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Abstract—

High Performance Fortran (HPF) is a data-parallel programming
language that allows the programmer to specify the data decomposition
onto the processors while the compiler takes care of the tedious tasks
of communication generation and computation partitioning. Shifting
some of the complex tasks from the user to the compiler should encour-
age programmers to write and port code to parallel machines especially
if the compiler implements these tasks efficiently. In this paper, perfor-
mance results and analysis of a subset of the SPEC92 is presented for
the XL HPF compiler on IBM SP2 machines. In addition to obtain-
ing good performance from the compiler, one of the the main concerns
of HPF users is portability. Experimental results and analysis are pre-
sented in this paper to investigate performance portability (consistency)
first across multiprocessor architectures and then across compilers. For
performance portability across multiprocessor machines, the same XL
HPF compiler used for the IBM SP2 distributed memory machine ex-
periment is also used to compile and execute the same applications but
on IBM SMP machines. The comparable speedup and behaviour ob-
tained for both machines indicates that HPF compilers can be portable
across different architectures. For performance portability across com-
pilers, various HPF programming techniques and recommendations are
introduced to increase the chances of obtaining performance consis-
tency with different HPF compilers.

Keywords— HPF, performance, portability, compiler, SPMD, dis-
tributed memory, shared memory.

I. INTRODUCTION

High Performance Fortran (HPF) is a programming lan-
guage designed to support the data-parallel programming
style by introducing a set of directive extensions to Fortran
90 [HPF 94]. It allows the programmer to specify the data
decomposition onto the processors while the compiler takes
care of the tedious tasks of communication generation and
computation partitioning. In addition to the data decompo-
sition directives, HPF provides other directives to help the
compiler generate efficient code. Even though the main tar-
get machines for HPF users are distributed memory paral-
lel machines, HPF code should also execute efficiently on
shared memory machines.

Shifting some of the complex tasks from the user to the

*work was done when authors were at IBM Toronto Lab

compiler encourages programmers to write and port code to
parallel machines provided that the implementation of these
tasks is done efficiently. Hence, the existence of good com-
pilers is necessary to make the use of HPF widespread among
the parallel programming community. Early users of HPF
requested robust compilers, full implementation of the lan-
guage, good performance from compilers, availability of de-
buggers and performance analysis tools. In addition, one
of the main concerns of parallel programmers is portability
which was a driving force behind the creation of HPF and its
standard committee [HPF 94].

In this paper, we analyze the performance of some HPF
benchmarks using the XL HPF compiler on IBM SP2 ma-
chines. The speedup obtained for some applications is
quite large. For many other parallel programming languages
and environments such as MPI [GRO 94], obtaining good
speedup is achievable [SUB 98] [ELI 98]. However, porting
the code to other target machines and obtaining similar per-
formance is usually a challenging task that requires substan-
tial tuning effort [JIA 97]. We investigate in this paper the is-
sue of performance portability of HPF code across machines:
the same XL HPF compiler used for the IBM SP2 distributed
memory machine experiment is also used to compile and exe-
cute the same applications (without any change or tuning) but
on IBM SMP machines, a shared memory parallel machine.
Our experiments indicate that comparable speedup results
and behaviour are obtained for both platforms. In addition
to performance consistency across machines, this paper ad-
dresses performance portability across compilers. While it is
widely known that the performance obtained for same appli-
cations on same platform using different compilers is occa-
sionally not consistent [NGO 97] for currently available HPF
compilers, we attempt to reduce these inconsistencies by in-
troducing HPF programming techniques and recommenda-
tions that should increase the chances of obtaining compara-
ble performance with different HPF compilers.

The remainder of this paper is organized as follows. Sec-
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tion 2 presents an overview of the XL HPF compiler by
explaining the Single Program Multiple Data (SPMD) code
generated by the compiler and presenting some of the impor-
tant optimization techniques implemented by the compiler.
Section 3 analyzes the performance results obtained for a
subset of SPEC92 benchmarks using the XL HPF compiler
on an IBM SP2 machine. In Section 4, experiments simi-
lar to the ones in Section 3 are presented but for IBM SMP
target machines. machines. Section 5 introduces some HPF
programming techniques that should make compilers more
likely to generate efficient code. Section 6 shows the per-
formance numbers for the subset of SPEC92 benchmarks on
an IBM SMP machine but using a compiler specifically tar-
geting the SMP model. Finally, concluding remarks can be
found in Section 7.

II. AN OVERVIEW OF XL HPF COMPILER

The main target platforms for HPF are distributed mem-
ory parallel machines. Given the importance of data distri-
bution in such environment, this task is performed by the
user through HPF directives. The compiler uses this data
distribution information and the owner computes rule (every
processor is defining only the data it owns) to extract paral-
lelism from HPF code. Hence, the speedup obtained for an

~annlicatian denends majnly. on:

« the data distribution (BLOCK, CYCLIC, or replicated)
described by the user with directives such as align and
distribute.

» the code generated by the compiler after transforming
the HPF code into SPMD code. The main tasks per-
formed by the compiler in this transformation is the cre-
ation of local data on each processor, automatic gen-
eration of communication statements, and computation
partitioning [GUP 95] [BOZ 94] [HIR 94].

Figure 1.a shows a simple example of an HPF program.

The SPMD code generated by the XL HPF compiler for this
example is shown in Figure 1.b: The compiler first generates
code to compute descriptor information about local arrays
A and B before their allocation on each processor. When
executing the SPMD code, processor p (0 <= p < N) al-
locates an array A and an array B both of size (LB : UB)
such that LB = p * ceiling(100/N) + 1 — overlap and
UB = (p+ 1) * ceiling(100/N) + overlap. The overlap
amount is two by default but can be set to any value by using
the appropriate compiler option. This additional amount of
memory allows the compiler to sometimes avoid the creation
of communication buffer for nearest neighbor communica-
tion [WOL 96]. In this case, data is received into the overlap
entries, and computation then proceeds with local accesses
instead of a communication buffer. After the allocation of
local arrays A and B, the compiler generates code to com-
pute the sets of data to be received, the sets of data to be sent,
the processor sets involved in the communication. After gen-

integer, dimensien (100) :: A, B

DISTRIBUTE (BLOCK) onto P :: A, B
do i = 2,100

Ali) = Bli-1)
end do

* Ali)

end

{(a) Simple Example of HPF Code

/* Bum PE and Proc_ID are l-dimensional
/* dimensionality of
call

arrays cof size equal to the
the processor configuration. */
~xlhpl_get_pe_index{l, Num_PE. Proc_ID)

/* Determine information about array A and B. */

Glebal(l) =1

Glcbal(2) = 100

Distribution(i} = (100 < Num PE(1) - 1) / Num_PE(1l) /* BLOCK Size */
Discribution(2) = 0 /* 0 indicates a BLOCK Distr
fown_l = 1 + ({100 » Mum_PE(1) - 1) / Num_PE(1)) * Proc_ID(1)

fown_u = ((100 +« RNum PE(]) 1) 7/ Num_PE(1)) =« lewn_l - 1

/* Each precessor allccates it own chunk of array A and B.*/
call _xlhpf_allocate (A. Proc_ID. Glebal,
call _xlhpf_allocate (B. Proc_1D, Global,

Distribution}
Distribution)

/* Communication code */
if (Proc_ID(1) .gt. 0)
/* Code computing
/* Set Receive)
call

then

the arrays PSS (Processor Set Send) and DSR (Data *
is not shown.
xlhpf_nbreceive_sections (Proc_ID. PSS, B. DSR)

end if
if (Proc_ID(1) .lt. Num _PE(1)-1) then

/* Code computing the arrays PSR (Processor Set Receive) and DSS !
/* (Data Set Send) is not shown L
call _xlhp!{_send _sections (Proc_1D, PSR, B, DSS)

end if

/* Computation partitioning done through locp bound shrinking®/
do I = max{iown_1,2)., min(iown_u,100)

A (1) = B(I - 1) = ALD
end do

/* Each processor frees its local chunk of
call _xlhpf_deallocate(A)
____call xlhof deallogate!B)
| end

array A and B. °/

ib) Generated SPMD code for Above Example

Fig. I. Generation of SPMD Code

erating calls to send and receive communication routines,
the compiler generates code to perform the actual computa-
tion. For the latter step, computation partitioning is achieved
through loop bound shrinking. Finally, storage for local ar-
rays A and B are deallocated.

Figure 2 shows a pseudo code that emphasizes the changes
obtained if no overlap region is used (ex. B[i-3] is used on
the rhs of the assignment statement of Figure 1.a instead of
B[i-1]). Since the default overlap region of two array ele-
ments is not large enough to allow storing the values of B
that need to be received into the overlap entries, a communi-
cation buffer for B is allocated for this purpose. Given that
all use of array B in the computation part of the code is done
through the communication buffer, local communication has
to be performed by packing local elements of array B into
the buffer (i.e elements of B that exist locally are copied into
the communication buffer).

Given the high communication overhead for a distributed
memory machine, it is essential for an HPF compiler to gen-
erate efficient communication by implementing many of the
optimizing communication techniques [BOZ 94] (GUP 94].
Among the important optimization techniques implemented
in the XL HPF compiler are:

7
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« Message vectorization: Communication analysis is per-
formed to move communication to the outermost pos-
sible loop. This enables the compiler to send the data
of an array in a single message instead of sending the
data of that array element by element. This is the most
important optimization technique done by the compiler
in terms of improvement to execution time. Any im-
provement to the compiler to recognize and perform
communication vectorization, and any code tuning by
the user to expose message vectorization to the compiler
can contribute significantly to the decrease in execution
time of an application.

+ Elimination of redundant communication statements:
Communication analysis within single loopnests and
across loopnests (within the same compilation unit)
is performed to eliminate unnecessary communication.
The compiler attempts to eliminate a message with a
source processor set Py, a destination processor set Py,
and a data set D if there exists an earlier message from
Py to Py withadataset Dy where D C D, and the data
in D; is not invalidated by write statements between the
two messages.

« Recognizing communication Patterns: Broadcast op-
erations, nearest neighbor communication, and reduc-
tion operations are recognized in order to generate ef-
ficient communication. The reduction operations that
are recognized are +, —, *, /, min, maz, mazval, and
minval.

« Message Combining: In order to reduce the overhead
of message startup time, communication statements for
different array variables are combined into a single mes-
sage when possible. This is, in essence, similar to com-
munication vectorization: message vectorization com-
bines a large number of small messages into one large
message, while message combining coalesces a small
number of large messages into one larger message.
Given that the number of message combined is small,
the improvement is not substantial, especially if we con-
sider the drawback of having a very big message.

In addition to communication generation, the compiler is
also responsible for computation partitioning which, in its
simplest form, consists of adding guard statements when nec-
essary to ensure the owner computes rule. A guard IF state-
ment is needed around every defining statement to make sure
that it will be executed on the processors owning the data
being defined (owner computes rule does not apply to re-
duction). In its ideal form, computation partitioning consists
of parallelizing loops by shrinking loop bounds so that ev-
ery processor iterates over a small set of iterations and avoid
adding any guard statement. In Figure 1.b, the loop bounds
have been successfully reduced and no guard statement is
needed around the assignment statement. Sometimes, a com-
bination of loop bound shrinking and guard statement inser-

/* Same code as in Figure 1.b for determining information about local */
/* arrays A and B and allccating them is not shown here. *t

/"allocate communication buffer®/

Size(l) = fown_l « (-1)

size(2) = min (fown_u,100) =« (-3)

call _xlhpf_allocate_computation_buffer (buff, Size)

/* Communication code */
if (Guard_expressionl) then
do isrs...
it (...) then

call _xlhpf_nbreceive_sections (Proc_ld, PSS, buff, DSR)
end if
end dao
end if
if (Guard_expression2) then
do isre
if (non_lecal_expression) then

call _xlhpf_send_sections (Prec_ld. PSR, b, Dss)
else
call _xlhpf_pack_local_blocks(b, buff, DSS, PSR)
end if
end do
end it

/* Computation partitioning */

do 1 = max (iown_1.4).min (iewn_u,100),1
a (1) = buff (1 - 3) +« a (1)

end do

/* Freeing local data */
call _xlhpf_deallocate(buff)
call _xlhpf_deallocate(a)
call _xlhpf_deallocate(b)
end

Fig. 2. Overview of the Changes Without Overlap Region

tion are needed to ensure a correct execution of the code.

The new expressions created by loop bound shrinking and
guard statement can sometimes be too complex. Hence op-
timization techniques for computation partitioning are also
needed. Among the techniques used by XL HPF compiler,
we can mention:

« Simplification of expressions used in guards and shrunk
loop bounds. These expressions contains several calls
to max, min, and other routines.

« Guard motion: If the expressions in a guard statement is
loop-independent, then the guard is moved outside the
loop (it is moved to the outermost possible loop).

« Merging guard statements: If the guard expressions
of two adjacents statements are similar, then only one
guard is used for both statements.

III. HPF PERFORMANCE ON SP2
A. Benchmark Analysis

In order to analyze the performance of XL HPF compiler,
a subset of the SPEC92 benchmarks are selected for execu-
tion on a 16-node SP2 machine. The speedup obtained for
these benchmark applications shown in Table I ranges from
almost linear speedup (grid2) to poor speedup (pdelpar).
This speedup is obtained by dividing the execution time of
the serial version (which is obtained by using the XL HPF
compiler with the option -nohpof specified and which gen-
erates code similar to the one generated by the XLF90 com-
piler) by the execution time of the parallel version. Grid2 has
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a computational intensive loopnest where most of the execu-
tion time is spent. By analyzing the SPMD code generated
for this critical part of the code, it can be noticed that there
are three factors that contributed to the efficient execution
of the code: 1) loops in the loopnest are parallelized, 2) all
communications have been pulled outside the loops and vec-
torized. 3) only nearest-neighbor communications are used.
This type of communication is fast because the code gener-
ated by the compiler is simple and communication is done
through the overlap region and not through communication
buffers as explained in the previous section.

Among the rest of the applications, both Tomcatv2 and
Shallpar90 show good speedup. For Tomcatv2, the code is
computation intensive but there is no particular loopnest or
part of the code that is consuming most of the execution
time. Hence, the entire code needs to be analyzed. The ar-
rays used in Tomcatv2, all two-dimensional arrays, are dis-
tributed in a BLOCK manner in one dimension and collapsed
in the other dimension. This reduces communication over-
head especially when large number of communication state-
ments are needed but disables parallelism in the collapsed
dimension. Disabling parallelism in one dimension is not
a drawback as long as enough parallelism can be extracted
from the other dimension. It is usually a good practice to
distribute arrays involved in communication (especially for
non-nearest neighbor communication) in one dimension only
and collapse the rest so that the overhead of communication
does not become too expensive (computation of data sets to
be sent and received, processors sets involved in the com-
munication, etc are performed in one dimension only). Even
though the data distribution for this application is efficient
and loops have been parallelized by the compiler, the large
number of reduction communications and, to a lesser extent,
the large number of nearest neighbor communication are the
major factors contributing to the non-linear speedup of Tom-
catv2. Similar analysis can be done for Shallpar90 to explain
its reasonably good but not linear speedup.

TABLE |
SPEEDUP FOR A SUBSET OF SPEC92 o~ IBM SP2 wiTH XL HPF
COMPILER
Benchmark Speedup
| IPE | 2PEs | 4PEs | 8 PEs | 16 P
[ Grid2 100 | 198 ] 394 7.5 1510
Shpar90 0.89 1.64 3.18 577 NA

Tomcatv2 0.98 1.93 3.68 6.78 11.74
Swm256par || 0.97 1.58 261 3.86 5.02
Pdelpar 0.93 1.55 1.95 2.63 3.11
Trans1par 0.14 0.19 0.30 0.52 0.81

As we move down the list in Table I, Pdelpar and
Smw256par show poor speed up. For Pdelpar, only near-

est neighbor communications are generated by the compiler.
However, the code is not computationally intensive. Hence,
communication overhead had more negative effect on the
speedup for Pdelpar than for the previously analyzed appli-
cations. In addition to communication, there are few other
factors that contributed to the unsatisfactory speedup: 1) An
array is redistributed when entering the major subroutine (re-
laxation subroutine) and then restored back to the old dis-
tribution after returning from the subroutine. 2) temporary
arrays are generated by the compiler with sizes determined
at runtime (expensive memory overhead because of runtime
allocation on the heap). Similar observations can be noticed
to justify the poor speedup for Smw256par.

Finally, the last application in Table I shows a big slow-
down. Translpar is a small program that just consists of
transposing a large array and assigning the result to another
array. Thus, the whole program consists mainly of doing ex-
pensive communications. The two-dimensional arrays used
in this application are distributed along both dimensions.
This increases the overhead of communication given that
send data set information, receive data set information, pro-
cessor set information, etc. are computed for both dimen-
sions. The big slowdown for translpar should be expected
when executed on a distributed memory parallel machine.
However, it can be noticed from Table I that the execution
time of Translpar on 16 processors is getting close to the se-
rial execution time. Hence, if this application included some
regular computational code after the array transposition, then
satisfactory speedup may be obtained for large number of
Processors.

B. Serial Execution vs Parallel Execution on One Processor

A important observation that can be seen in Table I is the
difference in execution time between the serial versions of
the applications and their corresponding parallel versions ex-
ecuted on one processor (1 PE column in the table represents
the serial execution time divided by the parallel execution
time on one processor). Both versions are obtained using the
same XL HPF compiler. This difference is due to the com-
plex SPMD code generated by the compiler for the paral-
lel version. The code portability principle expected by HPF
programmers is violated when the difference between both
versions becomes large. From Table I, this difference seems
acceptable for most applications (except for Translpar). It
is usually high for code that requires non-nearest-neighbor
communication. This type of communication is performed
using buffers and the actual computation uses the data from
the buffers. Hence, even for code executing on one pro-
cessor, local communication is performed for non-nearest-
neighbor communication through the creation of communi-
cation buffers and packing data into the buffers. Another fac-
tor contributing to the difference in execution time between
the two versions is the low level optimizer (back-end com-
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piler) which makes a better job optimizing the serial version
than the parallel version because of the complexity of the
latter one. Future improvement to the code generation and
optimization of the SPMD code should reduce the difference
between the two versions.

IV. PERFORMANCE PORTABILITY ACROSS
ARCHITECTURES: SMP CASE

Obtaining acceptable speedup for a parallel application is
usually achievable [SUB 98] [ELI 98]. However, obtain-
ing similar speedup without any large tuning effort when
the application is ported to another machine is quite often
a challenge. This has turned away many potential parallel
programming users because of the extra overhead associated
with porting code. By being the first standard parallel high
level language, HPF solved many portability problems for
parallel programmers. But, does it solves the performance
portability problem?. In order to investigate this issue, we
execute our SPEC92 benchmark subset on an IBM SMP, and
on a cluster of IBM SMP machines using the same XL HPF
compiler which has been mainly used by programmers, so
far, for the SP distributed memory machines.

An HPF compiler creates SPMD code. In order to run this
code, a parallel environment creates N processes (N is spec-
ified by the user as the number of processors to be used).
Each Process is executing the same object code. Processes
communicate among themselves using the Message Passing
Interface (MPI) library. In an SMP environment, threads
are attached to these processes. Data communication among
threads is more efficient than the traditional communication
between processes: The MPI, in a thread based environ-
ment, recognizes when communication is local within the
SMP node and when communication is between two differ-
ent nodes in a cluster of SMP nodes. For local communica-
tion, a simple copy of the data is performed instead of the the
more costly send/receive.

TABLE 11
SPEEDUP FOR A SUBSET OF SPEC92 USING XL HPF COMPILER ON A
CLUSTER OF TWO 8-PROCESSOR IBM SMP MACHINES

Benchmark Speedup

Number of PEs |PE | 2PEs | 4PEs | BPEs 12PEs | 16 PEs
Grid2 1.01 2.00 3.94 7.54 10.77 13.79
Shpar%0 0.95 1.89 3.40 6.43 7.78 12.61
Tomcatv2 097 | " 1.79 3.25 5.00 6.74 7.60
Swm256par 0.82 143 2.46 3.32 311 3.44
Pdelpar 0.93 1.61 2.33 2.85 2.85 3.22

Table II shows the speedup for the subset of SPEC92 us-
ing XL HPF compiler on a cluster of two 8-processor SMP
machines. It can be noticed from the table that the speedup
results obtained are comparable to the ones for the SP2 ma-

chine (Table I). No major difference in speedup can be no-
ticed between the two platforms. This is encouraging for
HPF users who consider performance consistency as a ma-
Jor concern. By focusing only on the results of a single SMP
node (1, 2, 4, 8 PEs columns in Table II), it can be noticed
that the difference in speedup between an SMP machine and
an SP2 machine is small. However, we would have expected
to get more improvement in speedup in favor of SMP given
the promise of the parallel environment to recognize same
node communication and execute them efficiently. The paral-
lel environment we are using is still in its early development
stage and we may get better results for a single SMP node in
the future. By analyzing the speedup for the cluster of two
8-processor SMP nodes (last two columns in Table II), it can
be noticed that the difference in speedup between an SP2 and
a cluster of SMP gets bigger (and is in favor of SP2). This is
expected because of the expensive communication overhead
across SMP nodes in a cluster.

V. PERFORMANCE PORTABILITY ACROSS HPF
COMPILERS

The experiments described in the previous section show
encouraging results for the performance portability of HPF
code across platforms. Another major aspect of performance
consistency is portability across compilers. Parallel program-
mers demand to get approximately the same performance
for their applications when they switch to another compiler.
While this goal has not been currently reached [NGO 97] as
HPF compilers are still immature and are in early stages of
development, we should be able to approach this objective in
the future once most of the data parallel optimization tech-
niques are well understood and implemented.

Many data parallel compiler optimization techniques
(some of which are briefly described at the beginning of the
paper) are implemented in various HPF compilers. However,
an attempt to implement a particular optimization on some
code may not always be successful by all compilers espe-
cially with the early version of the HPF compiler releases.
While waiting for these optimizations to be more aggressive
and their implementation to be more robust, the user may
need to write better code, add more directives provided by
the language so that the compiler can generate better code.
This results in a better portability among compilers given that
a well written code is more likely to be portable across com-
pilers. In the remainder of this section, we present some tech-
niques and recommendations that the programmer can use to
write code more likely to be portable across compilers.

A. Data Distribution

Given the importance of data distribution on the perfor-
mance of HPF code, this task is performed by the user.
The main objective of good data distribution is to achieve
load balancing without introducing excessive communica-
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tion overhead. In order to achieve this and increase the
chance of having portable code across compilers, the user
should be aware of some rules and hints about data distribu-
tion:

« Dimensions with expensive communication should be
collapsed. In the example of Figure 3, communication is
done inside the j loop because of the data dependence.
Fortunately, the compiler interchanges the j loop with
the ¢ loop and vectorizes communication by pulling it
outside the 7 loop. This vectorization would not have
been legal without loop interchange. However, this is
still an expensive communication given that it is still
nested within a loop (j loop ). Collapsing the elements
of an array dimension with expensive communication
(such as communication inside loops, irregular commu-
nication, ...) instead of distributing them should result
in a faster execution of the code. Hence, a distribution
of (BLOCK, %) for array A in the code in Figure 3
is more efficient than a (BLOCK, BLOCK) distribu-
tion.

integer, dimension (100,100) :: A
thpfS DISTRIBUTE (BLOCK, *) 1y A

Do i = 1,100
Do j = n+1,100
Af(i,3) = Ali,J-m)* ¢
End do
End do

End

Fig. 3. Code with Expensive Communication if Distribution Changes
to (BLOCK,BLOCK)

« Theoretically, it is beneficial to switch a distribution
of an array from BLOCK to CYCLIC when the
BLOCK distribution causes load imbalance. How-
ever, the expressions used to compute the guards,
the new loop bounds, the send/receive processor sets,
and send/receive data sets are too complex for the
CYCLIC distribution. The load balancing benefits
obtained by using the CYCLIC distribution may be
canceled by its complex code generation. Hence, the
CYCLIC distribution should not be used unless a
large load imbalance exists using other distributions.
In the example of Figure 4, a CYCLIC distribution
may seem appropriate because of the triangular itera-
tion space. However, the granularity of the code is not
large enough to get any load balancing benefits because
of the complex code generated by the CYCLIC dis-
tribution. Experimentation with the code indicates that
the granularity of the code in Figure 4 should be at least
ten times the current granularity to get any improvement
with the CY CLIC distribution. No communication is
needed for the code in Figure 4. An even larger gran-

ularity would be needed for the CY C LIC distribution
to be beneficial if the code involves communication.

integer, dimension (100,100) :: A, B

thpf$ PROCESSORS P(4.,4)
'hpf$ DISTRIBUTE (BLOCK) onto P :: A, B

Do i = 1,100
Do j = 1,i
Ali,j) = B(i,j) = ati,j)
End do
End do

End

Fig.4. CYCLIC vs BLOCK Distribution

« Small arrays should be replicated instead of distributed.
This results in some code being redundantly executed
by every processor because of the owner computes rule.
However, the benefits of avoiding communication and
avoiding generating complex code for computation par-
titioning should outweigh the loss of parallelism for
small arrays.

« For a P number of processors available, it is usually
preferable to use them as a one dimensional processors
grid and distribute arrays in just one dimension while
collapsing the other dimensions. As indicated in section
2, complex expressions are sometimes generated in the
new loop bounds. Extracting the parallelism in a loop-
nest from one loop only by modifying the bounds of
that loop may reduce the overhead of computation par-
titioning. In addition, communication overhead may be
reduced by computing data and processor sets in one di-
mension only. Better yet, communication may be elim-
inated when collapsing dimensions (as is the case in the
example of Figure 3).

When considering to apply the above techniques and oth-
ers for a large program, they may conflict with each others in
different parts of the code. A distribution that is beneficial in
one part of the code may become inefficient in another part.
The user should investigate the code and determine the parts
that are more critical to the overall execution time. Critical
parts of the code should be given a priority in the data distri-
bution choice.

B. Use of Directives

» The INDEPENDENT Directive can be used by the pro-
grammer before a DO or Forall construct to indicate to
the compiler that the iterations of a loop can execute in
any order because of the inexistence of data dependence
inside the loop. This should be especially used for loops
with complex code for which the compiler may not de-
termine that no data dependence exists in the loop and
consequently generates inefficient code. For the exam-
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ple in Figure 5.a, the code generated by the compiler
is inefficient given that communication occurs at the in-
nermost loop. For a 4 x 4 processor grid, each pro-
cessor generates 25 x 25 send/receive messages of size
n where n is the size of one element of A (for some
of the processors, these messages are local). The user
can transform the loopnest in Figure 5.a into the equiva-
lent two loopnests in Figure 5.b using the parallel region
transformation presented in [ZAA 94]. For the trans-
formed code, the compiler uses the assertion provided
by the INDEPENDENT directives to pull communica-
tion outside the loopnests. For each loopnest, every pro-
cessor vectorizes all of its send/receive messages into a
single message. Hence, every processor generates two
send/receive messages only (one for each loopnest) but
of size % The transformed code clearly outperforms
the initial code because of the large overhead of com-
munication startup time. Without the INDEPENDENT
directives in Figure 5.b, compilers may not be able to
recognize that communication can be pulled outside the

loop.
integer, dimension (100,100} :: A, B
thpt$S DISTRIBUTE (BLOCK, BLOCK) it A, B
thpf$ Independent
integer, dimensien (100,100) :: A,B) Do i = 1,100
thpt$ Independent
thpts DISTRIBUTE (BLOCK,BLOCK) .. A.B) Do § = &,100
Ati,3) = Al3.4) - BULT)
Do 4 = 1,100 End do
Lo 3 = 1,100 End do
Ali,j) = ALYy - Bli. )
End do thpt$s Independent
End do Do & = 1,100
thpf$ Independent
End Do j = 1,1-1
AlL,3) = A3, 8) + BlILLD)
End do
End do
End
(4) Complex Code (b) Transl. of Code in (a)

porary array can not be determined at compile time. The
programmer can transform the code so that creating tem-
porary arrays, finding an appropriate alignment, and storing
into them are explicitly done by the user in the program.

D. Code Simplification

Compilers occasionally do not generate efficient commu-
nication statements or code partitioning for irregular code.
The user should simplify the code even at the expense of
writing longer programs. In Example 6.a, the complex loop
bounds results in complex communication generation for ar-
ray B. The user can transform his code into two loops as
shown in 6.b. The first loop has the role of making the
communication generated by the compiler simpler. More
data than needed are transferred but the compiler is able to
generate efficient communication because of the simple loop
bounds. The second loop does the actual computation.

integer, dimension (100,100} :: A, B
integer. dimension (100.100) :: Temp
thpf$ DISTRIBUTE{BLOCK,BLOCK) ento P :: A, B
int . d (100,100) :: A, B A
nRSET e SRl thpf$ DISTRIBUTE(BLOCK,BLOCK) ontc P :: Temp
k TBUTE (BLOCK, BLOCK PiiA,
hpt$ DISTRIBUTE (BLOC ) ento | g
Do J » 1,100
Do I = 1,100 - T
Do J = 2°1.100-4 znd‘;tnpll..n = B(J, 1)
A(ILJ) = BWJ.1) = A (L.J)
Endo
End do
e e Do I = 1,100
Do 3 = 2°§,100-i
AlLJ) = Temp(l, J) « A (1,J)
L Endo
Endo
End
(a) Simplity Code (h) O i But sumpler

Fig. 5. Use of INDEPENDENT in Complex Code

« Loop containing procedure calls are not parallelized.
However, the user can use the PURE directive to assert
to the compiler that the procedure has no side effect.
With this directive, calls to a procedure within a loop
can be executed in any order and hence be parallelized
without any need for a complex interprocedural analy-
sis.

C. Compiler Temporary Arrays

The compiler needs Sometimes to creale temporary arrays
because of data dependence in array assignments, FORALL
constructs, WHERE constructs, etc. A compiler temporary
array is aligned with a user array chosen by the compiler
through some heuristics. The compiler may not choose an
efficient alignment especially for complex code. In addition,
the compiler may need to create and allocate temporary ar-
rays at runtime (expensive operation) if the size of the tem-

Fig. 6. Simplify Code

VI. PERFORMANCE COMPARISON WITH OTHER
FORTRAN COMPILERS

The experiments presented in section 4 indicates that there
is no major performance changes noticed between executing
HPF code on a distributed memory SP2 machine and exe-
cuting the same code on an SMP machine (or a cluster of
SMP machines) using the same XL HPF compiler for both
executions. The issue addressed in the experiment of this
section is how much improvement (if any) we can obtain by
using a compiler specifically designed for an SMP environ-
ment. For this matter, we use the XL Fortran 90 paralleliz-
ing compiler that automatically parallelizes code by creating
parallel threads to be executed on IBM SMP machines. The
same subset of Spec92 benchmark applications are used here
without any change in the code (HPF directives in the code
are ignored by the XL Fortran 90 parallelizing compiler).

Table III shows the speedup obtained for both compilers
(the speedup for XL HPF are reproduced from Table II). For
some applications, the XL HPF Compiler gives slightly bet-
ter results. For others the XL Fortran 90 Compiler gives bet-
ter speedup (The speedup for XL HPF is taken from Table
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II). We can conclude form this experiment that an HPF com-
piler can generate SPMD code that is efficient enough for
execution on a shared memory system, and that it can com-
pete with compilers specifically targeting the shared mem-
ory model. The overhead of communication code generated
by an HPF compiler seems not te be more expensive than
the overhead of synchronization generated by the SMP com-
piler. Note that the XL Fortran 90 and XL HPF compilers
both come in the same product. With the appropriate com-
piling options, the user can either invoke the HPF compiler,
or the Fortran 90 SMP compiler.

Another experiment to consider in the future is for the user
to tune the benchmark application code and parallelize the
code by using the OpenMP directives. OpenMp is a set of
compiler directives and callable runtime library routines that
extend Fortran to express shared memory parallelism. The
OpenMP directives have the same role as HPF directives and
are designed to exploit distributed memory parallelism. Such
an experiment would be more fair for a performance compar-
ison between XL HPF and XL Fortran 90 compilers. Given
that this paper only includes experiments with minimal code
changes, this experiment is beyond the scope of the paper.

TABLE Il
PERFORMANCE COMPARISON FOR A SUBSET OF SPEC92 BETWEEN
XL HPF AND XL FORTRAN 90 SMP COMPILERS ON AN 8-CPU IBM

SMP MACHINE

Benchmark Speedup

TPE T ZPEs | 4PEs | §PEs
Grid2: XL SMP 0.93 1.77 3:53 6.89
XL HPF 1.00 2.00 3.94 7.54
Shpar90: XL SMP 1.00 1.69 343 7.08
XL HPF 0.95 1.89 3.40 6.43
Tomcatv2: XL SMP 0.99 1.78 2.07 NA
XL HPF 0.97 1.79 3.25 5.00
Pdelpar: XL SMP 0.93 1.78 3.00 336
XL HPF 0.93 1.61 233 2.85
Swm256par: XL SMP 1.00 1.39 3.51 595
XL HPF 0.82 1.43 2.46 332

VII. CONCLUSION

In this paper, performance results and analysis for a subset
of the SPEC92 benchmarks are presented for an SP2 ma-
chine, Obtaining good speedup for the code is not enough
as parallel programmers require portability of the code. One
of most complex aspects of code portability is performance.
Results from this paper indicates the performance obtained
from HPF compilers can be portable across different archi-
tectures. This has been shown by running the applications on
adistributed memory system and on a shared memory system
using the same compiler. Comparable speedup are obtained
for both systems. For performance portability across com-
pilers, some HPF programming techniques are presented in

this paper to allow the user to write efficient and simple HPF
code which increases the chances of obtaining portable code
across compilers.
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