
SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 35

NCESP ARC+: A Multithreaded SP ARC
Architecture for the Multiplus Multiprocessar

J. S. Aude1
, F. R.S. Martins1

, M. A. S. Barbosa2
, M. Joao Jr.2

, M. T. Young2
, S. B. Pinto2

1Federal University of Rio de Janeiro, NCE and IM
2Federal University of Rio de Janeiro, NCE

P.O. Box 2324- Rio de Janeiro - RJ 20001-970- Brasil
{ e-mail: salek@ nce.ufrj .br}

Abstraci-
NCESPARC+ is a SPARC V.8 architecture with

hardware support to a variable number of thread contexts,
which is under development for use within the framework of
the Multiplus distributed shared-memory multiprocessar. It
is expected to provide an efficient and automatic mechanism
to hide the latency of busy-waiting synchronization loops,
cache-coherence protocol and remote memory access
operations within the Multiplus multiprocessar.
NCESP ARC+ perforrns context-switching in at most f ou r
processar cycles whenever there is an instruction cache miss,
a data dependence in relation to the destination operand of a
pending load instruction or a busy-waiting synchronization
loop. Results of simulation experiments show the impact of
some architectural parameters on the NCESP ARC+
processar performance and demonstrate that the use of
multiple thread contexts can effectively produce a much
better utilization of the processar when long latency
operations are performed.

Keywords- Multithreaded Architectures, SP ARC
Architecture, Context-Switching, Latency Hiding

I. I NTRODUCTION

This paper focuses on the description of NCESPARC+,
a specially designed SPARC processar to be used within
the Processing Elements of the Multiplus multiprocessar
[AUD96) to offer hardware support to multiple contexts of
threads. The motivation for the development of
NCESPARC+ isto conceive an efficent solution to hide the
latency of remote memory access operations in large scale
distributed shared memory multiprocessors. Within the
Multiplus architecture, a long latency memory access
operation may typically extend for over 100 processar
cycles, forcing the pr.ocessor to sit idle waiting for the
operation completion. Less time would be wasted if the
latency could be partially hidden by the execution of some
useful task set to run through a fast enough context­
switching operation.

Multithreaded processar architectures can greatly
reduce the context-switching overhead by providing
multiple hardware contexts, that is, multiple sets of

General Purpose Registers, Program Counters (PC's) and
Processar Status Registers (PSR's). They are designed to
support context-switching either on every processor cycle
(fine-grain multithreading) or on an event which may
cause latency (coarse-grain multithreading), such as cache
misses, Ioad/store instructions, etc.

The Sparcle processar designed at MIT for the Alewife
multiprocessar [AGA99) is a multithreadcd architecturc
based on the SPARC processar in which a single PC and a
single PSR are used for ali the four available hardware
contexts. Context-switching takes place on every cache
miss (coarse-grain multithreading). Sincc, the PC and the
PSR contents have to be saved in memory, the contcxt
switching overhead is still 14 processor cycles long.

On the other hand, the Tera Compu ter MT A
architecture [BYR95) supports 128 hardware contexts with
separate register files and can perform context switching
betwecn threads on every processor cycle (fine-grain
multithreading). At any time instant, a singlc instruction of
a particular thread context is present in the pipeline. With
this approach, the pipeline design is simplified, since data
dependences do not occur, but the performance of
sequential codes is heavily penalized.

NCESPARC+ is an implementation of a coarse-grain
multithreaded SPARC V8 architecture [WEA92) which
can support a variable number of hardware contexts with a
worst case four processar cycles context-switching
overhead. Within NCESPARC+, a thread keeps issuing
instructions until a first levei instruction cache miss
occurs, data dependence in relation to a previous pending
load operation is detected or a busy-waiting
synchronization loop occurs. At this point, the context is
switched after a single processar cycle to another thread
which is ready to run. At most, three other instructions
already present in the processor pipeline are annulled.

Section 11 of this paper briefly reviews the Multiplus
distributed shared memory architecture and gives
information on its typical latencies for remote memory
access operations. In Section III, the basic features of the

36 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Braz.il

NCESPARC+ architecture are presented. The main
componcnts of the NCESPARC+ architecture are dcscribcd
in Scction IV. In Scction V, the differcnt context-switching
opcrations that can take place within NCESPARC+ are
discussed in dctail. Section VI presents and discusses some
simulation results produced with the use of an application
consisting of the calculation of the inner product of two
integer vectors. Finally, in Section VII some conclusions
and directions for future work are prcsentcd.

11. THE MULTIPLUS ARCHITECTURE

Multiplus is a distributcd shared-memory
multiprocessar based on the interconnection of clusters of
Processing Elcments (PE' s) as shown in Fig. I. The
Multiplus Proccssing Element is based on the use of
SPARC processors. Its current implementation uses the
Cypress SPARC chipset and supports separate 64-Kbyte
instruction and data caches and up to 32 Mbytes of
memory bclonging to the global address space. A set of
Processing Elements and one I/0 Processar can bc
interconnected through a 64-bit double-bus system making
up a cluster. Thc first bus is dedicated to instruction and
data access operations and the other one is only used to
perform data block transfer operations.

MULTl'iTAC:E

INTt-:kCONNl:CTION

Nt-:TWORK

Fig. I The Multiplus Architecture

The Multiplus architccture supports the interconnection
of clusters through an inverted n-cubc Multistage Network
consisting of 2x2 cross-bar switching elements. Separate
networks are used to interconnect the instruction/data and
the block transfer buses in different clusters. A Network
Interface interconnects the cluster buses to the Multistage
Interconnection Network. The Interconnection Network is
totally transparent to the software. Read and write

operations in remote memory posJtiOns are pcrformed
directly through common load/store instructions.

The Multiplus multiprocessar has a Non-Uniform
Memory Access (NUMA) architecture. The fastest memory
access is a direct read operation on the local cachcs, which
is performed within a processar cycle. The second fastest
memory access is any read/write operation within the
Processing Element local bank of memory. Its typical
latency is 12 cycles. The third fastest memory access is
one with cache miss refering to a memory position
bclonging to an externai memory bank within the same
cluster. The typical latency of this operation is 30 cycles.
Lastly, there are the accesses generated by a Processing
Element requesting information which is only stored
within a memory bank sitting on another cluster. In this
case, the arbitration times in the source and destination
cluster bus systems and the Multistage Interconnection
Newtork delay are added to the access time. The overall
latency of this operation is typically over 100 cyclcs.

A prototype of the Multiplus multiprocessar is
operational in thc University Laboratory since 1997. In this
prototype, there is no mechanism to maintain cache
cohercnce bctween clusters. Remote memory pages
containing shared and writeable data are always defined as
non-cacheable.

The new definition of the Multiplus architecture
removes this limitation, uses SMP Processing Elemcnts
with support to much larger local memory banks,
introduces some efficient mechanisms for latency hiding
through the use of multithreaded processors
(NCESPARC+), and provides the Interconnection Network
with hardware support for the efficient implementation of
cachc coherence protocols.

III. The NCESPARC+ Architecture

The NCESPARC+ architecture supports both the
Sequential and the Processar Consistency memory model
and has a decoupled structure in which the main pipeline
executes instructions bclonging to onc context while
pending load and store operations eventually bclonging to
other contexts are processed by the Memory Interface Unit
of the NCESPARC+ architecture.

NCESPARC+ support to a variable number of
hardware contexts, from I to 16, is basically achieved with
the use of a 32-window Register File. Depending on the
number of contexts, a different number of windows in the
NCESPARC+ Register File is allocated to each thread
context. The contents of the SPARC Window Invalid Mask
(V{IM) Register is set to define the limits of the groups of
windows associated with each thread context.

In addition to having separate window sets,

SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 37

NCESPARC+ also provides each hardware context with its
own TBR (Trap Base Register), Y (Multiply/Divide
Register), WIM (Window Invalid Mask Register) , PSR,
PC and nPC 32-bit registers. This last register points to the
next instruction to be executed by that particular thread. It
is part of the thread context because it allows the proper
continuation of the thread execution when the thread
suspension occurred within the instruction in the delay slot
of a SPARC delayed branch instruction. The PSR for each
hardware context points to a different window set. This is
determined by the pattern stored in the Current Window
Pointer (CWP) 5-bit field o f the PSR

Status information on the hardware contexts is stored
in the set of Ancillary State Registers [1..16] available in
the SPARC V8 architecture. Single cycle instructions for
reading (RDASR) and writing (WRASR) these registers
are implemented within NCESPARC+. ASR[30] indicates
i f that particular hardware context has got a thread mapped
to it. ASR[31] indicates if the thread associated to that
particular hardware context is currently in a wait state or if
it is ready to run . This bit can be set by software to force
the suspension of a particular thread or can be set by
hardware whenever the thread execution is suspended
because a instruction cache miss, a data dependence on a
previous load instruction or a busy-waiting synchronization
loop is detected. The bit is reset whenever the thread
becomes ready to run again. ASR[29 .. 26] selectively enable
or disable specific context-switching operations.

The NCESPARC+ architecture is implemented as a
four-stage pipeline: instruction fetch (F); instruction
decoding and operand fetching (D); instruction execution
(E); and writing of the result into the rcgister file (W). A
pipeline clock cycle is divided into four time steps used to
synchronize operations within a pipeline stage. Every
pipeline stage has a PC, a PSR and an Instruction Register
associated with it. Different PSR's need to be associated
with different pipeline stages since they may be executing
instructions belonging to different hardware contexts for
some time. Whenever a hardware context switching
occurs, a new PSR is associated with the F stage. In the
subsequent clock cycles, this PSR becomes also associated
with the other three pipeline stages. Therefore, it is not
necessary to complete the execution of instructions already
present in the pipeline before switching contexts.

IV. THE NCESPARC+ ARCHITECTURE MA IN COMPONENTS

As shown in Fig. 2, the main components of the
NCESPARC+ architecture are: the Instruction Cache; the
pipelined Data Path and its associated Control Logic; the
Branch Unit; the Memory Interface Unit and the
Scheduling Unit.

A. The Instruction Cache

. The Instruction Cache is a direct-mapped 16 Kbyte
VIrtual address cache. The block size is 32 bytes and the
access time is slightly less than a processor cycle.

B. The Pipelined Data Path and Control Unir

The NCESPARC+ 32-bit pipelined Data Path has four
fundamental logic modules: the Register File, the ALU, the
Multiplier/Divider and the Barrei Shifter. Auxiliary
registers are inserted between these main modules to
isolate operations between the NCESPARC+ pipeline
stages. After the instruction fetch and decoding, the
normal operation of the pipeline D stage consists of
reading two operands from the Register File. These
operands are used by the pipeline E stage to perform an
operation in the ALU, in the Multiplier/Divider or in the
Barrei Shifter. The result of this operation is stored back
into the Register File by the pipeline W stage.

lnstructiun Bluc:k

lnstructiun

fthmnry,
Data Cachc.

Lcnl 2 lrutruction Cachc

Unit

Dutinatinn
Luad

Rcclstcr

w w
L-..::.:.:.:.:.....J

i Cachc Mls,s./
~-------r~R R

~
,.._......&~=....t..:.

32 Winduw
Rtc,istcr file

......... ·····················
Fig. 2 The NCESPARC+ Architecture

The Register File has two read and two write ports,
allowing the NCESPARC+ pipeline to read two operands
of a given instruction while the result of a previous
instruction is stored back in the Register File. The second
write port allows lhe writing of the Register File with the
result of pending load operations managed by the Memory
Interface Unit. The Register File is organized into 32
windows. Each window consists of 24 registers with an
overlap of 8 registers with each neighbouring window. In
addition, 8 global registers (RO to R7) are available.

38 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

Therefore, the total number of 32-bit registers available is
520. Register RO is permanently set to O. The 8 global
registers are shared by ali thread contexts which are
supposed to be associated with a single process. A
scoreboard bit is associated with every register within the
Register File. When set to 1, this bit indicates that the
corresponding register has stale data.

The 32-bit ALU can perform 10 different operations
and must provide information on the occurrence of
overOow, a result equal to zero, a negative result and a
carry output. One of the ALU operands can be alternatively
supplicd by data fed-back from the ALU output through a
by-pass used by the Control Logic whenever one
instruction uses as a source operand the contents of a
register which is modified by the result of the immediately
previous instruction. lf the by-pass were not provided, at
least one NOP instruction would have to be inserted
between the two instructions since the result of an
operation is written to the Register File one cycle after the
reading of thc operands by the next instruction.

The 32-bit integer Multiplier/Divider performs the
integer multiplication and division instructions. The 64-bit
multiplication result is stored in the Y register and in the
specified destination registcr. The quotient of the division
is stored in the specified destination register while the
remainder is stored in the Y registcr.

The 32-bit Barrei Shifter performs lhree operalions:
logic left shift, logic right shift and arithmetic right shift.
One contrai bit is used to define if the shift operation is
logic or arithmetic and another contrai bit commands the
direction o f the shift operation (left or right).

The pipeline Contrai Logic commands the Data Path by
activating: the multiplexor selection bits; the load
operation on auxiliary registers; the addressing and the
read/write operations on the Register File; the ALU and
Barrei Shifter operalions; etc.

C. The Branc/1 Unir

The Branch Unit performs thc calculation of the branch
destination address using an extra 32-bit adder. This
address is calculated by the addition of the contents of two
registers or by the addition of an immediate value specified
by the instruction and the contents of a register. The result
of this calculation is delivered to the Instruction Cache for
performing the fetch of the instruction following the one
associated with the branch delay slot.

D. The Memory Interface Unir

The Memory Interface Unit (MIU) is responsible for
processing ali memory access operations due to instruction
cache misses, to the execution of load and store

instructions and to the processing of busy-waiting
synchronization Ioops. It has three fifo structures. The first
one holds a queue of instruction fetch requisitions, the
second one implements the queue of pending load/store
operations and the third one holds the pending internai
instructions generated for the implementation of busy­
waiting synchronization loops.

A busy-waiting synchronization loop to perform a lock
operation is usually executed many times, representing a
long latency operation during which lhe processar is nol
doing any useful work. A typical implementation of a busy­
wanmg synchronization loop within the SPARC
architecture is the following one:

loop: ldstub
orce
bne
nop

[lock], rx
rO, rx, rO
loop

The alomic ldstub instruction in this loop can be
replaced by the swap instruction, which is also atomic, or
by standard load instructions, when the busy-waiting Joop
is designed to avoid generating expensive stores to a
potentially shared memory location [WEA92] . In this case,
the loop is executed inside an outer loop which uses an
atomic instruction to actually perform the lock operation.

When the pipeline detects such a sequence of
instructions, it generates an imernal synch instruction,
which is slored in lhe load/store fifo of the MIU. This
internai synch instruction expresses ali the semantics of the
busy-waiting synchronization loop in a very compact
formal. It defines that the ldstub, swap or load instruction
must be executed repeatedly until the value to be Joaded in
the destination register is O. When an internai synch
instruction reaches the first position of the load/store fifo,
the MIU processes it and, i f the termination condition fails,
the inslruclion is stored in the synchronization fifo. To
avoid deadlock, lhis fifo has to be able to store as many
synch instructions as the number of contexts avai lable.

The MIU has an arbiter which can be set to either
alternate the priority for memory accesses between the
instruction fetch fifo and the load/store fifo or to give
always higher priority to the instruction fetch fifo. In
addition, the MIU arbiter gives a higher priority to store
operations in the Joad/store fifo in relation to synch
instructions in the synchronization fifo. The inslruction in
the synchronization fifo is processed by the MIU either
when the load/store fifo is empty or before processing a
load inslruction from the load/store fifo.

Every pending access stored in the fifos is tagged with
the thread context associated with it and, in the case of
load/store and synchronization loop operations, with the
register window they refer to in that context as well.
Pending load operations set the corresponding scoreboard

SBAC-PAD'99 1 Jth Symposium on Computer Architecture and High Performance Computing ·Natal· Brazil 39

bit in the Register File to indicate that the particular
register to be loaded has got an invalid data. This
information is used by the pipeline D stage to detect data
dependences in relation to load operations during the
operand fetch phase. Whenever a pending instruction fetch
completes, the thread waiting on it has its status reset to
ready by the MIU. When a pending Joad completes, the
loaded register has its scoreboard bit reset and the thread
waiting on this load operation due to a data dependence
has its status reset to rcady by the MIU.

The MIU can be set to work according to two different
memory consistency models: Sequential Consistency and
Processor Consistency. In the first case, load and store
operations are executed in program order. Therefore, ali
pending memory references are storcd in program order in
the MIU tifo. With the Processar Consistency memory
model , Joad operations can by-pass store operations by
returning the value to be written in memory before the
writing operation actually occurs.

The alOmic instructions, Ldstub and swap, which
perform in fact a Joad and a store opcrati.on i~ mem~ry,
have to be implemented as atomic instructiOns m relauon
to the particular memory position they refer. So, they are
always stored in the MIU load/store tifo and processed
after ali previous pending store operations.

E. The Scheduling Unir

The Scheduling Unit is responsible for selecting a new
thread context to be associated with the pipeline F stage
within a single pipeline cycle. The Scheduling Unit can
have its operation inhibited by setting ASR[29]. When this
bit is set, no context-switching is performed and the
processar operates as a standard single thread processor.
ASR[29] can be set, for instance, when a thread has
acquired a lock and entered a criticai region to avoid
deadlocks or extremely long waiting times for lock
acquisition by the other threads.

If ASR[29] is not set, context-switching is performed
when the current running thread gets blocked
(ASR[31)=I). The next hardware context which is in use
and ready to run (ASR[30]= I and ASR[31]=0) is selected
by the Scheduling Unit in a round-robin fashion.

V . CONTEXT SWJTCHING OPERA TIONS

Within NCESPARC+, thread context-switching can be
performed in three different situations: the occurrence of
an Instruction Cache miss; the detection of data
dependence in relation to a pending Joad operation; and
the detection of a busy-waiting synchronization loop. In
addition, a thread context-switching may be fired by

software by setting ASR[31], as it may occur, for instance,
when some long latency cache-coherence protocol
operations are perforrned.

A. lnstruction Cache Miss

An instruction cache miss may be detected within the F
stage by the end of the pipeline cycle. In this case, the
Scheduling Unit defines the new active thread context
within the next pipeline cycle, when no Instruction Fetch
takes place, and the instruction of the new thread context
is fetched in the following pipeline cycle as shown in Fig.
3. Only the instruction causing the instruction cache miss
in the F stage is annulled. The fetch operation that fired
the context-switching operation is sent to the MIU tifo and
the MIU gets in charge of processing this instruction fetch
operation. Therefore, the context-switching overhead in
this case is two processar cycles.

To avoid frequent context-switching operations caused
by cold misses, contcxt-switching due to instruction cachc­
misses can be disabled under software control at the start
of a new process by setting ASR[28].

Cycle n Cycle n +I Cycle n + 2
, ___________ , ____________ !, __________ __

Instr. Fetch
(cache miss)

Sched. Unit
(new context)

No Fetch

Fetch lnstr.
(new context)
Annuls Instr.

revious context)

Fig. 3 Context-Switching after an Instruction Cache Miss

B. Data Dependence

Data dependence in relation to a pending load
operation can be detected at the pipeline D stage when
executing any instruction which uses registers as source
operands. Whenever a load instruction is decoded, the load
operation destination register has its corresponding
scoreboard bit set to I to indicate that the register has stale
data. This bit is only reset to O again when the load
operation completes. So, when an instruction is decoded, it
checks the scoreboard bits associated with its source
operand registers. If at least one of them is 1 and the
interlock signal is not active, a context-switching operation
is performed as shown in Fig. 4. Three pipeline cycles are
lost and two instructions are annulled.

The interlock signal is activated by a load instruction
whenever it detects that the following instruction in the
pipeline uses as a source register the load operation
destination register. This signal remains active for one
pipeline cycle and forces the following instruction to
remain in the pipeline D stage for one extra cycle. In this
second cycle the interlock signal is de-activated. The status

40 SBAC-PAD'99 llth Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

of the destination register scoreboard bit indicates if the
load operation has either completed or been sent to the
MIU as a pending operation. In this second case, a context­
switching operation takes place. In addition to the extra
interlock cycle, three pipeline cyles are lost and two
instructions are annulled.

Cycle n Cycle n+ I Cycle n+2 Cycle n+3

'----'---------------
Fetch Arith Decod Arith. Sched.Unit Fetch Instr. in
Instruction lnstruction (new context) (new context)

(no interlock)
Fetch Instr. No Fetch Annuls 2 instr.

(old contex)

Fig. 4 Data Dependence Context-Switching without Interlock

Context-switching operations due to the detection of
data dependences on pending load opcrations can be
selectively disabled by setting ASR[27].

C. Busy-waiting Synchronization Loop

The pipeline dctects a sequence of busy-waiting
synchronization loop instructions at the start of the second
execution of the loop. In fact, whenever a load, ldstub or
swap instruction is executed by the pipeline, a counter,
which is also associated with the thread context, is set to I ,
if its current value is different from 4. This counter is
incremented by the 3 following instructions in a standard
busy-waiting synchronization loop. Any other instruction
resets the counter. The second time the load, ldstub or
swap instruction is executed within the loop, the counter
value will bc set to 4 and, in this case, these instructions,
instead of setting the counter to I , they will incrcment it to
5. The increment operations on the counter are a!ways
performed at the E stage of the pipeline.

When the counter reaches the value 5, an intemal
synch instruction is generated and sent for processing at
the MIU. The current thread context is blocked (ASR[31)
is set to I) and a context-switching operation is performed.
The context-switching overhead in this case is 4 processor
cycles, and three instructions in the pipeline are annulled.
However, these instructions are the remaining ones in the
busy-waiting synchronization loop. Therefore, in most
cases, the overhead does not have any negative effect on
the processor performance, since no useful work is lost.

When the termination condition of the intemal synch
instruction is detected (the value read from memory is
equal to zero), the MIU sets the destination register value
to zero, resets its corresponding scoreboard bit and resets
to O the ASR[31] of the corresponding hardware context to
make the thread ready to run again.

Context-switching operations caused by the detection of
busy-waiting synchron ization loops can also bc selectively
disabled by setting ASR[26].

VI. SJMULATION REsULTS

A simulator of the NCESPARC+ architecture has been
developed and it assumes that the NCESPARC+ processor
is operating within a Multiplus Processing Element.
Therefore, the NCESPARC+ processor is connected to an
MMU and Cache Controller chip (Cypress CY7C604/605)
with a Data Cache. The NCESPARC+ processor is
assumed to operate under the Processor Consistency
memory model with no store coalescing in the load/store
tifo. Ali types of context-switching operations designed to
be provided by the NCESPARC+ processor are currently
supported by the simulator. The simulator is written in C
and is running on SPARCstations.

The simulator can operate with diffcrent architectural
parameters related to both thc Multiplus Processing
Element and the NCESPARC+ chip. The following
parameters are available: size of the cache blocks; number
of !ines within the internai instruction cache and the
externa! data cache; degrees of associativity of both caches;
cache and main memory access times; cache-memory data
bus width; cache-memory bus arbitration time; size of the
write buffer; number of hardware contexts within the
NCESPARC+ processor; sizes of the load/store,
synchronization and instruction fifos within the MIU .

The following measurements are produced by a
simulation run: number of instructions that have been
executed; average number of cycles per instruction; hit
rates in the intruction and data caches; number of write
operations; number of wasted cycles due to write-buffer,
load/store tifo or instruction tifo ovcrflows; number of
wasted cycles bccause no ready-to-run context is available;
number of context-switching operations due to instruction
cache misses, data dependences or synchronization loops.

Initial results have been obtained with the simulator for
an application in which the inner product of two 8K
integer vectors is calculated assuming that no
multiplication instruction is available. Each multiplication
operation is performed in software and takes 40 cycles.

For the experimental work, the following architectural
parameters were held constant: size of the cache blocks: 32
bytes; instruction cache size: I K bytes; data cache size:
64K bytes; data cache degree of associativity: 2; instruction
cache degree of associativity: 1; write-buffer size: 8 x 32-
bit words; instruction and data cache access times: I cycle;
arbitration time: 4 cycles; cache-memory data bus width: 8
bytes; size of the instruction tifo: 4 x 32-bit words; size of
the synchronization loop tifo: 16 x 32-bit words; size of the

SBAC-PAD '99 11th Symposium on Compu ter Architecture and High Performance Computing - Natal - Brazil 41

load/store fifo: 16 x 32-bit words.
The following parameters have been changed in the

experiments: number o f hardware contexts (1, 2, 4 or 8);
MIU arbiter priority; and memory access time (10 - local
memory; 30 - externai memory within the same cluster;
100- memory in a remote cluster). Sixteen contexts have
not been used because this application requires more than
two windows per context, and, therefore, lhe degradation
in performance with procedures for saving and restoring
rcgister windows would be very high. Results have also
been produced for a standard SPARC architecture with a
single thread context and no MIU. This architecture is
identified as std in the result tables to be presented.

The test program assumes the vectors have been
previously initialized in memory. The master thread
performs a synchronous thrcad spawn operation. The
number of threads that perform the inner product is equal
to the number of hardware contexts available. After
comple ting its own partia! product, the master task waits
on a barrier to ensure that ali other threads have completed
thcir partia! products. Thcn , it sums up ali partia! results.

In ali expcrimcnts, the MIU Arbiter priority scheme
has had little impact on the performance results.
Nevertheless, the best rcsults have been achieved by always
assigning thc highest priority to the instruction fctch fifo
for accessing mcmory within the MIU.

Tablcs I to III show the simulation results produced for
diffcrent number of contexts when continuous sub-sections
of thc vectors are handled by each thread. Each table is
related to a diffcrent memory access time. Tables IV to VI
show similar results when the distribution of vector
e lements among the threads is done in an interleaved
fashion. In a li experiments the instruction and the data
cache hit rates were around 100% and 87%, respectively.
No wasted cycles have been observed due to overflows in
the instruction fifo.

Tables I to III show that in most cases the total number
of cycles and the averagc number of cycles/instruction is
reduced when the number of contexts increases. Only
when the memory access time is set to I O cycles, there is
no benefit in incrcasing the number of contexts from 4 to
8. On the other hand, for memory access times above 30
cyclcs, i f a larger number of contexts were available much
better results could be achieved since the number of wasted
cycles due to the unav!lilability of contexts ready to run is
still very big when 8 hardware contexts are used .

Overflows in the load/store fifo have only been
observed when the memory access time was set to I 00 and
the number of contexts was set to 8. Nevertheless,
improvements in performance have been achieved with
this configuration. It is interesting to note that to increase
the size of the load/store tifo is not a simple decision,

because it has to work as a fully assoc1attve buffer for
returning data of pending store operations in response to
load operations.

TABLEI
CONTINUOUS SECTIONS; MEMORY ACCESS TIME: I 0

contexts 1 2 4 8 std
of cvcles 625K 560K 540K 540K 648K

cycles/instr 1.16 1.03 1.01 1.01 1.20
ctx switch-miss - 34 44 54 -
ctx switch-dep - 2949 1999 2057 -

ctx switch-synch - 3 5 9 -
waste-1d/st fifo ovf o o o o -
waste-no avai1 ctx 84.7K 13.1K 1.3K 1.2K 90.8K

TABLEII
CONTINUOUS SECTIONS ' MEMORY ACCESS TIME' 30

contexts 1 2 4 8 std
of cycles 790K 726K 629K 533K 813K
cycles/i nstr 1.46 1.34 1.1 8 1.07 1.50

ctxt switch-miss - 33 44 60 -
ctxt switch-dep - 2949 4201 3945 -

ctxt switch-synch - 3 7 lO -
waste-1d/st fifo ovf o o o o -
waste-no avai1 ctxt 250K 182K 87.4K 24.7K 256K

Tables I to III a lso show that even when a sing1e
context is used, the proposed architecture performs better
than the standard architecture due to the presence of the
MIU. In fac t, in relation to the standard architecture and
considering the number of cycles it needs to perform the
inner product for a memory access time equal to 10 as a
reference, Table li shows that even for a higher memory
access time, the memory latency is effect ively hidden when
4 or 8 contexts are used.

TABLE III
CONTINUOUS SECTIONS; MEMORY ACCESS TIME' I 00

contexts 1 2 4 8 std
of cycles 1.37M 1.31M !.21M I.I IM !.39M

cycles/instr 2.53 2.42 2.27 2.08 2.57
ctxt switch-miss - 33 44 61 -
ctxt switch-dep - 2948 4199 5674 -

ctxt switch-synch - 3 5 9 -
waste-1d/st tifo ovf o o o 348 -
waste-no avai1 ctxt 828K 764K 672K 564K -

Tables IV to VI show the simulation results when the
vector e1ements are distributed in an interleaved fashion
among the threads. With this approach, if we assume the
use of 4 threads, thread O gets e lements O, 4, 8, 12, etc. ,
thread I gets e1ements I, 5, 9, 13, etc., thread 2 gets
e1ements 2, 6, 10, 14, etc. and thread 3 gets e1ements 3, 7,
11, 14, etc. This arrangement can impact on the benefit
extracted from data b1ock prefetching by the threads on a

42 SBA C-PAD '99 11th Symposium on Compute r Architecture and High Performance Computirrg - Natal - Brazil

cache miss. VII. CONCLUSIONS ANO FUTURE WORK
TABLEIV

INTERLEA VED· MEMORY ACCESS TIME· I 0 .
contexts 1 2 4 8
of cycles 625K 559K 549K 550K

cycles/instr 1.16 1.03 1.01 1.01
ctxt switch-miss - 33 50 57
ctxt switch-dep - 3079 2072 2121

ctxt switch-synch - 3 6 12
waste-ld/st fifo ovf o o o o
waste-no avail ctxt 84.7K 11.5K 1456 1305

TABLEV
1NTERLEAVED; MEMORY A CCESS TIME: 30

contexts 1 2 4 8
of cvcles 790K 725K 592K 541K

cycles/instr 1.46 1.34 1.09 1.03
ctxt switch-miss - 33 49 80
ctxt switch-dep - 3089 5177 4230

ctxt switch-synch - 4 12 17
waste-ld/st fifo ovf o o o 276
waste-no avail ctx 250K 181K 38.6K 4.4K

TABLEVI
1NTERLEAVED; MEMORY ACCESSTIME: 100

contexts 1 2 4 8
of cvcles ! .37M I. 31M 1.18M 0.91M
cycles/instr 2.53 2.42 2.18 1.68

ctxt switch-miss - 33 49 79
ctxt switch-dep - 3088 5179 9253

ctxt switch-synch - 4 12 li
waste-ld/st fifo ovf o o o 1250
waste-no avai1 ctxt 828K 765K 628K 342K

For small memory access times, no benefit was
produced by the use of interleaving. Only with 2 contexts
some performance improvement has been achieved. In fact ,
with 4 and 8 hardware contexts thc results are worse than
those shown in Table I. With a memory access time equal
to 30 cycles, improvement in performance in relation to the
results shown in Table li is achieved with the use of up to
4 hardware contexts. For large memory acess times (I 00
cycles), thc best result is produced with 8 hardware
contexts. The total number of cycles is approximatelly 70%
of that shown in Table III for 8 hardware contexts,
assuming the distribution of continuous sub-vectors among
the threads. These performance improvements result from
the reduction of the number of wasted cycles due to the
inexistence of available contexts which are ready to run. It
is interesting to note that, as shown in Table VI, the
number of cycles needed with 8 hardware contexts to run
the application is only 40% bigger than the number of
cycles needed by the standard architecture to perform the
inner product assuming a memory access time equal to I O.

The design of the NCESPARC+ multithreaded
processar for the Multiplus archi tecture has been
discussed in detail. NCESPARC+ is a coarse-grain
multithreaded SPARC architecture with up to 16 hardware
contexts and a context-switching overhead of at most 4
processar cycles. Its architecture is designed to readily hide
the latency of memory access operations, some cache­
coherence protocol operations and busy-waiting
synchronization loops within the Multiplus multiprocessar.
Therefore, the use of NCESPARC+ can, in principie,
produce important speed up gains in parallel applications
running within the Multiplus environment. This has been
initially veri fied through some simulation experiments,
which have shown that, with the use of multithreading, the
same application can be set to run in lcss than 2/3 of the
time spent on a s tandard processar with a single hardware
context when long memory access latencies are considered.

Progress of this research work includes further
simulations of the NCESPARC+ architccture performance
within the Multiplus framework, thc detailed logic design
of the processar and its physical synthesis and fabricati on
considering the use of CMOS technology. NCESPARC+
performance will ultimately be evaluated with the use of
the final chip within the Multiplus Processing Elcment as a
replacememt to the Integer Unit of the Cypress SPARC
chipset currently in use. As a future research work, thc use
of simultaneous multithreading [TUL95] within
NCESPARC+ will also be investigated.

ACKNOWLEDGEMENTS

The authors would like to thank FINEP, CNPq,
FAPERJ, RHAE and CAPES/COFECUB for the support
given to the development of this research work.

REFERENCES

[AGA99] AGARWAL, A., et ai. The MIT Alewife Machine:
Archirecture and Performance. Proc. of the IEEE.
March 1999, pp. 430-444

[AUD96] AUDE, J.S., ct ai. The Multiplus/Mulplix Parai/e/
Processing Environment. Proc. of the lntern'l Symp.
on Parallel Architectures, Algorithms and Networks,
Beijing, China,June 1996, pp. 50-56

[BYR95] BYRD, G.T., HOLLIDAY, M.A. Multithreaded
Processar Architectures. IEEE Spectrum, Aug. 1995,
pp. 38-46

[TUL95] TULLSEN, D.M., EGGERS, S.J., LEVY, H.M .
Simultaneous Multithreading: Maximizing On-Chip
Parallelism. Proc. 22nd lnt'1 Symp. on Computer
Architecture, Santa Margherita Ligure, ltaly, 1995

[WEA92] WEAVER, D.L., GERMOND, T. The SPARC
Architecture Manual - Version 8. Prentice-Hall, 1992

