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Abstraci-
NCESPARC+ is a SPARC V.8 architecture with 

hardware support to a variable number of thread contexts, 
which is under development for use within the framework of 
the Multiplus distributed shared-memory multiprocessar. It 
is expected to provide an efficient and automatic mechanism 
to hide the latency of busy-waiting synchronization loops, 
cache-coherence protocol and remote memory access 
operations within the Multiplus multiprocessar. 
NCESP ARC+ perforrns context-switching in at most f ou r 
processar cycles whenever there is an instruction cache miss, 
a data dependence in relation to the destination operand of a 
pending load instruction or a busy-waiting synchronization 
loop. Results of simulation experiments show the impact of 
some architectural parameters on the NCESP ARC+ 
processar performance and demonstrate that the use of 
multiple thread contexts can effectively produce a much 
better utilization of the processar when long latency 
operations are performed. 
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I. I NTRODUCTION 

This paper focuses on the description of NCESPARC+, 
a specially designed SPARC processar to be used within 
the Processing Elements of the Multiplus multiprocessar 
[AUD96) to offer hardware support to multiple contexts of 
threads. The motivation for the development of 
NCESPARC+ isto conceive an efficent solution to hide the 
latency of remote memory access operations in large scale 
distributed shared memory multiprocessors. Within the 
Multiplus architecture, a long latency memory access 
operation may typically extend for over 100 processar 
cycles, forcing the pr.ocessor to sit idle waiting for the 
operation completion. Less time would be wasted if the 
latency could be partially hidden by the execution of some 
useful task set to run through a fast enough context­
switching operation. 

Multithreaded processar architectures can greatly 
reduce the context-switching overhead by providing 
multiple hardware contexts, that is, multiple sets of 

General Purpose Registers, Program Counters (PC's) and 
Processar Status Registers (PSR's). They are designed to 
support context-switching either on every processor cycle 
(fine-grain multithreading) or on an event which may 
cause latency (coarse-grain multithreading), such as cache 
misses, Ioad/store instructions, etc. 

The Sparcle processar designed at MIT for the Alewife 
multiprocessar [AGA99) is a multithreadcd architecturc 
based on the SPARC processar in which a single PC and a 
single PSR are used for ali the four available hardware 
contexts. Context-switching takes place on every cache 
miss (coarse-grain multithreading). Sincc, the PC and the 
PSR contents have to be saved in memory, the contcxt 
switching overhead is still 14 processor cycles long. 

On the other hand, the Tera Compu ter MT A 
architecture [BYR95) supports 128 hardware contexts with 
separate register files and can perform context switching 
betwecn threads on every processor cycle (fine-grain 
multithreading). At any time instant, a singlc instruction of 
a particular thread context is present in the pipeline. With 
this approach, the pipeline design is simplified, since data 
dependences do not occur, but the performance of 
sequential codes is heavily penalized. 

NCESPARC+ is an implementation of a coarse-grain 
multithreaded SPARC V8 architecture [WEA92) which 
can support a variable number of hardware contexts with a 
worst case four processar cycles context-switching 
overhead. Within NCESPARC+, a thread keeps issuing 
instructions until a first levei instruction cache miss 
occurs, data dependence in relation to a previous pending 
load operation is detected or a busy-waiting 
synchronization loop occurs. At this point, the context is 
switched after a single processar cycle to another thread 
which is ready to run. At most, three other instructions 
already present in the processor pipeline are annulled. 

Section 11 of this paper briefly reviews the Multiplus 
distributed shared memory architecture and gives 
information on its typical latencies for remote memory 
access operations. In Section III, the basic features of the 
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NCESPARC+ architecture are presented. The main 
componcnts of the NCESPARC+ architecture are dcscribcd 
in Scction IV. In Scction V, the differcnt context-switching 
opcrations that can take place within NCESPARC+ are 
discussed in dctail. Section VI presents and discusses some 
simulation results produced with the use of an application 
consisting of the calculation of the inner product of two 
integer vectors. Finally, in Section VII some conclusions 
and directions for future work are prcsentcd. 

11. THE MULTIPLUS ARCHITECTURE 

Multiplus is a distributcd shared-memory 
multiprocessar based on the interconnection of clusters of 
Processing Elcments (PE' s) as shown in Fig. I. The 
Multiplus Proccssing Element is based on the use of 
SPARC processors. Its current implementation uses the 
Cypress SPARC chipset and supports separate 64-Kbyte 
instruction and data caches and up to 32 Mbytes of 
memory bclonging to the global address space. A set of 
Processing Elements and one I/0 Processar can bc 
interconnected through a 64-bit double-bus system making 
up a cluster. Thc first bus is dedicated to instruction and 
data access operations and the other one is only used to 
perform data block transfer operations. 

MULTl'iTAC:E 

INTt-:kCONNl:CTION 

Nt-:TWORK 

Fig. I The Multiplus Architecture 

The Multiplus architccture supports the interconnection 
of clusters through an inverted n-cubc Multistage Network 
consisting of 2x2 cross-bar switching elements. Separate 
networks are used to interconnect the instruction/data and 
the block transfer buses in different clusters. A Network 
Interface interconnects the cluster buses to the Multistage 
Interconnection Network. The Interconnection Network is 
totally transparent to the software. Read and write 

operations in remote memory posJtiOns are pcrformed 
directly through common load/store instructions. 

The Multiplus multiprocessar has a Non-Uniform 
Memory Access (NUMA) architecture. The fastest memory 
access is a direct read operation on the local cachcs, which 
is performed within a processar cycle. The second fastest 
memory access is any read/write operation within the 
Processing Element local bank of memory. Its typical 
latency is 12 cycles. The third fastest memory access is 
one with cache miss refering to a memory position 
bclonging to an externai memory bank within the same 
cluster. The typical latency of this operation is 30 cycles. 
Lastly, there are the accesses generated by a Processing 
Element requesting information which is only stored 
within a memory bank sitting on another cluster. In this 
case, the arbitration times in the source and destination 
cluster bus systems and the Multistage Interconnection 
Newtork delay are added to the access time. The overall 
latency of this operation is typically over 100 cyclcs. 

A prototype of the Multiplus multiprocessar is 
operational in thc University Laboratory since 1997. In this 
prototype, there is no mechanism to maintain cache 
cohercnce bctween clusters. Remote memory pages 
containing shared and writeable data are always defined as 
non-cacheable. 

The new definition of the Multiplus architecture 
removes this limitation, uses SMP Processing Elemcnts 
with support to much larger local memory banks, 
introduces some efficient mechanisms for latency hiding 
through the use of multithreaded processors 
(NCESPARC+), and provides the Interconnection Network 
with hardware support for the efficient implementation of 
cachc coherence protocols. 

III. The NCESPARC+ Architecture 

The NCESPARC+ architecture supports both the 
Sequential and the Processar Consistency memory model 
and has a decoupled structure in which the main pipeline 
executes instructions bclonging to onc context while 
pending load and store operations eventually bclonging to 
other contexts are processed by the Memory Interface Unit 
of the NCESPARC+ architecture. 

NCESPARC+ support to a variable number of 
hardware contexts, from I to 16, is basically achieved with 
the use of a 32-window Register File. Depending on the 
number of contexts, a different number of windows in the 
NCESPARC+ Register File is allocated to each thread 
context. The contents of the SPARC Window Invalid Mask 
(V{IM) Register is set to define the limits of the groups of 
windows associated with each thread context. 

In addition to having separate window sets, 
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NCESPARC+ also provides each hardware context with its 
own TBR (Trap Base Register), Y (Multiply/Divide 
Register), WIM (Window Invalid Mask Register) , PSR, 
PC and nPC 32-bit registers. This last register points to the 
next instruction to be executed by that particular thread. It 
is part of the thread context because it allows the proper 
continuation of the thread execution when the thread 
suspension occurred within the instruction in the delay slot 
of a SPARC delayed branch instruction. The PSR for each 
hardware context points to a different window set. This is 
determined by the pattern stored in the Current Window 
Pointer (CWP) 5-bit field o f the PSR 

Status information on the hardware contexts is stored 
in the set of Ancillary State Registers [ 1..16] available in 
the SPARC V8 architecture. Single cycle instructions for 
reading (RDASR) and writing (WRASR) these registers 
are implemented within NCESPARC+. ASR[30] indicates 
i f that particular hardware context has got a thread mapped 
to it. ASR[31] indicates if the thread associated to that 
particular hardware context is currently in a wait state or if 
it is ready to run . This bit can be set by software to force 
the suspension of a particular thread or can be set by 
hardware whenever the thread execution is suspended 
because a instruction cache miss, a data dependence on a 
previous load instruction or a busy-waiting synchronization 
loop is detected. The bit is reset whenever the thread 
becomes ready to run again. ASR[29 .. 26] selectively enable 
or disable specific context-switching operations. 

The NCESPARC+ architecture is implemented as a 
four-stage pipeline: instruction fetch (F); instruction 
decoding and operand fetching (D); instruction execution 
(E); and writing of the result into the rcgister file (W). A 
pipeline clock cycle is divided into four time steps used to 
synchronize operations within a pipeline stage. Every 
pipeline stage has a PC, a PSR and an Instruction Register 
associated with it. Different PSR's need to be associated 
with different pipeline stages since they may be executing 
instructions belonging to different hardware contexts for 
some time. Whenever a hardware context switching 
occurs, a new PSR is associated with the F stage. In the 
subsequent clock cycles, this PSR becomes also associated 
with the other three pipeline stages. Therefore, it is not 
necessary to complete the execution of instructions already 
present in the pipeline before switching contexts. 

IV. THE NCESPARC+ ARCHITECTURE MA IN COMPONENTS 

As shown in Fig. 2, the main components of the 
NCESPARC+ architecture are: the Instruction Cache; the 
pipelined Data Path and its associated Control Logic; the 
Branch Unit; the Memory Interface Unit and the 
Scheduling Unit. 

A. The Instruction Cache 

. The Instruction Cache is a direct-mapped 16 Kbyte 
VIrtual address cache. The block size is 32 bytes and the 
access time is slightly less than a processor cycle. 

B. The Pipelined Data Path and Control Unir 

The NCESPARC+ 32-bit pipelined Data Path has four 
fundamental logic modules: the Register File, the ALU, the 
Multiplier/Divider and the Barrei Shifter. Auxiliary 
registers are inserted between these main modules to 
isolate operations between the NCESPARC+ pipeline 
stages. After the instruction fetch and decoding, the 
normal operation of the pipeline D stage consists of 
reading two operands from the Register File. These 
operands are used by the pipeline E stage to perform an 
operation in the ALU, in the Multiplier/Divider or in the 
Barrei Shifter. The result of this operation is stored back 
into the Register File by the pipeline W stage. 
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Fig. 2 The NCESPARC+ Architecture 

The Register File has two read and two write ports, 
allowing the NCESPARC+ pipeline to read two operands 
of a given instruction while the result of a previous 
instruction is stored back in the Register File. The second 
write port allows lhe writing of the Register File with the 
result of pending load operations managed by the Memory 
Interface Unit. The Register File is organized into 32 
windows. Each window consists of 24 registers with an 
overlap of 8 registers with each neighbouring window. In 
addition, 8 global registers (RO to R7) are available. 
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Therefore, the total number of 32-bit registers available is 
520. Register RO is permanently set to O. The 8 global 
registers are shared by ali thread contexts which are 
supposed to be associated with a single process. A 
scoreboard bit is associated with every register within the 
Register File. When set to 1, this bit indicates that the 
corresponding register has stale data. 

The 32-bit ALU can perform 10 different operations 
and must provide information on the occurrence of 
overOow, a result equal to zero, a negative result and a 
carry output. One of the ALU operands can be alternatively 
supplicd by data fed-back from the ALU output through a 
by-pass used by the Control Logic whenever one 
instruction uses as a source operand the contents of a 
register which is modified by the result of the immediately 
previous instruction. lf the by-pass were not provided, at 
least one NOP instruction would have to be inserted 
between the two instructions since the result of an 
operation is written to the Register File one cycle after the 
reading of thc operands by the next instruction. 

The 32-bit integer Multiplier/Divider performs the 
integer multiplication and division instructions. The 64-bit 
multiplication result is stored in the Y register and in the 
specified destination registcr. The quotient of the division 
is stored in the specified destination register while the 
remainder is stored in the Y registcr. 

The 32-bit Barrei Shifter performs lhree operalions: 
logic left shift, logic right shift and arithmetic right shift. 
One contrai bit is used to define if the shift operation is 
logic or arithmetic and another contrai bit commands the 
direction o f the shift operation (left or right). 

The pipeline Contrai Logic commands the Data Path by 
activating: the multiplexor selection bits; the load 
operation on auxiliary registers; the addressing and the 
read/write operations on the Register File; the ALU and 
Barrei Shifter operalions; etc. 

C. The Branc/1 Unir 

The Branch Unit performs thc calculation of the branch 
destination address using an extra 32-bit adder. This 
address is calculated by the addition of the contents of two 
registers or by the addition of an immediate value specified 
by the instruction and the contents of a register. The result 
of this calculation is delivered to the Instruction Cache for 
performing the fetch of the instruction following the one 
associated with the branch delay slot. 

D. The Memory Interface Unir 

The Memory Interface Unit (MIU) is responsible for 
processing ali memory access operations due to instruction 
cache misses, to the execution of load and store 

instructions and to the processing of busy-waiting 
synchronization Ioops. It has three fifo structures. The first 
one holds a queue of instruction fetch requisitions, the 
second one implements the queue of pending load/store 
operations and the third one holds the pending internai 
instructions generated for the implementation of busy­
waiting synchronization loops. 

A busy-waiting synchronization loop to perform a lock 
operation is usually executed many times, representing a 
long latency operation during which lhe processar is nol 
doing any useful work. A typical implementation of a busy­
wanmg synchronization loop within the SPARC 
architecture is the following one: 

loop: ldstub 
orce 
bne 
nop 

[lock], rx 
rO, rx, rO 
loop 

The alomic ldstub instruction in this loop can be 
replaced by the swap instruction, which is also atomic, or 
by standard load instructions, when the busy-waiting Joop 
is designed to avoid generating expensive stores to a 
potentially shared memory location [WEA92] . In this case, 
the loop is executed inside an outer loop which uses an 
atomic instruction to actually perform the lock operation. 

When the pipeline detects such a sequence of 
instructions, it generates an imernal synch instruction, 
which is slored in lhe load/store fifo of the MIU. This 
internai synch instruction expresses ali the semantics of the 
busy-waiting synchronization loop in a very compact 
formal. It defines that the ldstub, swap or load instruction 
must be executed repeatedly until the value to be Joaded in 
the destination register is O. When an internai synch 
instruction reaches the first position of the load/store fifo, 
the MIU processes it and, i f the termination condition fails, 
the inslruclion is stored in the synchronization fifo. To 
avoid deadlock, lhis fifo has to be able to store as many 
synch instructions as the number of contexts avai lable. 

The MIU has an arbiter which can be set to either 
alternate the priority for memory accesses between the 
instruction fetch fifo and the load/store fifo or to give 
always higher priority to the instruction fetch fifo. In 
addition, the MIU arbiter gives a higher priority to store 
operations in the Joad/store fifo in relation to synch 
instructions in the synchronization fifo. The inslruction in 
the synchronization fifo is processed by the MIU either 
when the load/store fifo is empty or before processing a 
load inslruction from the load/store fifo. 

Every pending access stored in the fifos is tagged with 
the thread context associated with it and, in the case of 
load/store and synchronization loop operations, with the 
register window they refer to in that context as well. 
Pending load operations set the corresponding scoreboard 
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bit in the Register File to indicate that the particular 
register to be loaded has got an invalid data. This 
information is used by the pipeline D stage to detect data 
dependences in relation to load operations during the 
operand fetch phase. Whenever a pending instruction fetch 
completes, the thread waiting on it has its status reset to 
ready by the MIU. When a pending Joad completes, the 
loaded register has its scoreboard bit reset and the thread 
waiting on this load operation due to a data dependence 
has its status reset to rcady by the MIU. 

The MIU can be set to work according to two different 
memory consistency models: Sequential Consistency and 
Processor Consistency. In the first case, load and store 
operations are executed in program order. Therefore, ali 
pending memory references are storcd in program order in 
the MIU tifo. With the Processar Consistency memory 
model , Joad operations can by-pass store operations by 
returning the value to be written in memory before the 
writing operation actually occurs. 

The alOmic instructions, Ldstub and swap, which 
perform in fact a Joad and a store opcrati.on i~ mem~ry, 
have to be implemented as atomic instructiOns m relauon 
to the particular memory position they refer. So, they are 
always stored in the MIU load/store tifo and processed 
after ali previous pending store operations. 

E. The Scheduling Unir 

The Scheduling Unit is responsible for selecting a new 
thread context to be associated with the pipeline F stage 
within a single pipeline cycle. The Scheduling Unit can 
have its operation inhibited by setting ASR[29]. When this 
bit is set, no context-switching is performed and the 
processar operates as a standard single thread processor. 
ASR[29] can be set, for instance, when a thread has 
acquired a lock and entered a criticai region to avoid 
deadlocks or extremely long waiting times for lock 
acquisition by the other threads. 

If ASR[29] is not set, context-switching is performed 
when the current running thread gets blocked 
(ASR[31 )=I ). The next hardware context which is in use 
and ready to run (ASR[30]= I and ASR[31 ]=0) is selected 
by the Scheduling Unit in a round-robin fashion. 

V . CONTEXT SWJTCHING OPERA TIONS 

Within NCESPARC+, thread context-switching can be 
performed in three different situations: the occurrence of 
an Instruction Cache miss; the detection of data 
dependence in relation to a pending Joad operation; and 
the detection of a busy-waiting synchronization loop. In 
addition, a thread context-switching may be fired by 

software by setting ASR[31], as it may occur, for instance, 
when some long latency cache-coherence protocol 
operations are perforrned. 

A. lnstruction Cache Miss 

An instruction cache miss may be detected within the F 
stage by the end of the pipeline cycle. In this case, the 
Scheduling Unit defines the new active thread context 
within the next pipeline cycle, when no Instruction Fetch 
takes place, and the instruction of the new thread context 
is fetched in the following pipeline cycle as shown in Fig. 
3. Only the instruction causing the instruction cache miss 
in the F stage is annulled. The fetch operation that fired 
the context-switching operation is sent to the MIU tifo and 
the MIU gets in charge of processing this instruction fetch 
operation. Therefore, the context-switching overhead in 
this case is two processar cycles. 

To avoid frequent context-switching operations caused 
by cold misses, contcxt-switching due to instruction cachc­
misses can be disabled under software control at the start 
of a new process by setting ASR[28]. 

Cycle n Cycle n +I Cycle n + 2 
, ___________ , ____________ !, __________ __ 

Instr. Fetch 
(cache miss) 

Sched. Unit 
(new context) 

No Fetch 

Fetch lnstr. 
(new context) 
Annuls Instr. 

revious context) 

Fig. 3 Context-Switching after an Instruction Cache Miss 

B. Data Dependence 

Data dependence in relation to a pending load 
operation can be detected at the pipeline D stage when 
executing any instruction which uses registers as source 
operands. Whenever a load instruction is decoded, the load 
operation destination register has its corresponding 
scoreboard bit set to I to indicate that the register has stale 
data. This bit is only reset to O again when the load 
operation completes. So, when an instruction is decoded, it 
checks the scoreboard bits associated with its source 
operand registers. If at least one of them is 1 and the 
interlock signal is not active, a context-switching operation 
is performed as shown in Fig. 4. Three pipeline cycles are 
lost and two instructions are annulled. 

The interlock signal is activated by a load instruction 
whenever it detects that the following instruction in the 
pipeline uses as a source register the load operation 
destination register. This signal remains active for one 
pipeline cycle and forces the following instruction to 
remain in the pipeline D stage for one extra cycle. In this 
second cycle the interlock signal is de-activated. The status 
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of the destination register scoreboard bit indicates if the 
load operation has either completed or been sent to the 
MIU as a pending operation. In this second case, a context­
switching operation takes place. In addition to the extra 
interlock cycle, three pipeline cyles are lost and two 
instructions are annulled. 

Cycle n Cycle n+ I Cycle n+2 Cycle n+3 

'----'---------------
Fetch Arith Decod Arith. Sched.Unit Fetch Instr. in 
Instruction lnstruction (new context) (new context) 

(no interlock) 
Fetch Instr. No Fetch Annuls 2 instr. 

(old contex) 

Fig. 4 Data Dependence Context-Switching without Interlock 

Context-switching operations due to the detection of 
data dependences on pending load opcrations can be 
selectively disabled by setting ASR[27]. 

C. Busy-waiting Synchronization Loop 

The pipeline dctects a sequence of busy-waiting 
synchronization loop instructions at the start of the second 
execution of the loop. In fact, whenever a load, ldstub or 
swap instruction is executed by the pipeline, a counter, 
which is also associated with the thread context, is set to I , 
if its current value is different from 4. This counter is 
incremented by the 3 following instructions in a standard 
busy-waiting synchronization loop. Any other instruction 
resets the counter. The second time the load, ldstub or 
swap instruction is executed within the loop, the counter 
value will bc set to 4 and, in this case, these instructions, 
instead of setting the counter to I , they will incrcment it to 
5. The increment operations on the counter are a!ways 
performed at the E stage of the pipeline. 

When the counter reaches the value 5, an intemal 
synch instruction is generated and sent for processing at 
the MIU. The current thread context is blocked (ASR[31) 
is set to I) and a context-switching operation is performed. 
The context-switching overhead in this case is 4 processor 
cycles, and three instructions in the pipeline are annulled. 
However, these instructions are the remaining ones in the 
busy-waiting synchronization loop. Therefore, in most 
cases, the overhead does not have any negative effect on 
the processor performance, since no useful work is lost. 

When the termination condition of the intemal synch 
instruction is detected (the value read from memory is 
equal to zero), the MIU sets the destination register value 
to zero, resets its corresponding scoreboard bit and resets 
to O the ASR[31] of the corresponding hardware context to 
make the thread ready to run again. 

Context-switching operations caused by the detection of 
busy-waiting synchron ization loops can also bc selectively 
disabled by setting ASR[26]. 

VI. SJMULATION REsULTS 

A simulator of the NCESPARC+ architecture has been 
developed and it assumes that the NCESPARC+ processor 
is operating within a Multiplus Processing Element. 
Therefore, the NCESPARC+ processor is connected to an 
MMU and Cache Controller chip (Cypress CY7C604/605) 
with a Data Cache. The NCESPARC+ processor is 
assumed to operate under the Processor Consistency 
memory model with no store coalescing in the load/store 
tifo. Ali types of context-switching operations designed to 
be provided by the NCESPARC+ processor are currently 
supported by the simulator. The simulator is written in C 
and is running on SPARCstations. 

The simulator can operate with diffcrent architectural 
parameters related to both thc Multiplus Processing 
Element and the NCESPARC+ chip. The following 
parameters are available: size of the cache blocks; number 
of !ines within the internai instruction cache and the 
externa! data cache; degrees of associativity of both caches; 
cache and main memory access times; cache-memory data 
bus width; cache-memory bus arbitration time; size of the 
write buffer; number of hardware contexts within the 
NCESPARC+ processor; sizes of the load/store, 
synchronization and instruction fifos within the MIU . 

The following measurements are produced by a 
simulation run: number of instructions that have been 
executed; average number of cycles per instruction; hit 
rates in the intruction and data caches; number of write 
operations; number of wasted cycles due to write-buffer, 
load/store tifo or instruction tifo ovcrflows; number of 
wasted cycles bccause no ready-to-run context is available; 
number of context-switching operations due to instruction 
cache misses, data dependences or synchronization loops. 

Initial results have been obtained with the simulator for 
an application in which the inner product of two 8K 
integer vectors is calculated assuming that no 
multiplication instruction is available. Each multiplication 
operation is performed in software and takes 40 cycles. 

For the experimental work, the following architectural 
parameters were held constant: size of the cache blocks: 32 
bytes; instruction cache size: I K bytes; data cache size: 
64K bytes; data cache degree of associativity: 2; instruction 
cache degree of associativity: 1; write-buffer size: 8 x 32-
bit words; instruction and data cache access times: I cycle; 
arbitration time: 4 cycles; cache-memory data bus width: 8 
bytes; size of the instruction tifo: 4 x 32-bit words; size of 
the synchronization loop tifo: 16 x 32-bit words; size of the 
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load/store fifo: 16 x 32-bit words. 
The following parameters have been changed in the 

experiments: number o f hardware contexts ( 1, 2, 4 or 8); 
MIU arbiter priority; and memory access time ( 10 - local 
memory; 30 - externai memory within the same cluster; 
100- memory in a remote cluster). Sixteen contexts have 
not been used because this application requires more than 
two windows per context, and, therefore, lhe degradation 
in performance with procedures for saving and restoring 
rcgister windows would be very high. Results have also 
been produced for a standard SPARC architecture with a 
single thread context and no MIU. This architecture is 
identified as std in the result tables to be presented. 

The test program assumes the vectors have been 
previously initialized in memory. The master thread 
performs a synchronous thrcad spawn operation. The 
number of threads that perform the inner product is equal 
to the number of hardware contexts available. After 
comple ting its own partia! product, the master task waits 
on a barrier to ensure that ali other threads have completed 
thcir partia! products. Thcn , it sums up ali partia! results. 

In ali expcrimcnts, the MIU Arbiter priority scheme 
has had little impact on the performance results. 
Nevertheless, the best rcsults have been achieved by always 
assigning thc highest priority to the instruction fctch fifo 
for accessing mcmory within the MIU. 

Tablcs I to III show the simulation results produced for 
diffcrent number of contexts when continuous sub-sections 
of thc vectors are handled by each thread. Each table is 
related to a diffcrent memory access time. Tables IV to VI 
show similar results when the distribution of vector 
e lements among the threads is done in an interleaved 
fashion. In a li experiments the instruction and the data 
cache hit rates were around 100% and 87%, respectively. 
No wasted cycles have been observed due to overflows in 
the instruction fifo. 

Tables I to III show that in most cases the total number 
of cycles and the averagc number of cycles/instruction is 
reduced when the number of contexts increases. Only 
when the memory access time is set to I O cycles, there is 
no benefit in incrcasing the number of contexts from 4 to 
8. On the other hand, for memory access times above 30 
cyclcs, i f a larger number of contexts were available much 
better results could be achieved since the number of wasted 
cycles due to the unav!lilability of contexts ready to run is 
still very big when 8 hardware contexts are used . 

Overflows in the load/store fifo have only been 
observed when the memory access time was set to I 00 and 
the number of contexts was set to 8. Nevertheless, 
improvements in performance have been achieved with 
this configuration. It is interesting to note that to increase 
the size of the load/store tifo is not a simple decision, 

because it has to work as a fully assoc1attve buffer for 
returning data of pending store operations in response to 
load operations. 

TABLEI 
CONTINUOUS SECTIONS; MEMORY ACCESS TIME: I 0 

# contexts 1 2 4 8 std 
# of cvcles 625K 560K 540K 540K 648K 

cycles/instr 1.16 1.03 1.01 1.01 1.20 
ctx switch-miss - 34 44 54 -
ctx switch-dep - 2949 1999 2057 -

ctx switch-synch - 3 5 9 -
waste-1d/st fifo ovf o o o o -
waste-no avai1 ctx 84.7K 13.1K 1.3K 1.2K 90.8K 

TABLEII 
CONTINUOUS SECTIONS ' MEMORY ACCESS TIME' 30 

# contexts 1 2 4 8 std 
# of cycles 790K 726K 629K 533K 813K 
cycles/i nstr 1.46 1.34 1.1 8 1.07 1.50 

ctxt switch-miss - 33 44 60 -
ctxt switch-dep - 2949 4201 3945 -

ctxt switch-synch - 3 7 lO -
waste-1d/st fifo ovf o o o o -
waste-no avai1 ctxt 250K 182K 87.4K 24.7K 256K 

Tables I to III a lso show that even when a sing1e 
context is used, the proposed architecture performs better 
than the standard architecture due to the presence of the 
MIU. In fac t, in relation to the standard architecture and 
considering the number of cycles it needs to perform the 
inner product for a memory access time equal to 10 as a 
reference, Table li shows that even for a higher memory 
access time, the memory latency is effect ively hidden when 
4 or 8 contexts are used. 

TABLE III 
CONTINUOUS SECTIONS; MEMORY ACCESS TIME' I 00 

# contexts 1 2 4 8 std 
# of cycles 1.37M 1.31M !.21M I.I IM !.39M 

cycles/instr 2.53 2.42 2.27 2.08 2.57 
ctxt switch-miss - 33 44 61 -
ctxt switch-dep - 2948 4199 5674 -

ctxt switch-synch - 3 5 9 -
waste-1d/st tifo ovf o o o 348 -
waste-no avai1 ctxt 828K 764K 672K 564K -

Tables IV to VI show the simulation results when the 
vector e1ements are distributed in an interleaved fashion 
among the threads. With this approach, if we assume the 
use of 4 threads, thread O gets e lements O, 4, 8, 12, etc. , 
thread I gets e1ements I, 5, 9, 13, etc., thread 2 gets 
e1ements 2, 6, 10, 14, etc. and thread 3 gets e1ements 3, 7, 
11, 14, etc. This arrangement can impact on the benefit 
extracted from data b1ock prefetching by the threads on a 
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cache miss. VII. CONCLUSIONS ANO FUTURE WORK 
TABLEIV 

INTERLEA VED· MEMORY ACCESS TIME· I 0 . 
# contexts 1 2 4 8 
# of cycles 625K 559K 549K 550K 

cycles/instr 1.16 1.03 1.01 1.01 
ctxt switch-miss - 33 50 57 
ctxt switch-dep - 3079 2072 2121 

ctxt switch-synch - 3 6 12 
waste-ld/st fifo ovf o o o o 
waste-no avail ctxt 84.7K 11.5K 1456 1305 

TABLEV 
1NTERLEAVED; MEMORY A CCESS TIME: 30 

# contexts 1 2 4 8 
# of cvcles 790K 725K 592K 541K 

cycles/instr 1.46 1.34 1.09 1.03 
ctxt switch-miss - 33 49 80 
ctxt switch-dep - 3089 5177 4230 

ctxt switch-synch - 4 12 17 
waste-ld/st fifo ovf o o o 276 
waste-no avail ctx 250K 181K 38.6K 4.4K 

TABLEVI 
1NTERLEAVED; MEMORY ACCESSTIME: 100 

# contexts 1 2 4 8 
# of cvcles ! .37M I. 31M 1.18M 0.91M 
cycles/instr 2.53 2.42 2.18 1.68 

ctxt switch-miss - 33 49 79 
ctxt switch-dep - 3088 5179 9253 

ctxt switch-synch - 4 12 li 
waste-ld/st fifo ovf o o o 1250 
waste-no avai1 ctxt 828K 765K 628K 342K 

For small memory access times, no benefit was 
produced by the use of interleaving. Only with 2 contexts 
some performance improvement has been achieved. In fact , 
with 4 and 8 hardware contexts thc results are worse than 
those shown in Table I. With a memory access time equal 
to 30 cycles, improvement in performance in relation to the 
results shown in Table li is achieved with the use of up to 
4 hardware contexts. For large memory acess times (I 00 
cycles), thc best result is produced with 8 hardware 
contexts. The total number of cycles is approximatelly 70% 
of that shown in Table III for 8 hardware contexts, 
assuming the distribution of continuous sub-vectors among 
the threads. These performance improvements result from 
the reduction of the number of wasted cycles due to the 
inexistence of available contexts which are ready to run. It 
is interesting to note that, as shown in Table VI, the 
number of cycles needed with 8 hardware contexts to run 
the application is only 40% bigger than the number of 
cycles needed by the standard architecture to perform the 
inner product assuming a memory access time equal to I O. 

The design of the NCESPARC+ multithreaded 
processar for the Multiplus archi tecture has been 
discussed in detail. NCESPARC+ is a coarse-grain 
multithreaded SPARC architecture with up to 16 hardware 
contexts and a context-switching overhead of at most 4 
processar cycles. Its architecture is designed to readily hide 
the latency of memory access operations, some cache­
coherence protocol operations and busy-waiting 
synchronization loops within the Multiplus multiprocessar. 
Therefore, the use of NCESPARC+ can, in principie, 
produce important speed up gains in parallel applications 
running within the Multiplus environment. This has been 
initially veri fied through some simulation experiments, 
which have shown that, with the use of multithreading, the 
same application can be set to run in lcss than 2/3 of the 
time spent on a s tandard processar with a single hardware 
context when long memory access latencies are considered. 

Progress of this research work includes further 
simulations of the NCESPARC+ architccture performance 
within the Multiplus framework, thc detailed logic design 
of the processar and its physical synthesis and fabricati on 
considering the use of CMOS technology. NCESPARC+ 
performance will ultimately be evaluated with the use of 
the final chip within the Multiplus Processing Elcment as a 
replacememt to the Integer Unit of the Cypress SPARC 
chipset currently in use. As a future research work, thc use 
of simultaneous multithreading [TUL95] within 
NCESPARC+ will also be investigated. 

ACKNOWLEDGEMENTS 

The authors would like to thank FINEP, CNPq, 
FAPERJ, RHAE and CAPES/COFECUB for the support 
given to the development of this research work. 

REFERENCES 

[AGA99] AGARWAL, A., et ai. The MIT Alewife Machine: 
Archirecture and Performance. Proc. of the IEEE. 
March 1999, pp. 430-444 

[AUD96] AUDE, J.S., ct ai. The Multiplus/Mulplix Parai/e/ 
Processing Environment. Proc. of the lntern'l Symp. 
on Parallel Architectures, Algorithms and Networks, 
Beijing, China,June 1996, pp. 50-56 

[BYR95] BYRD, G.T., HOLLIDAY, M.A. Multithreaded 
Processar Architectures. IEEE Spectrum, Aug. 1995, 
pp. 38-46 

[TUL95] TULLSEN, D.M., EGGERS, S.J., LEVY, H.M . 
Simultaneous Multithreading: Maximizing On-Chip 
Parallelism. Proc. 22nd lnt'1 Symp. on Computer 
Architecture, Santa Margherita Ligure, ltaly, 1995 

[WEA92] WEAVER, D.L., GERMOND, T. The SPARC 
Architecture Manual - Version 8. Prentice-Hall, 1992 


