe same XL
HPF compiler used for the IBM SP2 distributed memory machine ex­
periment is also used to compile and execute the same applications but
on IBM SMP machincs. The comparablc speedup and behaviour ob­
tained for both machincs indicates that HPF compilers can be portable
across different architectures. For performance portability across com­
pilers, various HPF programming techniques and recommendations are
introduced to increase the chances of obtaining performance consis­
tency with differcnt HPF compilers.

KeywordJ- HPF, performance, portability, compiler, SPMD, dis­
tributed memory, shared memory.

I. I NTRODUCTION

High Performance Fortran (HPF) is a programming Jan­
guage designed to support the data-parallel programming
style by introducing a set of directive extensions to Fortran
90 [HPF 94]. lt allows the programmer to specify the data
decomposition onto the processors while the compiler takes
care of the tedious tasks of communication generation and
computation partitioning. In addition to the data decompo­
sition directives, HPF ·provides other directives to help the
compiler generate efficient code. Even though the main tar­
get machines for HPF users are distributed memory parai­
lei machines, HPF code should also execute efficiently on
shared memory machines.

Shifting some of the complex tasks from the user to the

•work was done when authors were at IBM Toronto Lab

compiler encourages programmers to write and port code to
parallel machines provided that the implementation o f these
tasks is done efficiently. Hence, the existence of good com­
pilers is necessary to make the use o f HPF widespread among
the parallel programming community. Early users of HPF
requested robust compilers, full implementation of the lan­
guage, good performance from compilers, availability of de­
buggers and performance analysis tools. In addition, one
of the main concerns of parallel programmers is portability
which was a driving force behind the creation of HPF and its
standard committee [HPF 94].

In this paper, we analyze the performance of some HPF
benchmarks using the XL HPF compiler on IBM SP2 ma­
chines. The speedup obtained for some applications is
quite large. For many other parallel programming Ianguages
and environments such as MPI [GRO 94], obtaining good
speedup is achievable [SUB 98] [EU 98]. However, porting
the code to other target machines and obtaining similar per­
formance is usually a challenging task that requires substan­
tialtuning cffort [JIA 97]. We investigate in this paper the is­
sue of performance portability ofHPF code across machines:
the same XL HPF compiler used for the IBM SP2 distributed
memory machine experiment is also used to compile and exe­
cute the same applications (withoutany change or tuning) but
on IBM SMP machines, a shared memory parallel machine.
Our experiments indicate that comparable speedup results
and behaviour are obtained for both platforms. In addition
to performance consistency across machines, this paper ad­
dresses performance portability across compilers. While it is
widely known that the performance obtained for same appli­
cations on same platform using different compilers is occa­
sionally not consistent [NGO 97] for currently available HPF
compilers, we attempt to reduce these inconsistencies by in­
troducing HPF programming techniques and recommenda­
tions that should increase the chances o f obtaining compara­
ble performance with different HPF compilers.

The remainder of this paper is organized as follows. Sec-

18 SBAC-PAD'99 11th Symposium on Computer Architecture and High Perfomumce Computing- Natal- Brazil

tion 2 presents an ovcrview of thc XL HPF compiler by
explaining the Single Program Multiple Data (SPMD) code
generated by thc compiler and presenting some of the impor­
tant optimization techniques implemented by the compiler.
Section 3 analyzes thc performance results obtained for a
subset of SPEC92 benchmarks using thc XL HPF compiler
on an IBM SP2 machine. In Section 4 , cxperiments simi­
lar to the ones in Section 3 are presented but for IBM SMP
target machines. machines. Scction 5 introduces some HPF
programming techniques that should make compilers more
likely to generatc cfficient code. Section 6 shows thc per­
formance numbers for the subset of SPEC92 benchmarks on
an IBM SMP machine but using a compiler specifically tar­
gcting thc SMP model. Finally, concluding remarks can be
found in Section 7.

li. AN ÜVERVIEW OF XL HPF COMPILER

The main target platforms for HPF are distributed mem­
ory parallel machines. Given the importance of data distri­
bution in such cnvironment, this task is performed by the
user through HPF directives. The compiler uses this data
distribution information and the owner computes rule (every
processor is defining only the data it owns) to extract paral­
lelism from HPF code. Hence, the speedup obtained for an
application depends mainly on:

• the data distribution (BLOCK, CYCLIC, or replicated)
described by the user with dircctives such as align and
distribute.

• the code generated by the compiler after transforming
thc HPF code into SPMD code. The main tasks per­
formcd by the compilcr in this transformation is thc cre­
ation of local data on each processor, automatic gen­
eration o f communication statements, and computation
partitioning [GUP 95][BOZ 94] [HIR 94].

Figure I .a shows a simple example o f an HPF program.
The SPMD code generated by thc XL HPF compiler for this
example is shown in Figure I .b: The compiler first generates
code to compute descriptor information about local arrays
A and B before their allocation on each processor. When
executing the SPMD code, processor p (O <= p < N) al­
locates an array A and an array B both of size (LB : U B)
such that LB = p * ceiling(lOO/ N) + 1 - overlap and
U B = (p + 1) * ceiling(lOO/N) + ovel'iap. The overlap
amount is two by default but can be set to any value by using
the appropriate compiler optio n. This additional amount of
memory allows the compiler to sometimes avoid the creation
of communication buffer for nearest neighbor communica­
tion [WOL 96]. In this case, datais received into the overlap
entries, and computation then proceeds with local accesses
instead of a communication buffer. After the allocation of
local arrays A and B , the compiler generates code to com­
pute the sets o f data to be received, the sets of data to be sent,
the processor sets involved in the communication. After gen-

~hpf S DISTR IBUTE CBUX'KJ onto P :: A, 8

do i • 2.100
AC U • 8Ci·U • ACU

end do

ond

t• l S>mpl< E....,... af HPFCodc

1• ~PE and Proc_JD an l·dimen•lond anay• or Jhe equAl to the
f • d hnenaionality of t he procauor cont iquration . • 1

c.ll -"lhpf_get.,.pe_indelC-Cl, N\IA_PE. Proc: .. IDI

1• Deterl'lln• lnfonMticn ab<Nt array A and 8 . • 1
Clobal lll • 1
Cloba 1C21 : 100
Diat.n b.ltlon llt • 1100 • ~PEill • U I t:ur-._PEIU r BLOCk S1U • t

DhtrlbutlonC21 • O 1 • O :ndlC'a t•• a B!.OCK Dlstr • 1
iovn_l • 1 • CUOO • ~~PE111 • 11 I t:um._PEilll • Proc !DIU
lown_u • H 100 • t~PEtll - li I tl\.l.ni..,.PEClll • io'of'l'l_l .- 1

1 • ~eh prcceaaor allcca tea it cwn chunk of array A a nd a . • 1
c a ll Jtlhpt_allocate IA. Proc_ ID. Clob.l, Ohtnbutlon)
call _xlhpt_alloc.ta 18. Proc_to, Cloba.l, Distn but ion)

1 • COftmt.Jnica tlon code " I
1! IProc_ I Dil) .qt 01 then

1 • Coda COftP.Jtin9 tha a rray.s PSS IProcaaaor Set Send) an:S O.SR IO.tA • 1
I " Set Recaival 11 not shown. • 1
ca ll Jtlhpt_nbnceiva_uctiona (Proc_IO, PSS. 8, OSRI

end I!

it IProc_IDI U . lt ~PEU I - 11 thn
1 • Code compUtlnt;~ the uraya PSR IProc .. sor Set Rece ive) and DSS • 1
J • CO.ta Sat Sandl 11 not ahown • 1

call _xlhpf_und_ .. cuona IProc_ID. PSR. a. DSS)
end i f

1• Coerp.~t.tion pt.rtitaon1n9 dona thrw ; h loop bound ahrinking• J
do I • ... JI.hown_ l. 21. alnllown_u. UO)

A lU • BU • U • Attl
and do

1 • E:..ch processar tr••• its local chu.nk of array A a nd 8 . • J
call _xlhpt_dea llocate(A)
c a ll _xlhpf _ d .. llocateCBI
ond

Fig. 1. Generation oi SPMD Code

erating calls to send and receive communication routines,
the compiler generates code to perform the actual computa­
tion. For the latter step, computation partitioning is achieved
through Joop bound shrinking. Finally, storage for local ar­
rays A and B are dcallocated.

Figure 2 shows a pseudo code that emphasizes the changcs
obtained if no overlap rcgion is uscd (ex. B[i-3] is used on
the rhs of the assignment statement of Figure J.a instead of
B[i-1]). Since the default overlap region of two array ele­
ments is not Jarge enough to allow storing the values of B
that need to be rcceived into the overlap entries, a communi­
cation buffer for B is allocated for this purpose. Given that
ali use o f array B in the computation part o f the code is done
through the communication buffer, local communication has
to be performed by packing local clements of array B into
the buffer (i.e elements of B that exist locally are copied into
the communication buffer).

Given the high communication overhead for a distributed
memory machine, it is essential for an HPF compiler to gen­
erate efficient communication by implementing many of the
optimizing communication techniques [BOZ 94] [GUP 94].
Among the important optimization techniques implemented
in the XL HPF compiler are:

SBAC-PAD'99 1 lth Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 19

• Message vectorization: Communication analysis is per­
formed to move communication to the outermost pos­
sible loop. This enables the compiler to send the data
of an array in a single message instead of sending the
data of that array element by element. This is the most
important optimization technique done by the compiler
in terms of improvement to execution time. Any im­
provement to the compiler to recognize and perform
communication vectorization, and any code tuning by
the user to ex pose message vectorization to the compiler
can contributc significantly to the decrease in execution
time o f an application.

, Elimination of redundant communication statements:
Communication analysis within single loopnests and
across Ioopnests (within the same compilation unit)
is performed to eliminate unnecessary communication.
The compiler attempts to eliminate a message with a
source processor set P,, a destination processor set Pd.
and a data set D i f there exists an earlier message from
P, to Pd with a data set D 1 where D Ç D 1 and the data
in D 1 is not invalidated by write statements between the
two messages.

, Recognizing communication Patterns: Broadcast op­
erations, nearest neighbor communication, and reduc­
tion operations are recognized in order to generate ef­
ficient communication. The reduction operations that
are recognized are +. - ,* · f, min, max, maxval, and
minval.

, Message Combining: In order to reduce the overhead
o f message startup time, communication statements for
different array variables are combined in to a single mes­
sage when possible. This is, in essence, similar to com­
munication vectorization: message vectorization com­
bines a large number of small messages into one Iarge
message, while message combining coalesces a small
number of large messages into one larger message.
Given that the number of message combined is small,
the improvement is not substantial , especially i f we con­
sider the drawback of having a very big message.

In addition to communication generation, the compiler is
also responsible for computation partitioning which, in its
simplest form, consists o f adding guard statements when nec­
essary to ensure the owner computes rule. A guard IF state­
ment is needed around every defining statement to make sure
that it will be executed on the processors owning the data
being defined (owner computes rule does not apply to re­
duction). In its ideal form, computation partitioning consists
of parallelizing loops by shrinking loop bounds so that ev­
ery processor iterates over a small set o f iterations and avoid
adding any guard statement. In Figure l.b, the loop bounds
have been successfully reduced and no guard statement is
needed around the assignment statement. Sometimes, a com­
bination of loop bound shrinking and guard statement inser-

f • s.,,.. eode 4 :&: in Fi91Jre l .b for deUr~t~lnlng i:l!O nMtlon about l ocal • t

f • arraya A and B and a llocat.ing th.., ia not ahown hare. • J

! •alloc:ate eormam i c at ion but!er • t
Sha iU • i own_ l • 1·3)
sh e l21 • 211tn liO'IIITI_u,lOOI • t - l)
cal l _xl hpf_a llocate_co,..,uution_bufter (bu((, S h e l

t • C01mL!n1cation code • t
U' (C'Uard_ex preadonll then

do tsr• •.•
I f 1 . .. J then

call _xlhpf_nbre c e iva_aec:tlona CProc_td, PSS, bu!f, OSRI
end i f

and do
end if
1! CCUa rd_ax pr e .. ion21 than

do t•r • ...
1t (non_local_exp re .. ion) then

..
c:-.11 _xlhpf_ .. n~ .. ctlona (Proc_ td, PSR, b, DSS I

•1••
call _ x lhpt_paek._heal_bloc:ks Cb . buff . DSS. PSRI

end lf
•nd do

•nd tt

1 ~ COt."p.!Ution ~rt.t.tloning • J
do I .. IIIAX liown_l. 41,a.1n {icwn_u, 1001 . 1

a l lJ • bu!! 11 • li • a CI I
• nd do

t • Freeing l oca l data • 1
c a ll _xlhpt_d .. llocat e lbu! ft
cal l _xlhpf_ d•• lloc• telal
ull _;clhpt_d .. llocne tbl
••d

Fig. 2. Overview of lhe Changes Wilhoul Overlap Region

tion are needed to ensure a correct execution o f the code.
The new expressions created by loop bound shrinking and

guard statement can sometimes be too complex. Hence op­
timization techniques for computation partitioning are also
needed. Among the techniques used by XL HPF compiler,
we can mention:

• Simplification of expressions used in guards and shrunk
Joop bounds. These expressions contains severa! calls
to max, min, and other routines.

• Guard motion: I f the expressions in a guard statement is
loop-independent, then the guard is moved outside the
loop (it is moved to the outermost possible loop).

• Merging guard statements: If the guard expressions
of two adjacents statements are similar, then only one
guard is used for both statements.

III . HPF PERFORMANCE ON SP2

A. Benchmark Analysis

In order to analyze the performance of XL HPF compiler,
a subset of the SPEC92 benchmarks are selected for execu­
tion on a 16-node SP2 machine. The speedup obtained for
these benchmark applications shown in Table I ranges from
almost linear speedup (grid2) to poor speedup (pdelpar).
This speedup is obtained by dividing the execution time of
the serial version (which is obtained by using the XL HPF
compiler with the option -nohpof specified and which gen­
erates code similar to the one generated by the XLF90 com­
piler) by the execution time o f the parallel version. Grid2 h as

20 SBAC-PAD '99 li th Symposium on Computer Architecture and High Performance Computing -Natal - Brazil

a computational intensive loopnest where mosto f the execu­
tion time is spent. By analyzing the SPMD code generated
for this criticai part of the code, it can be noticed that there
are three factors that contributed to the efficient execution
of the code: I) loops in the loopnest are parallelized, 2) ali
communications have been pulled outside the loops and vec­
torized. 3) only nearest-neighbor communications are used.
This type of communication is fast because the code gener­
ated by the compiler is simple and communication is done
through thc overlap region and not through communication
buffers as cxplained in the previous section.

Among the rest of the applications, both Tomcatv2 and
Shallpar90 show good speedup. For Tomcatv2, the code is
computation intensive but there is no particular Joopncst or
part of the code that is consuming most of the execution
time. Hence, the entire code needs to be analyzed. The ar­
rays used in Tomcatv2, a li two-dimensional arrays, are dis­
tributed in a BLOCK manner in one dimension and collapsed
in the other dimension. This reduccs communication over­
head cspecially when Jarge number o f communication state­
ments are needed but disables parallelism in the collapsed
dimension. Disabling parallelism in one dimension is not
a drawback as long as enough parallelism can be extracted
from the other dimension. It is usually a good practice to
distribute arrays involved in communication (especially for
non-nearest neighbor communication) in one dimcnsion only
and collapse the rest so that the overhead o f communication
does not bccome too expensive (computation of data sets to
be sent and received, processors sets involved in the com­
munication, etc are performed in one dimension only). Even
though the data distribution for this application is efficient
and loops have been parallelized by the compiler, the Jarge
number o f reduction communications and, to a Jesser cxtent,
the Jarge number o f nearest neighbor communication are the
major factors contributing to the non-linear speedup o f Tom­
catv2. Similar analysis can be done for Shallpar90 to explain
its reasonably good but not linear speedup.

TABLE I

SPEEDUP FOR A SUBSET OF SPEC92 ON IBM SP2 WITH XL HPF

COMPILER

11
Bcnchmark ~~-=--r-~-r-S::'=pee.---'dup~---.--.-,........--!tll

I PE 2 PEs I 4 PES I 8 PEs 16 PES
Grid2 1.00 1.98 3.94 7.75 15.10
Shp:u90 0.89 1.64 3.18 5.77 NA
Tomcatv2 0.98 1.93 3.68 6.78 11.74
Swm256par 0.97 1.58 2.61 3.86 5.02
Pdelpar 0.93 1.55 1.95 2.63 3.11
Trans1par 0.14 0 .19 0.30 0.52 0.81

As we move down the list in Table I, Pdelpar and
Smw256par show poor speed up. For Pdelpar, only near-

est neighbor communications are generated by the compiler.
However, the code is not computationally intensive. Hence,
communication overhead had more negative effect on the
speedup for Pdel par than for the previously analyzed appli­
cations. In addition to communication, there are few other
factors that contributed to the unsatisfactory speedup: I) An
array is redistributed when entering the major subroutine (re­
Jaxation subroutine) and then restored back to the old dis­
tribution after returning from the subroutine. 2) temporary
arrays are generated by the compiler with sizes determined
at runtime (expensive memory overhead because of runtime
allocation on the heap). Similar observations can be noticed
to justify the poor spcedup for Smw256par.

Finally, the last application in Table I shows a big slow­
down. Translpar is a small program that just consists of
transposing a large array and assigning the result to another
array. Thus, the whole program consists mainly of doing ex­
pensive communications. The two-dimensional arrays used
in this application are distributed along both dimensions.
This increases the overhead of communication given that
send data set information, receive data set information, pro­
cessar set information, etc. are computed for both dimen­
sions. The big slowdown for trans I par should be expected
when executed on a distributed memory parallel machine.
However, it can be noticed from Table I that the execution
time o f Trans I par on 16 processors is getting dose to the se­
rial execution time. Hence, i f this application included some
regular computational code after the array transposition, then
satisfactory speedup may be obtained for large number of
processors.

B. Serial Execution vs Parai/e/ Execution on One Processar

A important observation that can be seen in Table I is the
difference in execution time between the serial versions of
the applications and their corresponding parallel versions ex­
ecuted on one processar (I PE column in the table represents
the serial execution time divided by the parallel execution
time on one processar). Both versions are obtained using the
same XL HPF compiler. This difference is due to the com­
plex SPMD code generated by the compiler for the parai­
lei version. The code portability principie expected by HPF
programmers is violated when the difference between both
versions becomes large. From Table I, this difference seems
acceptable for most applications (except for Trans I par). It
is usually high for code that requires non-nearest-neighbor
communication. This type of communication is performed
using buffers and the actual computation uses the data from
the buffers. Hence, even for code executing on one pro­
cessar, local communication is performed for non-nearest­
neighbor communication through the creation of communi­
cation buffers and packing data into the buffers. Another fac­
tor contributing to the difference in execution time between
the two versions is the low levei optimizer (back-end com-

SBAC-PAD ~99 llth Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 21

piler) which makes a better job optimizing the serial version
than the parallel version because of the complexity of the
latter one. Future improvement to the code generation and
optimization of the SPMD code should reduce the difference
between the two versions.

IV. PERFORMANCE PORTABILITY ACROSS
ARCHITECTURES: SMP CASE

Obtaining acceptable speedup for a parallel appl ication is
usually achievable [SUB 98) [ELI 98). However, obtain­
ing simi lar speedup without any large tuning effort when
the application is ported to another machine is quite often
a challenge. This has turned away many potential parallel
programming users because of the extra overhead associated
with porting code. By being the first standard parallel high
levei language, HPF solved many portability problems for
parallel programmers. But, does it solves the performance
portability problem?. In order to investigate this issue, we
execute our SPEC92 benchmark subset on an IBM SMP, and
o n a cluster of IBM SMP machines using the same XL HPF
compiler which has been mainly used by programmers, so
far, for the SP distributed memory machines.

An HPF compiler creates SPMD code. In order to run this
code, a parallel environment creates N processes (N is spec­
ified by the user as the number of processors to be used).
Each Proccss is exccuting the same object code. Processes
communicate among themsclves using the Message Passing
Interface (MPI) library. In an SMP environment, threads
are attached to these processes. Data communication among
threads is more efficient than the traditional communication
between processes: The MPI, in a thread based environ­
ment, recognizes when communication is local within the
SMP node and when communication is between two differ­
ent nodes in a cluster of SMP nodes. For local communica­
tion, a simple copy o f the datais performed instead ofthe the
more costly send/receive.

TABLE 11

SPEEDUP FOR A SUBSET OF SPEC92 USING XL HPF COMPILER ON A
CLUSTER OF TWO 8-PROCESSOR IBM SM P MACHINES

Benchmark Speedup
Number o f PEs I PE 2PEs 4 PEs 8 PEs 12 PEs 16 PEs
Grid2 1.01 2.00 3.94 7.54 10.77 13.79
Shpar90 0.95 1.89 3.40 6.43 7 .78 12.61
Tomcalv2 0.97 1.79 3.25 5.00 6 .74 7.60
Swm256par 0.82 1.43 2.46 3.32 3.11 3.44
Pdelpar 0.93 1.61 2.33 2.85 2.85 3.22

Table II shows the speedup for the subset of SPEC92 us­
ing XL HPF compiler on a cluster of two 8-processor SMP
machines. It can be noticed from the table that the speedup
results obtained are comparable to the ones for the SP2 ma-

chine (Table I). No major difference in speedup can bc no­
ticed between the two platforms. This is encouraging for
HPF users who consider performance consistency as a ma­
jor concern. By focusing only on the results of a single SMP
node (I, 2, 4, 8 PEs columns in Table li), it can be noticed
that the difference in speedup between an SMP machine and
an SP2 machine is small. However, we would have expected
to get more improvement in speedup in favor of SMP given
the promise of the parallel environment to recognize same
node communication and execute them efficiently. The parai­
lei environment we are using is still in its early development
stage and we may get better results for a single SMP node in
the future. By analyzing the speedup for the cluster of two
8-processor SMP nodes (last two columns in Table 11), it can
be noticed that the difference in speedup between an SP2 and
a cluster of SMP gets bigger (and is in favor of SP2). This is
expected because of the expensive communication overhead
across SMP nodes in a cluster.

V. PERFORMANCE PORTABILITY ACROSS HPF
COMPILERS

The experiments described in the previous section show
encouraging results for the performance portability of HPF
code across platforms. Another major aspect o f performance
consistency is portability across compilers. Parallel program­
mers demand to get approximately the same performance
for their applications when they switch to another compiler.
While this goal has not been currently reached [NGO 97) as
HPF compilers are still immature and are in early stages of
development, we should be able to approach this objective in
the future once most of the data parallel optimization tech­
niques are well understood and implemented.

Many data parallel compiler optimization techniques
(some of which are briefly described at the beginning of the
paper) are implemented in various HPF compilers. However,
an attempt to implement a particular optimization on some
code may not always be successful by ali compilers espe­
cially with the early version of the HPF compiler releases.
While waiting for these optimizations to be more aggressive
and their implementation to be more robust, the user may
need to write better code, add more directives provided by
the language so that the compiler can generate better code.
This results in a better portability among compilers given that
a well written code is more likely to be portable across com­
pilers. In the remainder ofthis section, we present some tech­
niques and recommendations that the programmer can use to
write code more likely to be portable across compilers.

A. Data Distribution

Given the importance of data distribution on the perfor­
mance of HPF code, this task is performed by the user.
The main objective of good data distribution is to achieve
load balancing without introducing excessive communica-

22 SBAC-PAD'99 IIth Symposium o'n Computer Architecture and High Performance Computing- Natal- Brazil

tion overhead. In order to achieve this and increase the
chance of having portable code across compilers, the user
should be aware of some rules and hints about data distribu­
tion:

Dimensions with expensive communication should be
collapsed. In the example ofFigure 3, communication is
dóne inside the j loop because of the data dependence.
Fortunately, the compiler interchanges the j loop with
the i loop and vectorizes communication by pulling it
outside the i loop. This vectorization would not have
been legal without loop interchange. However, this is
still an expensive communication given that it is still
nested within a loop (j loop). Collapsing the elements
of an array dimension wi th expensive communication
(such as communication inside loops, irregular commu­
nication, ...) instead of distributing them should result
in a faster execution of the code. Hence, a distribution
of (BLOCK,*) for array A in the code in Figure 3
is more efficient than a (BLOCK , BLOCK) distribu­
tion.

integer, dimension (100 , 100) :: A

! hpfS DISTRIBUTE (BLOCK, •) :: A

Do i = 1 , 100
Do j = n+1, 100

A (i, j) = A (i, j -n) • c
End d o

End d o

End

Fíg. 3. Code with Expensive Communication if Dislribulion Changes
to (BLOCK,BLOCK)

• Theoretically, it is beneficiai to switch a distribution
of an array from BLOCI< to CYCLIC when the
B LOC J(distribution causes load imbalance. How­
ever, the expressions used to compute the guards,
the new loop bounds, the send/receive processor sets,
and send/receive data sets are too complex for the
CY C LIC distribution . The load balancing benefits
obtained by using the CYCLIC distribution may be
canceled by its complex code generation. Hence, the
CYCLIC distribution should not be used unless a
large load imbalance exists using other distributions.
In the example of Figure 4, a CYCLIC distribution
may seem appropriate because of the triangular itera­
tion space. However, the granularity of the code is not
large enough to get any load balancing benefits because
of the complex code generated by the CYCLIC dis­
tribution. Experimentation with the code indicates that
the granularity o f the code in Figure 4 should be at least
ten times the current granularity to get any improvement
with the CYCLIC distribution. No communication is
needed for the code in Figure 4. An even larger gran-

ularity would be needed for the CYCLIC distribution
to be beneficiai i f the code involves communication.

integer, dimension (1 00,100) .. A, B

! hp fS PROCESSORS P(4,4)
!h p f$ DISTRIBUTE (BLOCK) o nto P . . A, B

Do i = l. 100
Do j = l,i

A(i ,j) B(i ,j) • A(i,j)
End do

End d o

End

Fíg. 4 . CY CLIC vs BLOC /{ Dislribution

• Small arrays should be replicated instead of distributed.
This results in some code being redundantly executed
by every processor because o f the owner computes rule.
However, thc benefits of avoiding communication and
avoiding gcnerating complex code for computation par­
titioning should outweigh the loss of parallelism for
small arrays.

• For a P number of proccssors available, it is usually
preferable to use them as a one dimensional processors
grid and distribute arrays in just one dimension while
collapsing the other dimensions. As indicated in section
2, complex expressions are sometimcs generated in the
new loop bounds. Extracting the parallelism in a loop­
nest from one loop only by modifying the bounds of
that loop may reduce the overhead of computation par­
titioning. In addition, communication overhead may be
reduced by computing data and processor sets in one di­
mension only. Better yet, communication may bc elim­
inated when collapsing dimensions (as is the case in the
example ofFigure 3).

Whcn considering to apply the above techniques and oth­
ers for a large program, they may conftict with each others in
different parts of the code. A distribution that is beneficiai in
one part of the code may become inefficient in another part.
The user should investigate the code and determine the parts
that are more criticai to the overall execution time. Criticai
parts o f the code should be given a priority in the data distri­
bution choice.

B. Use of Directives

• The INDEPENDENT Directive can be used by the pro­
grammer before a DO or Forall construct to indicate to
the compiler that the iterations of a loop can execute in
any order because o f the inexistence o f data dependence
inside the loop. This should be especially used for loops
with complex code for which the compiler may not de­
termine that no data dependence exists in the loop and
consequently generates inefficient code. For the exam-

SBAC-PAD'99 1 lth Symposium on Compute r Architecture and High Performance Computing- Natal- Brazil 23

pie in Figure 5.a, the code generated by the compiler
is inefficient given that communication occurs at the in­
nermost loop. For a 4 x 4 processor grid, each pro­
cessor generates 25 x 25 send/receive messages of size
n where n is the size of one element of A (for some
of the processors, these messages are local). The user
can transform the loopnest in Figure 5.a in to the equiva­
lenttwo loopnests in Figure 5.b using the parallel region
transformation presented in [ZAA 94). For the trans­
formed code, the compiler uses the assertion provided
by the INDEPENDENT directives to pull communica­
tion outside the loopnests. For each loopnest, every pro­
cessor vcctorizes ali of its send/receive messages into a
single message. Hence, every processor generates two
send/receive messages only (one for each loopnest) but

of size 2~'. The transformed code clearly outperforms
the initiai code because of the large overhead of com­
munication startup time. Without the INDEPENDENT
directives in Figure 5.b, compilers may not be able to
recognize that communication can be pulled outside the
loop.

int.~u . din.enat.o n 1100. 1001 :: A. B

:hpU DlS11U BUtt CBLOCK, BLOCXI :: A. B

!hpf$ Ind epende n t
1nt.e9er. dim.r.sicn (100 .1001 : A.B 0o 1 • 1. 100

! hpts Jndependent
lhpfS. OISTRtBt.rrt! IBLOCK. BLOCK, : · A. B Do j • 1.100

A(!.j) • A(j.l l • Bll.j l
Do i : 1. l 00 End do

Do) a 1. 100
A(!.,)I "' Al).l l • 8Ct, 1J

En:t do
End do

End

End do

lhpU l ndependent
Oo 1 • 1, 100

:hpt S lndepende nt
Do l • l. l -1

AC1. :J) • AC),iJ • BCL:J)
&nd do

rnd do

End

Fig. 5. Use oi INOEPENDENT in Complex Code

• Loop containing procedure calls are not parallclized.
However, the user can use the PURE directive to assert
to the compiler that the procedure has no side effect.
With this directive, calls to a procedure within a loop
can be executed in any order and hence be parallelized
without any need for a complex interprocedural analy­
sis.

C. Compile r Temporary Arrays

The compiler needs sometimes to create temporary arrays
because of data dependence in array assignments, FORALL
constructs, WHERE constructs, etc. A compiler temporary
array is aligned with a user array chosen by the compiler
through some heuristics. The compiler may not choose an
efficient alignment especially for complex code. In addition,
the compiler may need to create and allocate temporary ar­
rays at runtime (expensive operation) i f the size of the tem-

porary array can not be determined at compile time. The
programmer can transform the code so that creating tem­
porary arrays, finding an appropriate alignment, and storing
into them are explicitly done by the user in the program.

D. Code Simp/ification

Compilers occasionally do not generate efficient commu­
nication statements or code partitioning for irregular code.
The user should simplify the code even at the expense of
writing longcr programs. In Example 6.a, the complex loop
bounds results in complex communication generation for ar­
ray B. The user can transform his code into two loops as
shown in 6.b. The first loop has the role of making the
communication generated by the compiler simpler. More
data than needed are transferred but the compiler is able to
generate efficient communication because ofthe simple loop
bounds. The second loop does the actual computation.

l nt.ege r , d l mension 1100, 1001 :: A, B

hptS 0 1S'l1UBU'J'E t8LOCK, BLOCKI onto P: :A,

Do I • 1. 100
Do J • l • t.100·i

AU,JI • BC J. I I • A U .Jt
End do

End do

End

i nt.•g • r . d b wns lon 1100, 1001 :: A. B
int.eger . cUDens lon 1100,100) ; : T""

lhpts OIS"I'Rl81JTEtBt..OCJt , BLOCJtt onto P :: A, B
!hpfS Dl STIU BIJ'I'E tBt.OClt.BLOCKt onto P :: Teq)

Do I • 1.100
Do J • 1, 100

Te:Y"P U .J) • BtJ, !J
End o

Endo
Oo I • 1,100

A. CI ,J' I • Te~ II .J' I • A. (I ,.J I
End o

Endo

Fig. 6. Simplify Code

VI. PERFORMANCE COMPARISON WITH OTHER

FORTRAN COMPILERS

The experiments presented in section 4 indicates that there
is no major performance changes noticcd between executing
HPF code on a distributed memory SP2 machine and exe­
cuting the same code on an SMP machine (or a cluster of
SMP machines) using the same XL HPF compiler for both
executions. The issue addressed in the experiment of this
section is how much improvement (i f any) we can obtain by
using a compiler specifically designed for an SMP environ­
ment. For this matter, we use the XL Fortran 90 paralleliz­
ing compiler that automatically parallelizes code by creating
parallel threads to be executed on IBM SMP machines. The
same subset of Spec92 benchmark applications are used here
without any change in the code (HPF directives in the code
are ignored by the XL Fortran 90 parallelizing compiler).

Table III shows the speedup obtained for both compilers
(the speedup for XL HPF are reproduced from Table 11). For
some applications, the XL HPF Compiler gives slightly bet­
ter results. For others the XL Fortran 90 Compiler gives bet­
ter speedup (The speedup for XL HPF is taken from Table

24 SBAC-PAD'99 11th Symposium on Computer Architecture and.High Peiformance Computing- Natal- Brazil

li). We can conclude fonn this experimenl lhal an HPF com­
piler can generate SPMD code lhal is efficienl enough for
execution on a shared memory syslem, and lhal il can com­
pete with compilers specifically targeting the shared mem­
ory model . The overhead of communicalion code generated
by an HPF compi ler seems nol te be more expensive than
the overhead o f synchronization generated by the SMP com­
piler. Note that the XL Fortran 90 and XL HPF compilers
both come in the same product. With the appropriate com­
piling options, the user can ei ther invoke the HPF compiler,
or the Fortran 90 SMP compiler.

Anolher experiment lo consider in lhe fulure is for lhe user
to tune lhe benchmark applicalion code and parallelize lhe
code by using the OpenMP directives. OpenMp is a set of
compiler directives and callable runtime library routines that
extend Fortran to express shared memory parallelism. The
OpenMP directives have the same role as HPF directives and
are designed to exploit distributed memory parallelism. Such
an experiment would be more f ai r for a perfonnance compar­
ison between XL HPF and XL Fortran 90 compilers. Given
that this paper only includes experiments with mínima! code
changes, this experiment is beyond the scope o f the paper.

TABLE 111

PERFOR MANCE COMPARISON FOR A SUBSET OF SPEC92 BETWEEN

XL HPF AN O XL FORTRAN 90 SMP COMPILERSON AN 8-CPU IBM

SMP MACHI NE

11 Benchmark
111 PE

Speedup
8 PEs 11 2 PES t 4 PEs

Grid2: XL SMP 0.93 1.77 3.53 6.89
XLHPF 1.00 2.00 3.94 1.54
Shpar90: XL SMP 1.00 1.69 3.43 7.08
XLHPF 0.95 1.89 3.40 6.43
Tomcatv2: XL SMP 0.99 1.78 2.07 NA
XLHPF 0.97 1.79 3.25 5.00
Pdelpar: XLSMP 0.93 1.78 3.00 3.36
XLHPF 0.93 1.61 2.33 2.85
Swm256par: XL SMP 1.00 1.89 3.51 5.95
XLHPF 0.82 1.43 2.46 3.32

VII. CONCLUSION

In this paper, perfonnance results and analysis for a subset
of the SPEC92 benchmarks are presented for an SP2 ma­
chine, Obtaining good speedup for the code is not enough
as parallel programmers require portability of the code. One
o f most complex aspecls of code portability is perfonnance.
Results from this paper indicates the perfonnance obtained
from HPF compilers can be portable across different archi­
tectures. This has been shown by running the applications on
a distri buted memory system and on a shared memory system
using the same compiler. Comparable speedup are obtained
for both systems. For perfonnance portability across com­
pilers, some HPF programming techniques are presented in

this paper to allow the user to write efficient and simple HPF
code which increases the chances of obtaining portable code
across compilers.

REFERENCES

[BOZ 94) Z. Bozkus. A. Choudhary, G. Fox. T. Haupt, S. Ranka, and
M. Wu. Compiling Fonran 900/HPF for Distributed Memory
MIMO Computers. Jmmwl of Parai/e/ and Distributed Com­
puting, 15-26, April 1994.

[BOZ 95) Z. Bozkus, L. Meadows. S. Nakamoto, V. Schuster, and M.
Young. Compiling High Performance Fonran. In Proceedings
o f th~ S~v~nth SIAM Conferenc~ an Parai/e/ Procu.ringfor Sci­
~trtific Camputing, 1995

[CHA 92) B. Chapman, P. Mehrotra, J. Van Rosendale, H. Zima. Program­
ming in Vienna Fonran. In Scimtific Programmitrg, 3 1-50, Au­
gust 1992.

[ELI 98) V. Elisseev. Parallelization ofThree-dimensional Spectral Laser­
plasma lnteraction Code Using High Performance Fonran. In
Journal of Computers i11 Physics, 173-180, March 1998

[FRU 98) M. Frumkin, H. Jin, J. Yan. lmplemcntation of NAS Parallel
Benchmarks in High Performance Fonran. In NAS Technical Re­
por/ NAS-98-009, September 1998.

[GRO 94) W. Gropp. E. Lusk, A. Skjcllum. Using MP/: Portable Parai­
lei Processi11g with rhe Me.uage-Passing Interface. MIT Prcss,
1994.

[GUP 94) M. Gupta, E. Schonberg. H. Srinivasan. A unified data-flow
framework for optimizing communication. In Proceeditrgs of
lhe Sevemh Workslwp o11 Latrguages and Compilers for Parai/e/
Computing. August 1994.

[GUP 95) M. Gupta, S. Midkiff. E. Schonberg, V. Scshadri, O. Shields, K.
Wang, W. Ching, and T. Ngo. An HPF Compiler for the IBM
SP2. In Proceeding.v of Supercomputing '95, December 1995.

[H IR 94) S. Hiranandani, K. Kennedy, C. Tseng, Young. Evaluating Com­
piler Optimizations for Fonran O. In Journal of Parai/e/ and
Distributtd Compllling. 1994

[HPF 94) High Performance Fortran Language Specification, Version 1.1.
CRPC-TR92225. Center for Research on Parallel Computation,
Rice University. Houston, 1994.

[JIA 97) O. Jiang, H. Shan, J. Singh. Performance Portability of Appli­
cations and Optimizations Across Shared Addrcss Space Mul­
tiprocessors. In ACMISIGPU.N Symposium on Principies and
Practices of Parai/e/ Pmgrcunming. June 1997

[NGO 97] T. Ngo, L. Snyder, B. Chamberlain. Ponable Performance Of
Data Parallel Languages. In Procuditrgs o f Supercomputing 97,
1997

[SUB 98) J. Subhlok. P. Steenkiste. J. Stichnoth. P. Lieu. Airshed Pollution
Modeling: A Case Study in Application Development in an HPF
Environment.ln IPPSISPDP 98 Proceedings , April 1998.

[WOL 96) M.J. Wolfe. High Performance Compilersfor Parai/e/ Comput­
ing. Addison-Wesley. Redwood City, CA. 1996.

[ZAA 94) A. Zaafrani. M. !to. Parallel Region Execution of Loops with
Irregular Dependencies. ln lmernational Confertnce on Parai/e/
Processing. August 1994.

