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Abstract—

This paper presents the resource tuning in a multipath superscalar
architecture model. The main goal of this model is to provide a high
bandwidth for superscalar architectures that need a high instruction
throughput. This architecture has an aggressive fetch mechanism to in-
crease the number of instructions available to the execution stage of the
pipeline, allowing a high number of instructions to be executed per cy-
cle. To achieve this, instructions from multiple paths are fetched in the
same clock cycle. The model results in a reduction of the occurrence of
breaks in the flow. A more detailed study into the resource distribution
throughout the architecture is needed. Simply increasing the number
of resources to support throughput is not recommended, given the pro-
hibitive implementation costs. The resource tuning of this superscalar
architecture is then an important focus of research, to balance resource
requirements and to tune them.

Keywords— Resource Tuning, Superscalar Architectures, Multipath
Fetch Mechanism.

[. INTRODUCTION

Currently, superscalar architectures represent the state of
the art in architectures that exploit Instruction-Level Paral-
lelism (ILP). Superscalar architectures have many indepen-
dent functional units and are able to dispatch and execute
more than one instruction in the same cycle.

In order to deliver high effective IPC (Instruction Per Cy-
cle), superscalar processors require a large number of in-
structions available to feed the dispatch stage and the sev-
eral functional units [ROT 96]. However, this approach has
some problems regarding instruction cache misses, branch
prediction accuracy and breaks in the input instruction flow.
This last factor, caused by taken branches is very common:
in average 20% of the instructions are conditional branches
and 70% [HEN 96] of these branches are taken. Even with
good branch prediction [YEH 91] mechanisms and efficient
cache memory policies, the instruction flow is continually

broken, emptying the instruction queue, decreasing the num-
ber of instructions ready to execute, and therefore reducing
the effective processor performance.

The architecture model proposed in [SAN 98] intends to
decrease the occurrence of the flow interruption and to pro-
vide larger fetch band width through the use of an aggressive
fetch mechanism. In this way, the fetch scheme feeds the dis-
patch stage satisfactorily, increasing the global performance
of the architecture.

Nevertheless, some issues deserve careful consideration.
In general the improvement achievable in the throughput in
superscalar architectures is limited by three basic factors:
control dependencies, data dependencies and resource con-
flicts. Conditional branches that break the instruction flow
and operand dependencies between instructions account for
the former two. The last one is relative to the number and
type of resources (e.g. ports, queue, buses, functional units)
demanded at runtime and those actually available in the pro-
CeSSOr.

More advanced techniques have been used to reduce the
time needed to compute the outcome of a branch and the time
to fetch the instruction from the target address. Branch pre-
diction and speculative execution reduce the branch penalty
by reducing the number of mispredicted executed branches.
Many schemes were suggested in the 80’s but only now have
been actually used in the commercial machines.

The data dependencies can be solved using schemes
like the Tomasulo [TOM 67] algorithm and Score-
board [THO 64], widely used in current microprocessors.

In practice the resource conflicts can not be resolved by
merely increasing the number of resources. The cost and
complexity of such endeavor makes it unfeasible. Further-
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more, such an architecture may not have the highest perfor-
mance achievable, as it is unbalanced. Therefore, a resource
tuning is needed to extract the best performance from a lim-
ited set of resources. Thus, the goal of this work is to analyse
the multipath architecture regarding the resource tuning in
order to get the best configuration achieved.

Although the semiconductor technology still promises sig-
nificant integration, it is advancing towards reaching physical
and practical limits. Then, the question of how to use the in-
tegration in the most efficient way to obtain the maximum
performance becomes even more paramount.

Undoubtedly the current trend to use increasing levels of
chip density and complexity to explore instruction level par-
allelism will continue. Relevant questions for machine ar-
chitects are: how to extract more parallelismo from the code,
and how to design architectures with more machine paral-
lelism? Most likely the trend will continue towards unsing
multiple functional units, multiple instruction issue architec-
tures, higher amount of cache memories integrated within the
processor, while using even more aggressive techniques for
dynamic instruction scheduling [CHA 94].

In section 2 previous related research work in this field
is reviewed. Section 3 presents the main goal and features of
the architecture model, while section 4 deals with the specific
problem approached in this paper. Section 5 discusses the
methodology used to simulate and determine the best tuning
for the architecture. Section 6 details the simulation results,
followed by a section with conclusions and remarks.

II. RELATED WORKS

A complete review on the multipath fetch mechanism can
be found in [SAN 97]. Aspects relative to control dependen-
cies are widely explored. In that study an efficient mecha-
nism to provide high bandwidth was proposed and the fetch
stage of the MULFLUX [MUL95, MUL99] microarchitec-
ture was firstly designed, but this architecture was not bal-
anced. Many simulations were done with several configura-
tions. All results were significant but an ideal tuning of the
architecture has to be developed to achieve a performance
improvement, which is the goal for the next step in the de-
velopment.

The trace cache [SMI 97] is a possible trend to be followed
in the next microprocessors generation. The study which
addresses this trend assumes unlimited hardware resources
to allow the fetch mechanism to feed the functional units.
This ideal-scenario simulation was used just to prove the re-
scarcher’s ideas to implement the scheme. In real processors,
however, a study involving the balance of the system should
be done.

In [WAL 93] a superscalar microprocessor was studied un-
der many aspects. Cache, dynamic scheduling, bypassing,
branch prediction and fetch efficiency were issues discussed

in this work. The architectural organization was presented in-
cluding mechanisms which are widely used in current archi-
tectures and the model was simulated using 17 benchmarks
from 5 different suites. The simulation, however, was not
used to find out the best way to distribute the resources.

The research in [CHA 95] studied the impact on the per-
formance of superscalar processors caused by the dispatch
width, the number of functional units and the processing ca-
pability of the functional units. In such case, attention has
been paid to the correct use of the resources of the super-
scalar architecture model. Many configurations were simu-
lated and the impact of those three aspects were observed.
Nevertheless, the main goal was to identify the limitations of
the superscalar processors performance and not tuning the ar-
chitecture at all.Most important outcomes of the study were
many relevant conclusions about the balance among the three
parameters and the effects of control dependencies in the
speculative execution.

It is possible to verify that the most part of the research
works concentrate on the simulations to prove the viability of
the proposed mechanisms. Usually, the number of hardware
resources used in the simulation experiments are assumed in-
finite. Thus, the point addressed in this work is extremely
important to implement the models in real architectures.

III. THE ARCHITECTURE MODEL

In a regular superscalar model the great bottleneck in ex-
ecution throughput is the instruction dispatch low rate. Fig-
ure 1 shows the three main causes for the occurence of a
no-dispatch in a regular superscalar processor, as a function
of the architecture fetch width [SAN 97]. It is possible to
observe that in an architecture with an 8-instruction fetch
width, the percentage of no-dispatch cycles caused by empty
queue represents more than 20% of the total number of the
execution cycles. In the case of a 2-instruction fetch width
architecture this percentage reaches almost 30%. Further-
more, the occurrence of empty queue is usually produced
by the high number of breaks in the instruction flow. These
happen mainly due to the ocurrence of conditional branches.
The functional units process the readily available instructions
faster than the fetch unit feeds the dispatch stage with the tar-
get instruction.

A solution found to this no-dispatch problem is to fetch
instructions in the two possible paths of the branches. In
other words, in the multipath superscalar architecture pro-
posed by [SAN 97], the fetch stage was modified to enable
the fetch of both paths of a branch instruction.

Figure 2 depicts the buffer structure in the fetch stage of
the multipath pipeline. The number of flow buffers defines
the fetch depth.

Each flow has four independent elements:

e Program Counter
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Fig. 1. No Dispatch in a real architecture
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Fig. 2. Fetch Buffer Structure (e.g. fetch depth equal to 4 flows)

o Status Bit

e Children List

e Feich Buffer

Fetched instructions are stored in the Fetch Buffer. The
PC indicates the next instruction in the flow. The status bit
indicates whether the flow structure is busy and the Children-
List stores the identification of the children flows.

The Children-List also stores the branch address and the
identifier of the children flows, thus allowing the predict
stage to start the transfer of instructions of the new flow when
a branch is predicted, without any delay.

The predict stage transfers instructions from the fetch
buffer to the instruction queue (as in conventional superscalar
architectures) looking for branch instructions. When it finds
a branch instruction, it also makes a prediction. However,
when the prediction is to be taken, this stage just concate-
nates the instructions which are in the children flow of this
branch, discarding the closest instructions.

When the prediction is not taken, the children flow is dis-
carded and the neighboring instructions continue to be trans-
ferred to the instruction queue. When a flow is discarded,
all children flows originated by this flow are also discarded,
through a recursive operation.

A simulator was developed to allow the study of the multi-
path superscalar model. In this simulator, the Tomasulo algo-
rithm as well as speculative execution and two-level branch

No Dispatch Cycles

Fig. 3. No Dispatch with 2 paths

prediction were implemented. Despite the number of paths
fetched, only the flow that was predicted is executed. Fur-
thermore, it is possible to test several different configura-
tions, varying, for example, the number of functional units,
number of paths, fetch width, dispatch width, instruction
queue size, besides the cache size and its policies.

IV. THE PROBLEM APPROACHED

In the preliminary simulations [SAN 97] the multipath
architecture provided satisfactory results regarding the oc-
curence of empty instruction queue, because the architecture
provides a sufficient number of instructions ready to be exe-
cuted. The multipath model is evaluated according to the rea-
sons of no-dispatch in Figure 3. As the chart shows, the per-
centage of lost cycles due to the occurence of empty queue
decreased satisfactorily by way of fetching of two paths.

The divergence between the components is important in
the real machine. The occurence of an empty queue is the
most important component that may contribute to the exis-
tence of no-dispatch cycles. This is not the case for the mul-
tipath machine. It is predictable that when there are more
instructions ready to dispatch, the number of functional units
becomes the main cause of no-dispatch cycles. This is true
in the multipath model, as Figure 3 shows.

The occurence of empty queue in the real machine de-
creases from 30.05%, with fetch width equal to 2 to 21.79%,
with fetch width equal to 8 instructions per cycle. In the mul-
tipath model, the results obtained are 7.73% and 7.80% for
the same configurations, due to the multiple path fetching.

As Figure 3 shows, now the main problem is not the
empty queue occurence, but the resource conflicts causing
no-dispatch. Thus, it is necessary to perform simulations to
find out the best way to make use of the resources available
in the architecture.

With the introduction of the multiple paths mechanism in
the superscalar model, tunings found for previous architec-
tures cannot be applied to the resulting architecture because
the throughput of instructions increase, and then entire sys-
tem behavior becomes different. Investigation of this par-
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ticular point becomes very important to achieve high perfor-
mance with this architecture model. Thus, the ideal balanc-
ing of the architecture resources must be provided to support
a new and more powerful parallelism through the pipeline.

V. SIMULATION METHODOLOGY

The architecture described in the last section was validated
by a trace-driven simulator that accepts application traces
from benchmarks generated on a UNIX platform. A subset of
the SPEC benchmarks (espresso, go, ccl, m88ksim, ijpeg) is
used in the preliminary simulations as’it is commonly done in
other studies in this field. The dhrystone benchmark is used
as well.

The methodology to verify the performance and to get the
best tuning of the architecture is herein described.

The simulation assumed that the architecture has a perfect
cache, without misses. The Branch History Table and the
Pattern History Table used in the simulations have typical
configurations taken from the current superscalar micropro-
Cessors.

In a preliminary work some parameter values have been
identified as factors that do not limit the number of instruc-
tions executed per cycle. Hence, these parameters were fixed
to:

e 9 Functional Units were used. 1 for branch and 8 for

general purpose units

e The fetch width used was equal to 8

e The dispatch width used was set equal to 8

e The size of the instruction queue was equal to 64

e 30 million of instructions were simulated for each ap-

plication code

The other architecture parameters needed were modified
for each simulation. These parameters were varied because,
according to the preliminary simulations, their values af-
fected directly the performance of the architecture. Thus, the
number of flows fetched was varied between 2 to 4 and the
number of reservation stations varied as to have 8, 16, 32, 64
stations per functional unit.

Having set the range of paramenters to simulate, each con-
figuration was simulated for every benchmark chosen. Ana-
lyzing the results makes it possible to find out the best way
to balance the architecture. The results of the simulations as
well as the data analyzed are shown in the next section.

VI. RESULTS
A. Setting Up the Number of Paths

In the first simulations it was observed that the variation
of the number of paths was not the bottleneck of the system.
The plots in Figures 4 to 9 depict the averages, in number
of instructions, of the dispatch, issue and IPC reached by the
following configurations:

2 paths and 8 reservation stations (2p8rs)

2 paths and 16 reservation stations (2p16rs)
2 paths and 32 reservation stations (2p32rs)
2 paths and 64 reservation stations (2p64rs)
4 paths and 8 reservation stations (4p8rs)

4 paths and 16 reservation stations (4p16rs)
4 paths and 32 reservation stations (4p32rs)
4 paths and 64 reservation stations (4p64rs)

There are not enough difference between the performance
using 2 and 4 paths that justify the cost of a four paths ar-
chitecture implementation. This is caused by the existence
of true data dependencies identified in the issue stage and,
in this case, fetching four paths does not affect neither the
pipeline execution nor the global performance. As may be
viewed in the graphics below, the instructions executed per
cycle (IPC) did not exceed 3 instructions, even with the re-
duction of the empty queue occurrence produced by the mul-
tipath utilization. Moreover, only two of the six benchmarks
exceeded 2 instruction per cycle (see Figures 6 and 7) .

The main reason for this are the dependencies discussed as
well as the misprediction and speculation penalties.

The misprediction penalty is the number of cycles between
the misprediction detection and the dispatch of the target in-
struction produced by the mispredicted branch. During these
cycles, the dispatch stage stalls.

Figure 10 depicts this metric in percentage of execution
cycles. Each bar means a configuration and they follow
the same order described above. This penalty is still high,
even using a good branch predictor, and this limits the per-
formance. As indicated in the simulation of the dhrystone
benchmark, the penalty reaches almost 25% of the number
of cycles, 1. e., a quarter of execution time is lost because
of misprediction. Being a synthetic benchmark, dhrystone is
more irregular in terms of its branch behaviour.

The speculation penalty is the number of the lost cy-
cles in the execution of invalids instructions caused by
fetch/decode/dispatch of instructions that were in a mispre-
diction path. This ratio is presented in Figure 11 and as the
misprediction, the penalties caused by wrong speculations
are high and have the same reasons. In the ijpeg simula-
tion, 55% of the execution time is lost in cycles caused by
speculation penalty.

In fact, both speculation and misprediction penalties are
consequences of the branch preditor’s accuracy. Thus, even
with the accuracy of the branch prediction reaching 90%,
those penalties are a major concern for the microprocessors
designers.

All the results presented in the following sections show the
two paths architecture simulation.
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B. Profiling the Dispatch/Issue and IPC Relationship

Figures 12to 17 show in the left plot the behaviour of the
dispatch and in the right plot the behaviour of the issue for 8,
16, 32 and 64 reservation stations considering only 2 paths.
It is possible to observe the variation of the instruction per-
centage dispatched/issued in a benchmark. The simulation
results have shown that the problems of the resource conflits
were not related to the number of functional units at all.

The average of the instructions issued in each benchmark
did not exceed 5 instructions and there were eight functional
units for general purpose available. Usually, there are a
higher number of instructions dispatched than issued because
of the occurrence of true data dependencies. The simulations
verified that there are differences among the reservation sta-
tion configurations. With 32 reservation stations, dispatch
and issue exhibited better performance, reaching 64.47% of
the execution time dispatching eight instructions and 50.54%
of the execution time issuing eight instructions in the ijpeg
benchmark. In few cases, 64 reservation stations got a better
performance. However, this produced a difference so small,
as in the case of the go benchmark, which did not justify the
cost of 32 additional reservation stations.

C. Setting Up the Number of Reservation Stations

The plots in Figures 18 to 23 show a comparison in the
same graph of the dispatch and issue profiles for 2 paths and
32 reservation stations. This was the choice for the best re-
source tuning found by the simulation work herein presented.
Even in the presence of true data dependencies, this config-
uration held the best performance evaluating cost and bene-
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fit produced by each one of the configurations studied. As
shown in the Figure 22, in case of the ijpeg benchmark the 2
paths and 32 reservation stations configuration got more than
60% of the time dispatching eight instructions and also more
than 50% of the time issuing eight instructions to be exe-
cuted. The dispatch rate was also considerable for this tuned
configuration in the other benchmark cases, being above 40%
for the go and dhrystone benchmarks.

VII. CONCLUSIONS AND REMARKS

Many solutions for state-of-the-srt problems involving
performance of computers are proposed every day. Some
of these are intented for implementation in the new gen-
eration of microprocessors. In the near future one has to
deal with the alternatives and intriguing possibilities of us-
ing close to one billion of transistors in a microprocessor.
The alternatives on where to put these large resources to
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work are really vast. Far-reaching studies such as trace pro-
cessors [SMI 97], simultaneous multithreading ([EGG 97],
multiscalar [SOH 95] and other alternatives present futures
trends which suggest high throughput of instruction execu-
tion and data.

Furthermore, advanced mechanisms try to provide better
performance in branch predictions and, despite low proba-
bility of misprediction, these mechanisms still are a concern
for the designers, because of the incidence of 10% or less of
wrong predicts is still enough to decrease the performance of
the processor. In the same way, new caches design [PEI 98]
such as multiport, pipeline and prefetch caches intent to pro-
vide a large number of instructions with a low miss rate.

The multipath model reduces, effectively, the occurrence
of empty instruction queue in current microprocessors. How-
ever, it was verified by simulations that the decrease in no-
dispatch cycles was not as substantial as desired. In the mul-
tipath machine, no-dispatch cycles are between 28.99% and
33.11%, while in the real superscalar machine it is between
39.30% and 40.50%. The increase in the flow of instructions
in the instruction queue generate a major resource conflict
like in the ideal architecture. Increasing the number of func-
Jtinnalinits whitdeepingnthesperuntntomratputhulcCmn ‘resuit
in better figures in the experiment. Due to this finding, a new
investigation about the tuning that results in the best perfor-
mance of the multipath model was done.

Many configurations were used to achieve the better dis-
tribution of the machine resources. The utilization of two
paths was chosen because the true data dependence occur-
rences limited the gains of a four-path alternative. Also based
on simulations, the utilization of 32 reservation stations was
identified as the configuration that achieved the best perfor-
mance, dispatching and issuing a larger number of instruc-
tions.

However, true data dependencies and misprediction
penalty represent still a hard limiting problem. This study
led to the conclusion that these are the main topics to deserve
more investigation in the future. Also, this work will be com-
pared against new alternatives used to reduce or eliminate the
hole produced by the fetch/predict when branches are taken.
These new schemes, such as next line predictor, may reduce
either the effectively of the predictor and the frequency.

The branch prediction accuracy should be improved and
so decrease the misprediction and speculation penalties.

Furthermore, reducing data dependecies is an important
point to be explored, particularly in branches. This kind of
instruction normally depends on previous instructions. So,
a mechanism to predict data should be develop to meet the
processor future requirements.
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