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Absrrucr-
High Performance Fortran (HPF) is a data-parallel programming 

language that allows lhe programmer to specify lhe data decomposition 
onto the processors while the compiler takes care of the tedious tasks 
of communication generation and computation partitioning. Shifting 
some o f the complex tasks from lhe use r to lhe compíler should encour­
age programmers to write and port code to parallel machines especially 
if the compiler implements these tasks efficiently. In this paper, perfor­
mance results and analysis of a subset of lhe SPEC92 is presented for 
the XL HPF compiler on IBM SP2 machines. In addition to obtain­
ing good performance from lhe com pile r, one o f lhe the ma in concerns 
of HPF users is portability. Experimental results and analysis are pre­
sented in this paper to investigate performance portability (consistency) 
first across multiprocessor architectures and then across compilers. For 
performance portability across multiprocessor machines, lhe same XL 
HPF compiler used for the IBM SP2 distributed memory machine ex­
periment is also used to compile and execute the same applications but 
on IBM SMP machincs. The comparablc speedup and behaviour ob­
tained for both machincs indicates that HPF compilers can be portable 
across different architectures. For performance portability across com­
pilers, various HPF programming techniques and recommendations are 
introduced to increase the chances of obtaining performance consis­
tency with differcnt HPF compilers. 

KeywordJ- HPF, performance, portability, compiler, SPMD, dis­
tributed memory, shared memory. 

I. I NTRODUCTION 

High Performance Fortran (HPF) is a programming Jan­
guage designed to support the data-parallel programming 
style by introducing a set of directive extensions to Fortran 
90 [HPF 94]. lt allows the programmer to specify the data 
decomposition onto the processors while the compiler takes 
care of the tedious tasks of communication generation and 
computation partitioning. In addition to the data decompo­
sition directives, HPF ·provides other directives to help the 
compiler generate efficient code. Even though the main tar­
get machines for HPF users are distributed memory parai­
lei machines, HPF code should also execute efficiently on 
shared memory machines. 

Shifting some of the complex tasks from the user to the 

•work was done when authors were at IBM Toronto Lab 

compiler encourages programmers to write and port code to 
parallel machines provided that the implementation o f these 
tasks is done efficiently. Hence, the existence of good com­
pilers is necessary to make the use o f HPF widespread among 
the parallel programming community. Early users of HPF 
requested robust compilers, full implementation of the lan­
guage, good performance from compilers, availability of de­
buggers and performance analysis tools. In addition, one 
of the main concerns of parallel programmers is portability 
which was a driving force behind the creation of HPF and its 
standard committee [HPF 94]. 

In this paper, we analyze the performance of some HPF 
benchmarks using the XL HPF compiler on IBM SP2 ma­
chines. The speedup obtained for some applications is 
quite large. For many other parallel programming Ianguages 
and environments such as MPI [GRO 94], obtaining good 
speedup is achievable [SUB 98] [EU 98]. However, porting 
the code to other target machines and obtaining similar per­
formance is usually a challenging task that requires substan­
tialtuning cffort [JIA 97]. We investigate in this paper the is­
sue of performance portability ofHPF code across machines: 
the same XL HPF compiler used for the IBM SP2 distributed 
memory machine experiment is also used to compile and exe­
cute the same applications (withoutany change or tuning) but 
on IBM SMP machines, a shared memory parallel machine. 
Our experiments indicate that comparable speedup results 
and behaviour are obtained for both platforms. In addition 
to performance consistency across machines, this paper ad­
dresses performance portability across compilers. While it is 
widely known that the performance obtained for same appli­
cations on same platform using different compilers is occa­
sionally not consistent [NGO 97] for currently available HPF 
compilers, we attempt to reduce these inconsistencies by in­
troducing HPF programming techniques and recommenda­
tions that should increase the chances o f obtaining compara­
ble performance with different HPF compilers. 

The remainder of this paper is organized as follows. Sec-
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tion 2 presents an ovcrview of thc XL HPF compiler by 
explaining the Single Program Multiple Data (SPMD) code 
generated by thc compiler and presenting some of the impor­
tant optimization techniques implemented by the compiler. 
Section 3 analyzes thc performance results obtained for a 
subset of SPEC92 benchmarks using thc XL HPF compiler 
on an IBM SP2 machine. In Section 4 , cxperiments simi­
lar to the ones in Section 3 are presented but for IBM SMP 
target machines. machines. Scction 5 introduces some HPF 
programming techniques that should make compilers more 
likely to generatc cfficient code. Section 6 shows thc per­
formance numbers for the subset of SPEC92 benchmarks on 
an IBM SMP machine but using a compiler specifically tar­
gcting thc SMP model. Finally, concluding remarks can be 
found in Section 7. 

li. AN ÜVERVIEW OF XL HPF COMPILER 

The main target platforms for HPF are distributed mem­
ory parallel machines. Given the importance of data distri­
bution in such cnvironment, this task is performed by the 
user through HPF directives. The compiler uses this data 
distribution information and the owner computes rule (every 
processor is defining only the data it owns) to extract paral­
lelism from HPF code. Hence, the speedup obtained for an 
application depends mainly on: 

• the data distribution (BLOCK, CYCLIC, or replicated) 
described by the user with dircctives such as align and 
distribute. 

• the code generated by the compiler after transforming 
thc HPF code into SPMD code. The main tasks per­
formcd by the compilcr in this transformation is thc cre­
ation of local data on each processor, automatic gen­
eration o f communication statements, and computation 
partitioning [GUP 95][BOZ 94] [HIR 94]. 

Figure I .a shows a simple example o f an HPF program. 
The SPMD code generated by thc XL HPF compiler for this 
example is shown in Figure I .b: The compiler first generates 
code to compute descriptor information about local arrays 
A and B before their allocation on each processor. When 
executing the SPMD code, processor p (O <= p < N ) al­
locates an array A and an array B both of size (LB : U B) 
such that LB = p * ceiling(lOO/ N ) + 1 - overlap and 
U B = (p + 1) * ceiling(lOO/N) + ovel'iap. The overlap 
amount is two by default but can be set to any value by using 
the appropriate compiler optio n. This additional amount of 
memory allows the compiler to sometimes avoid the creation 
of communication buffer for nearest neighbor communica­
tion [WOL 96]. In this case, datais received into the overlap 
entries, and computation then proceeds with local accesses 
instead of a communication buffer. After the allocation of 
local arrays A and B , the compiler generates code to com­
pute the sets o f data to be received, the sets of data to be sent, 
the processor sets involved in the communication. After gen-
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Fig. 1. Generation oi SPMD Code 

erating calls to send and receive communication routines, 
the compiler generates code to perform the actual computa­
tion. For the latter step, computation partitioning is achieved 
through Joop bound shrinking. Finally, storage for local ar­
rays A and B are dcallocated. 

Figure 2 shows a pseudo code that emphasizes the changcs 
obtained if no overlap rcgion is uscd (ex. B[i-3] is used on 
the rhs of the assignment statement of Figure J.a instead of 
B[i-1]). Since the default overlap region of two array ele­
ments is not Jarge enough to allow storing the values of B 
that need to be rcceived into the overlap entries, a communi­
cation buffer for B is allocated for this purpose. Given that 
ali use o f array B in the computation part o f the code is done 
through the communication buffer, local communication has 
to be performed by packing local clements of array B into 
the buffer (i.e elements of B that exist locally are copied into 
the communication buffer). 

Given the high communication overhead for a distributed 
memory machine, it is essential for an HPF compiler to gen­
erate efficient communication by implementing many of the 
optimizing communication techniques [BOZ 94] [GUP 94]. 
Among the important optimization techniques implemented 
in the XL HPF compiler are: 
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• Message vectorization: Communication analysis is per­
formed to move communication to the outermost pos­
sible loop. This enables the compiler to send the data 
of an array in a single message instead of sending the 
data of that array element by element. This is the most 
important optimization technique done by the compiler 
in terms of improvement to execution time. Any im­
provement to the compiler to recognize and perform 
communication vectorization, and any code tuning by 
the user to ex pose message vectorization to the compiler 
can contributc significantly to the decrease in execution 
time o f an application. 

, Elimination of redundant communication statements: 
Communication analysis within single loopnests and 
across Ioopnests (within the same compilation unit) 
is performed to eliminate unnecessary communication. 
The compiler attempts to eliminate a message with a 
source processor set P,, a destination processor set Pd. 
and a data set D i f there exists an earlier message from 
P, to Pd with a data set D 1 where D Ç D 1 and the data 
in D 1 is not invalidated by write statements between the 
two messages. 

, Recognizing communication Patterns: Broadcast op­
erations, nearest neighbor communication, and reduc­
tion operations are recognized in order to generate ef­
ficient communication. The reduction operations that 
are recognized are +. - ,* · f, min, max, maxval, and 
minval. 

, Message Combining: In order to reduce the overhead 
o f message startup time, communication statements for 
different array variables are combined in to a single mes­
sage when possible. This is, in essence, similar to com­
munication vectorization: message vectorization com­
bines a large number of small messages into one Iarge 
message, while message combining coalesces a small 
number of large messages into one larger message. 
Given that the number of message combined is small, 
the improvement is not substantial , especially i f we con­
sider the drawback of having a very big message. 

In addition to communication generation, the compiler is 
also responsible for computation partitioning which, in its 
simplest form, consists o f adding guard statements when nec­
essary to ensure the owner computes rule. A guard IF state­
ment is needed around every defining statement to make sure 
that it will be executed on the processors owning the data 
being defined (owner computes rule does not apply to re­
duction). In its ideal form, computation partitioning consists 
of parallelizing loops by shrinking loop bounds so that ev­
ery processor iterates over a small set o f iterations and avoid 
adding any guard statement. In Figure l.b, the loop bounds 
have been successfully reduced and no guard statement is 
needed around the assignment statement. Sometimes, a com­
bination of loop bound shrinking and guard statement inser-
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Fig. 2. Overview of lhe Changes Wilhoul Overlap Region 

tion are needed to ensure a correct execution o f the code. 
The new expressions created by loop bound shrinking and 

guard statement can sometimes be too complex. Hence op­
timization techniques for computation partitioning are also 
needed. Among the techniques used by XL HPF compiler, 
we can mention: 

• Simplification of expressions used in guards and shrunk 
Joop bounds. These expressions contains severa! calls 
to max, min, and other routines. 

• Guard motion: I f the expressions in a guard statement is 
loop-independent, then the guard is moved outside the 
loop (it is moved to the outermost possible loop). 

• Merging guard statements: If the guard expressions 
of two adjacents statements are similar, then only one 
guard is used for both statements. 

III . HPF PERFORMANCE ON SP2 

A. Benchmark Analysis 

In order to analyze the performance of XL HPF compiler, 
a subset of the SPEC92 benchmarks are selected for execu­
tion on a 16-node SP2 machine. The speedup obtained for 
these benchmark applications shown in Table I ranges from 
almost linear speedup (grid2) to poor speedup (pdelpar). 
This speedup is obtained by dividing the execution time of 
the serial version (which is obtained by using the XL HPF 
compiler with the option -nohpof specified and which gen­
erates code similar to the one generated by the XLF90 com­
piler) by the execution time o f the parallel version. Grid2 h as 
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a computational intensive loopnest where mosto f the execu­
tion time is spent. By analyzing the SPMD code generated 
for this criticai part of the code, it can be noticed that there 
are three factors that contributed to the efficient execution 
of the code: I) loops in the loopnest are parallelized, 2) ali 
communications have been pulled outside the loops and vec­
torized. 3) only nearest-neighbor communications are used. 
This type of communication is fast because the code gener­
ated by the compiler is simple and communication is done 
through thc overlap region and not through communication 
buffers as cxplained in the previous section. 

Among the rest of the applications, both Tomcatv2 and 
Shallpar90 show good speedup. For Tomcatv2, the code is 
computation intensive but there is no particular Joopncst or 
part of the code that is consuming most of the execution 
time. Hence, the entire code needs to be analyzed. The ar­
rays used in Tomcatv2, a li two-dimensional arrays, are dis­
tributed in a BLOCK manner in one dimension and collapsed 
in the other dimension. This reduccs communication over­
head cspecially when Jarge number o f communication state­
ments are needed but disables parallelism in the collapsed 
dimension. Disabling parallelism in one dimension is not 
a drawback as long as enough parallelism can be extracted 
from the other dimension. It is usually a good practice to 
distribute arrays involved in communication (especially for 
non-nearest neighbor communication) in one dimcnsion only 
and collapse the rest so that the overhead o f communication 
does not bccome too expensive (computation of data sets to 
be sent and received, processors sets involved in the com­
munication, etc are performed in one dimension only). Even 
though the data distribution for this application is efficient 
and loops have been parallelized by the compiler, the Jarge 
number o f reduction communications and, to a Jesser cxtent, 
the Jarge number o f nearest neighbor communication are the 
major factors contributing to the non-linear speedup o f Tom­
catv2. Similar analysis can be done for Shallpar90 to explain 
its reasonably good but not linear speedup. 

TABLE I 

SPEEDUP FOR A SUBSET OF SPEC92 ON IBM SP2 WITH XL HPF 

COMPILER 

11 
Bcnchmark ~~-=--r-~-r-S::'=pee.---'dup~---.--.-,........--!tll 

I PE 2 PEs I 4 PES I 8 PEs 16 PES 
Grid2 1.00 1.98 3.94 7.75 15.10 
Shp:u90 0.89 1.64 3.18 5.77 NA 
Tomcatv2 0.98 1.93 3.68 6.78 11.74 
Swm256par 0.97 1.58 2.61 3.86 5.02 
Pdelpar 0.93 1.55 1.95 2.63 3.11 
Trans1par 0.14 0 .19 0.30 0.52 0.81 

As we move down the list in Table I, Pdelpar and 
Smw256par show poor speed up. For Pdelpar, only near-

est neighbor communications are generated by the compiler. 
However, the code is not computationally intensive. Hence, 
communication overhead had more negative effect on the 
speedup for Pdel par than for the previously analyzed appli­
cations. In addition to communication, there are few other 
factors that contributed to the unsatisfactory speedup: I) An 
array is redistributed when entering the major subroutine (re­
Jaxation subroutine) and then restored back to the old dis­
tribution after returning from the subroutine. 2) temporary 
arrays are generated by the compiler with sizes determined 
at runtime (expensive memory overhead because of runtime 
allocation on the heap). Similar observations can be noticed 
to justify the poor spcedup for Smw256par. 

Finally, the last application in Table I shows a big slow­
down. Translpar is a small program that just consists of 
transposing a large array and assigning the result to another 
array. Thus, the whole program consists mainly of doing ex­
pensive communications. The two-dimensional arrays used 
in this application are distributed along both dimensions. 
This increases the overhead of communication given that 
send data set information, receive data set information, pro­
cessar set information, etc. are computed for both dimen­
sions. The big slowdown for trans I par should be expected 
when executed on a distributed memory parallel machine. 
However, it can be noticed from Table I that the execution 
time o f Trans I par on 16 processors is getting dose to the se­
rial execution time. Hence, i f this application included some 
regular computational code after the array transposition, then 
satisfactory speedup may be obtained for large number of 
processors. 

B. Serial Execution vs Parai/e/ Execution on One Processar 

A important observation that can be seen in Table I is the 
difference in execution time between the serial versions of 
the applications and their corresponding parallel versions ex­
ecuted on one processar (I PE column in the table represents 
the serial execution time divided by the parallel execution 
time on one processar). Both versions are obtained using the 
same XL HPF compiler. This difference is due to the com­
plex SPMD code generated by the compiler for the parai­
lei version. The code portability principie expected by HPF 
programmers is violated when the difference between both 
versions becomes large. From Table I, this difference seems 
acceptable for most applications (except for Trans I par). It 
is usually high for code that requires non-nearest-neighbor 
communication. This type of communication is performed 
using buffers and the actual computation uses the data from 
the buffers. Hence, even for code executing on one pro­
cessar, local communication is performed for non-nearest­
neighbor communication through the creation of communi­
cation buffers and packing data into the buffers. Another fac­
tor contributing to the difference in execution time between 
the two versions is the low levei optimizer (back-end com-
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piler) which makes a better job optimizing the serial version 
than the parallel version because of the complexity of the 
latter one. Future improvement to the code generation and 
optimization of the SPMD code should reduce the difference 
between the two versions. 

IV. PERFORMANCE PORTABILITY ACROSS 
ARCHITECTURES: SMP CASE 

Obtaining acceptable speedup for a parallel appl ication is 
usually achievable [SUB 98) [ELI 98). However, obtain­
ing simi lar speedup without any large tuning effort when 
the application is ported to another machine is quite often 
a challenge. This has turned away many potential parallel 
programming users because of the extra overhead associated 
with porting code. By being the first standard parallel high 
levei language, HPF solved many portability problems for 
parallel programmers. But, does it solves the performance 
portability problem?. In order to investigate this issue, we 
execute our SPEC92 benchmark subset on an IBM SMP, and 
o n a cluster of IBM SMP machines using the same XL HPF 
compiler which has been mainly used by programmers, so 
far, for the SP distributed memory machines. 

An HPF compiler creates SPMD code. In order to run this 
code, a parallel environment creates N processes (N is spec­
ified by the user as the number of processors to be used). 
Each Proccss is exccuting the same object code. Processes 
communicate among themsclves using the Message Passing 
Interface (MPI) library. In an SMP environment, threads 
are attached to these processes. Data communication among 
threads is more efficient than the traditional communication 
between processes: The MPI, in a thread based environ­
ment, recognizes when communication is local within the 
SMP node and when communication is between two differ­
ent nodes in a cluster of SMP nodes. For local communica­
tion, a simple copy o f the datais performed instead ofthe the 
more costly send/receive. 

TABLE 11 

SPEEDUP FOR A SUBSET OF SPEC92 USING XL HPF COMPILER ON A 
CLUSTER OF TWO 8-PROCESSOR IBM SM P MACHINES 

Benchmark Speedup 
Number o f PEs I PE 2PEs 4 PEs 8 PEs 12 PEs 16 PEs 
Grid2 1.01 2.00 3.94 7.54 10.77 13.79 
Shpar90 0.95 1.89 3.40 6.43 7 .78 12.61 
Tomcalv2 0.97 1.79 3.25 5.00 6 .74 7.60 
Swm256par 0.82 1.43 2.46 3.32 3.11 3.44 
Pdelpar 0.93 1.61 2.33 2.85 2.85 3.22 

Table II shows the speedup for the subset of SPEC92 us­
ing XL HPF compiler on a cluster of two 8-processor SMP 
machines. It can be noticed from the table that the speedup 
results obtained are comparable to the ones for the SP2 ma-

chine (Table I). No major difference in speedup can bc no­
ticed between the two platforms. This is encouraging for 
HPF users who consider performance consistency as a ma­
jor concern. By focusing only on the results of a single SMP 
node ( I, 2, 4, 8 PEs columns in Table li), it can be noticed 
that the difference in speedup between an SMP machine and 
an SP2 machine is small. However, we would have expected 
to get more improvement in speedup in favor of SMP given 
the promise of the parallel environment to recognize same 
node communication and execute them efficiently. The parai­
lei environment we are using is still in its early development 
stage and we may get better results for a single SMP node in 
the future. By analyzing the speedup for the cluster of two 
8-processor SMP nodes (last two columns in Table 11), it can 
be noticed that the difference in speedup between an SP2 and 
a cluster of SMP gets bigger (and is in favor of SP2). This is 
expected because of the expensive communication overhead 
across SMP nodes in a cluster. 

V. PERFORMANCE PORTABILITY ACROSS HPF 
COMPILERS 

The experiments described in the previous section show 
encouraging results for the performance portability of HPF 
code across platforms. Another major aspect o f performance 
consistency is portability across compilers. Parallel program­
mers demand to get approximately the same performance 
for their applications when they switch to another compiler. 
While this goal has not been currently reached [NGO 97) as 
HPF compilers are still immature and are in early stages of 
development, we should be able to approach this objective in 
the future once most of the data parallel optimization tech­
niques are well understood and implemented. 

Many data parallel compiler optimization techniques 
(some of which are briefly described at the beginning of the 
paper) are implemented in various HPF compilers. However, 
an attempt to implement a particular optimization on some 
code may not always be successful by ali compilers espe­
cially with the early version of the HPF compiler releases. 
While waiting for these optimizations to be more aggressive 
and their implementation to be more robust, the user may 
need to write better code, add more directives provided by 
the language so that the compiler can generate better code. 
This results in a better portability among compilers given that 
a well written code is more likely to be portable across com­
pilers. In the remainder ofthis section, we present some tech­
niques and recommendations that the programmer can use to 
write code more likely to be portable across compilers. 

A. Data Distribution 

Given the importance of data distribution on the perfor­
mance of HPF code, this task is performed by the user. 
The main objective of good data distribution is to achieve 
load balancing without introducing excessive communica-
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tion overhead. In order to achieve this and increase the 
chance of having portable code across compilers, the user 
should be aware of some rules and hints about data distribu­
tion: 

Dimensions with expensive communication should be 
collapsed. In the example ofFigure 3, communication is 
dóne inside the j loop because of the data dependence. 
Fortunately, the compiler interchanges the j loop with 
the i loop and vectorizes communication by pulling it 
outside the i loop. This vectorization would not have 
been legal without loop interchange. However, this is 
still an expensive communication given that it is still 
nested within a loop (j loop ). Collapsing the elements 
of an array dimension wi th expensive communication 
(such as communication inside loops, irregular commu­
nication, ... ) instead of distributing them should result 
in a faster execution of the code. Hence, a distribution 
of (BLOCK,*) for array A in the code in Figure 3 
is more efficient than a (BLOCK , BLOCK) distribu­
tion. 

integer, dimension (100 , 100 ) :: A 

! hpfS DISTRIBUTE (BLOCK, •) :: A 

Do i = 1 , 100 
Do j = n+1, 100 

A (i, j) = A (i, j -n) • c 
End d o 

End d o 

End 

Fíg. 3. Code with Expensive Communication if Dislribulion Changes 
to (BLOCK,BLOCK) 

• Theoretically, it is beneficiai to switch a distribution 
of an array from BLOCI< to CYCLIC when the 
B LOC J( distribution causes load imbalance. How­
ever, the expressions used to compute the guards, 
the new loop bounds, the send/receive processor sets, 
and send/receive data sets are too complex for the 
CY C LIC distribution . The load balancing benefits 
obtained by using the CYCLIC distribution may be 
canceled by its complex code generation. Hence, the 
CYCLIC distribution should not be used unless a 
large load imbalance exists using other distributions. 
In the example of Figure 4, a CYCLIC distribution 
may seem appropriate because of the triangular itera­
tion space. However, the granularity of the code is not 
large enough to get any load balancing benefits because 
of the complex code generated by the CYCLIC dis­
tribution. Experimentation with the code indicates that 
the granularity o f the code in Figure 4 should be at least 
ten times the current granularity to get any improvement 
with the CYCLIC distribution. No communication is 
needed for the code in Figure 4. An even larger gran-

ularity would be needed for the CYCLIC distribution 
to be beneficiai i f the code involves communication. 

integer, dimension (1 00,100) .. A, B 

! hp fS PROCESSORS P(4,4) 
!h p f$ DISTRIBUTE (BLOCK) o nto P . . A, B 

Do i = l. 100 
Do j = l,i 

A(i ,j ) B(i ,j ) • A( i,j ) 
End do 

End d o 

End 

Fíg. 4 . CY CLIC vs BLOC /{ Dislribution 

• Small arrays should be replicated instead of distributed. 
This results in some code being redundantly executed 
by every processor because o f the owner computes rule. 
However, thc benefits of avoiding communication and 
avoiding gcnerating complex code for computation par­
titioning should outweigh the loss of parallelism for 
small arrays. 

• For a P number of proccssors available, it is usually 
preferable to use them as a one dimensional processors 
grid and distribute arrays in just one dimension while 
collapsing the other dimensions. As indicated in section 
2, complex expressions are sometimcs generated in the 
new loop bounds. Extracting the parallelism in a loop­
nest from one loop only by modifying the bounds of 
that loop may reduce the overhead of computation par­
titioning. In addition, communication overhead may be 
reduced by computing data and processor sets in one di­
mension only. Better yet, communication may bc elim­
inated when collapsing dimensions (as is the case in the 
example ofFigure 3). 

Whcn considering to apply the above techniques and oth­
ers for a large program, they may conftict with each others in 
different parts of the code. A distribution that is beneficiai in 
one part of the code may become inefficient in another part. 
The user should investigate the code and determine the parts 
that are more criticai to the overall execution time. Criticai 
parts o f the code should be given a priority in the data distri­
bution choice. 

B. Use of Directives 

• The INDEPENDENT Directive can be used by the pro­
grammer before a DO or Forall construct to indicate to 
the compiler that the iterations of a loop can execute in 
any order because o f the inexistence o f data dependence 
inside the loop. This should be especially used for loops 
with complex code for which the compiler may not de­
termine that no data dependence exists in the loop and 
consequently generates inefficient code. For the exam-
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pie in Figure 5.a, the code generated by the compiler 
is inefficient given that communication occurs at the in­
nermost loop. For a 4 x 4 processor grid, each pro­
cessor generates 25 x 25 send/receive messages of size 
n where n is the size of one element of A (for some 
of the processors, these messages are local). The user 
can transform the loopnest in Figure 5.a in to the equiva­
lenttwo loopnests in Figure 5.b using the parallel region 
transformation presented in [ZAA 94). For the trans­
formed code, the compiler uses the assertion provided 
by the INDEPENDENT directives to pull communica­
tion outside the loopnests. For each loopnest, every pro­
cessor vcctorizes ali of its send/receive messages into a 
single message. Hence, every processor generates two 
send/receive messages only (one for each loopnest) but 

of size 2~'. The transformed code clearly outperforms 
the initiai code because of the large overhead of com­
munication startup time. Without the INDEPENDENT 
directives in Figure 5.b, compilers may not be able to 
recognize that communication can be pulled outside the 
loop. 

int.~u . din.enat.o n 1100. 1001 :: A. B 

:hpU DlS11U BUtt CBLOCK, BLOCXI :: A. B 

!hpf$ Ind epende n t 
1nt.e9er. dim.r.sicn (100 .1001 : A.B 0o 1 • 1. 100 

! hpts Jndependent 
lhpfS. OISTRtBt.rrt! IBLOCK. BLOCK, : · A. B Do j • 1.100 

A(!.j) • A(j.l l • Bll.j l 
Do i : 1. l 00 End do 

Do ) a 1. 100 
A(!., )I "' Al ).l l • 8Ct, 1J 

En:t do 
End do 

End 

End do 

lhpU l ndependent 
Oo 1 • 1, 100 

:hpt S lndepende nt 
Do l • l. l -1 

AC1. :J) • AC),iJ • BCL:J) 
&nd do 

rnd do 

End 

Fig. 5. Use oi INOEPENDENT in Complex Code 

• Loop containing procedure calls are not parallclized. 
However, the user can use the PURE directive to assert 
to the compiler that the procedure has no side effect. 
With this directive, calls to a procedure within a loop 
can be executed in any order and hence be parallelized 
without any need for a complex interprocedural analy­
sis. 

C. Compile r Temporary Arrays 

The compiler needs sometimes to create temporary arrays 
because of data dependence in array assignments, FORALL 
constructs, WHERE constructs, etc. A compiler temporary 
array is aligned with a user array chosen by the compiler 
through some heuristics. The compiler may not choose an 
efficient alignment especially for complex code. In addition, 
the compiler may need to create and allocate temporary ar­
rays at runtime (expensive operation) i f the size of the tem-

porary array can not be determined at compile time. The 
programmer can transform the code so that creating tem­
porary arrays, finding an appropriate alignment, and storing 
into them are explicitly done by the user in the program. 

D. Code Simp/ification 

Compilers occasionally do not generate efficient commu­
nication statements or code partitioning for irregular code. 
The user should simplify the code even at the expense of 
writing longcr programs. In Example 6.a, the complex loop 
bounds results in complex communication generation for ar­
ray B. The user can transform his code into two loops as 
shown in 6.b. The first loop has the role of making the 
communication generated by the compiler simpler. More 
data than needed are transferred but the compiler is able to 
generate efficient communication because ofthe simple loop 
bounds. The second loop does the actual computation. 

l nt.ege r , d l mension 1100, 1001 :: A, B 

hptS 0 1S'l1UBU'J'E t8LOCK, BLOCKI onto P: :A, 

Do I • 1. 100 
Do J • l • t.100·i 

AU,JI • BC J. I I • A U .Jt 
End do 

End do 

End 

i nt.•g • r . d b wns lon 1100, 1001 :: A. B 
int.eger . cUDens lon 1100,100) ; : T"" 

lhpts OIS"I'Rl81JTEtBt..OCJt , BLOCJtt onto P :: A, B 
!hpfS Dl STIU BIJ'I'E tBt.OClt.BLOCKt onto P :: Teq) 

Do I • 1.100 
Do J • 1, 100 

Te:Y"P U .J) • BtJ, !J 
End o 

Endo 
Oo I • 1,100 

A. CI ,J' I • Te~ II .J' I • A. ( I ,.J I 
End o 

Endo 

Fig. 6. Simplify Code 

VI. PERFORMANCE COMPARISON WITH OTHER 

FORTRAN COMPILERS 

The experiments presented in section 4 indicates that there 
is no major performance changes noticcd between executing 
HPF code on a distributed memory SP2 machine and exe­
cuting the same code on an SMP machine (or a cluster of 
SMP machines) using the same XL HPF compiler for both 
executions. The issue addressed in the experiment of this 
section is how much improvement (i f any) we can obtain by 
using a compiler specifically designed for an SMP environ­
ment. For this matter, we use the XL Fortran 90 paralleliz­
ing compiler that automatically parallelizes code by creating 
parallel threads to be executed on IBM SMP machines. The 
same subset of Spec92 benchmark applications are used here 
without any change in the code (HPF directives in the code 
are ignored by the XL Fortran 90 parallelizing compiler). 

Table III shows the speedup obtained for both compilers 
(the speedup for XL HPF are reproduced from Table 11). For 
some applications, the XL HPF Compiler gives slightly bet­
ter results. For others the XL Fortran 90 Compiler gives bet­
ter speedup (The speedup for XL HPF is taken from Table 
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li). We can conclude fonn this experimenl lhal an HPF com­
piler can generate SPMD code lhal is efficienl enough for 
execution on a shared memory syslem, and lhal il can com­
pete with compilers specifically targeting the shared mem­
ory model . The overhead of communicalion code generated 
by an HPF compi ler seems nol te be more expensive than 
the overhead o f synchronization generated by the SMP com­
piler. Note that the XL Fortran 90 and XL HPF compilers 
both come in the same product. With the appropriate com­
piling options, the user can ei ther invoke the HPF compiler, 
or the Fortran 90 SMP compiler. 

Anolher experiment lo consider in lhe fulure is for lhe user 
to tune lhe benchmark applicalion code and parallelize lhe 
code by using the OpenMP directives. OpenMp is a set of 
compiler directives and callable runtime library routines that 
extend Fortran to express shared memory parallelism. The 
OpenMP directives have the same role as HPF directives and 
are designed to exploit distributed memory parallelism. Such 
an experiment would be more f ai r for a perfonnance compar­
ison between XL HPF and XL Fortran 90 compilers. Given 
that this paper only includes experiments with mínima! code 
changes, this experiment is beyond the scope o f the paper. 

TABLE 111 

PERFOR MANCE COMPARISON FOR A SUBSET OF SPEC92 BETWEEN 

XL HPF AN O XL FORTRAN 90 SMP COMPILERSON AN 8-CPU IBM 

SMP MACHI NE 

11 Benchmark 
111 PE 

Speedup 
8 PEs 11 2 PES t 4 PEs 

Grid2: XL SMP 0.93 1.77 3.53 6.89 
XLHPF 1.00 2.00 3.94 1.54 
Shpar90: XL SMP 1.00 1.69 3.43 7.08 
XLHPF 0.95 1.89 3.40 6.43 
Tomcatv2: XL SMP 0.99 1.78 2.07 NA 
XLHPF 0.97 1.79 3.25 5.00 
Pdelpar: XLSMP 0.93 1.78 3.00 3.36 
XLHPF 0.93 1.61 2.33 2.85 
Swm256par: XL SMP 1.00 1.89 3.51 5.95 
XLHPF 0.82 1.43 2.46 3.32 

VII. CONCLUSION 

In this paper, perfonnance results and analysis for a subset 
of the SPEC92 benchmarks are presented for an SP2 ma­
chine, Obtaining good speedup for the code is not enough 
as parallel programmers require portability of the code. One 
o f most complex aspecls of code portability is perfonnance. 
Results from this paper indicates the perfonnance obtained 
from HPF compilers can be portable across different archi­
tectures. This has been shown by running the applications on 
a distri buted memory system and on a shared memory system 
using the same compiler. Comparable speedup are obtained 
for both systems. For perfonnance portability across com­
pilers, some HPF programming techniques are presented in 

this paper to allow the user to write efficient and simple HPF 
code which increases the chances of obtaining portable code 
across compilers. 

REFERENCES 

[BOZ 94) Z. Bozkus. A. Choudhary, G. Fox. T. Haupt, S. Ranka, and 
M. Wu. Compiling Fonran 900/HPF for Distributed Memory 
MIMO Computers. Jmmwl of Parai/e/ and Distributed Com­
puting, 15-26, April 1994. 

[BOZ 95) Z. Bozkus, L. Meadows. S. Nakamoto, V. Schuster, and M. 
Young. Compiling High Performance Fonran. In Proceedings 
o f th~ S~v~nth SIAM Conferenc~ an Parai/e/ Procu.ringfor Sci­
~trtific Camputing, 1995 

[CHA 92) B. Chapman, P. Mehrotra, J. Van Rosendale, H. Zima. Program­
ming in Vienna Fonran. In Scimtific Programmitrg, 3 1-50, Au­
gust 1992. 

[ELI 98) V. Elisseev. Parallelization ofThree-dimensional Spectral Laser­
plasma lnteraction Code Using High Performance Fonran. In 
Journal of Computers i11 Physics, 173-180, March 1998 

[FRU 98) M. Frumkin, H. Jin, J. Yan. lmplemcntation of NAS Parallel 
Benchmarks in High Performance Fonran. In NAS Technical Re­
por/ NAS-98-009, September 1998. 

[GRO 94) W. Gropp. E. Lusk, A. Skjcllum. Using MP/: Portable Parai­
lei Processi11g with rhe Me.uage-Passing Interface. MIT Prcss, 
1994. 

[GUP 94) M. Gupta, E. Schonberg. H. Srinivasan. A unified data-flow 
framework for optimizing communication. In Proceeditrgs of 
lhe Sevemh Workslwp o11 Latrguages and Compilers for Parai/e/ 
Computing. August 1994. 

[GUP 95) M. Gupta, S. Midkiff. E. Schonberg, V. Scshadri, O. Shields, K. 
Wang, W. Ching, and T. Ngo. An HPF Compiler for the IBM 
SP2. In Proceeding.v of Supercomputing '95, December 1995. 

[H IR 94) S. Hiranandani, K. Kennedy, C. Tseng, Young. Evaluating Com­
piler Optimizations for Fonran O. In Journal of Parai/e/ and 
Distributtd Compllling. 1994 

[HPF 94) High Performance Fortran Language Specification, Version 1.1. 
CRPC-TR92225. Center for Research on Parallel Computation, 
Rice University. Houston, 1994. 

[JIA 97) O. Jiang, H. Shan, J. Singh. Performance Portability of Appli­
cations and Optimizations Across Shared Addrcss Space Mul­
tiprocessors. In ACMISIGPU.N Symposium on Principies and 
Practices of Parai/e/ Pmgrcunming. June 1997 

[NGO 97] T. Ngo, L. Snyder, B. Chamberlain. Ponable Performance Of 
Data Parallel Languages. In Procuditrgs o f Supercomputing 97, 
1997 

[SUB 98) J. Subhlok. P. Steenkiste. J. Stichnoth. P. Lieu. Airshed Pollution 
Modeling: A Case Study in Application Development in an HPF 
Environment.ln IPPSISPDP 98 Proceedings , April 1998. 

[WOL 96) M.J. Wolfe. High Performance Compilersfor Parai/e/ Comput­
ing. Addison-Wesley. Redwood City, CA. 1996. 

[ZAA 94) A. Zaafrani. M. !to. Parallel Region Execution of Loops with 
Irregular Dependencies. ln lmernational Confertnce on Parai/e/ 
Processing. August 1994. 


