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Abstract-
This work presents a new approach to exploit the Instruction-Levcl 

Parallelism. In the MULFLUX microarchitecture each branch in
struction spawns lwo different ftows, corresponding to the two possible 
branch paths. Instructions from both ftows are executed speculalively 
in parallel. Cycles consumed by discarded instructions are not visible, 
because lhe correct instructions also have been executed. The concept 
of multi pie ftows of conlrol as exploited in this research work h as pro
vided promising results, with perfonnance gains of up to 109% for a 
configuration supporting up to 16 aclive ftows. Among lhe configura· 
tions considered here, lhe configuralion with a maximum of 4 aclive 
ftows exhibited the best compromise between perfonnance and resource 
replication: il provided a perfonnance gain of lOS% and full dispatch 
width ulilization of up to 41 %. 

Keywords-
Multiple Flows, Superscalar, Speculative Execution 

I. INTRODUCTION 

Modem high-performance microprocessors employ a 
pipelined superscalar architecture [I] to exploit Instruction
Level Parallelism (ILP). The performance of a superscalar 
architecture is signiticantly constrained by control depen
dences [2]. Control dependences restrict performance by re
ducing the utilization o f the fetch bandwidth and by avoiding 
instructions from different basic blocks to enter the dynamic 
execution window. 

Lam and Wilson [3] evaluate two alternatives for relaxing 
control flow constraints. These are contrai dependence anal
ysis and multi pie jlows of control. Control dependence anal
ysis is a software technique that discovers parallelism from 
different regions o f code, each with its own control flow. The 
concept of following multiple flows of control is viewed as 
the architectural suppoi'lto fully exploit the additional paral
lelism exposed by control dependence analysis. 

In this work, flows of control are not explicitly associated 
with statically defined pieces of code. Instead, they are im
plicitly created by branch instructions. More precisely, each 
branch instruction spawns two different flows, correspond
ing to the two possible branch paths. Instructions from both 
flows are executed speculatively in paraJlel. Once a branch 

outcome is determined, instructions in the wrong path are 
discarded, as in the conventional speculative model. How
ever, cycles consumed by discarded instructions are not vis
ible, because the correct instructions have been executed in 
paraJlcl. In addition, the correct flow of control can advance 
considerably while previous branches are blocked due to 
(data) dependences. In the conventional speculative model, 
the single flow of control can also advance in the presence of 
blocked branch instructions but, i f the first dispatched branch 
is mispredicted, this advantage is Jost. 

Othcr works have also pursued execution models based on 
multiple flows of execution. Wallace et ai. [4] devised a 
scheme caJled threaded multiple path execution, which ac
tually employs a simultaneous multithreading [5] architec
ture to speculatively execute multiple branch paths. When
ever the number of executing threads is less than the total 
number of hardware contexts, lhe spare contexts are used to 
fetch and execute along the less likely path of a branch in
struction. Klauser et ai. [6] proposed an execution model 
called selective eager execution and its corresponding sub
strate, lhe PolyPath processo r. As in our work, their purpose 
is to overcome mispredicted branch penalties by executing 
both paths originated by a branch instruction. Chronologi
cally, the present work has been one o f the first to investigate 
a practical execution model based on multiple flows of con
trol [7]. 

The remainder o f this paper is organized as follows. Sec
tion 2 introduces the concept of multiple flows of control. 
Section 3 describes MULFLUX, an architecture supporting 
the parallel execution o f multi pie flows o f control. Section 4 
shows experimental results assessing the performance o f this 
architecture. Section 5 concludes the paper Jisting potential 
areas for future work. 

11. A MODEL OF MULTIPLE FLOWS OF CONTROL 

The parallel execution o f multiple flows o f control can be 
represented through a binary tree, called Dynamic Jnstruc-
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tion Flow Tree (DIFf). Each node in lhe DIFf corresponds to 
a fetched branch instruction which has not been resolved yet. 
The ares of the DIFf represent lhe dynamic execution flow 
along the paths that originate from the branch instructions. 
The DIFf is called dynamic because its topology changes 
during the program execution, according to the resolution of 
branch instructions. Figure 1 shows a simple DIFf. Two in
struction flows, s0 and s1 originate from the branch instruc
tion b0 . By convention, the dynamic execution flow leading 
to a branch instruction continues along the not-taken path of 
the branch. This flow is refcrred to as the parent fiow. The 
new instruction ftow originated from a branch instruction is 
called the clzildfiow, and it comprises the instructions along 
the taken path o f the branch. 
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Fig. I . Examplc of a Dynamic lnstruction Flow Trec (DIFT). 

In our model, branch instructions are executed sequen
tially, according to the order in which they are fetched. When 
the outcome of a branch instruction is determined, the flow 
along the wrong branch path should be cancelled. In addi
tion, flows descending from lhe wrong ftow should also be 
cancelled. Flow cancellation requires some sort of identifi
cation, from which it is possible to determine the tlows that 
should bc cancelled. 

For that purpose, a Flow Number (Fn) is assigned to each 
tlow in the DIFf. The tlow number has a bit for each levei in 
the DIFf, with the least significant bit corresponding to levei 
l = 1 (DIFf leveis are counted starting from the root) . The 
number of bits in the flow number is given by the maximum 
allowed DIFf depth (which, by its turn, depends on the avail
able architectural resources). A bit O indicates an instruction 
tlow along the not-taken palh of a branch, while a bit 1 indi
cates a flow along the laken path. As Figure 1 shows, from 
branch bo, flow so has a ftow number Fn = xxxO, as it runs 
alonga not-taken path in levell = 1. The child flow s1 has 
Fn = xxx 1, because it runs along a taken path in levell = 1. 
In the above, x means a don ' t care. 

Flow numbers are used in lhe following way during flow 
cancellation. If the outcome of a branch instruction is not
taken, all the descending tlows with least significant bit 1 in 
their flow numbers are cancelled. Similarly, if lhe branch 
outcome is taken, descending ftows with least significant bit 
O in the flow numbers are cancelled. After cancellation, 
lhe remaining flows should be renamed: Flow renaming is 

achieved by simply shifting flow number bits one position to 
the right. A new DIFf is obtained after flow cancellation and 
subsequent flow renaming. In the example shown in Figure 
2, branch bo is taken. Dashed tines in Figure 2(a) indicate 
the cancelled flows. Figure 2(b) shows the resulting DIFf 
after flow renaming. Notice that, as branches are executed 
sequentially in order, the branch currently being processed is 
the one in the DIFf root. 
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Fig. 2. Flow cancellation and tlow renaming. 

A. lnter-fiow Data Dependences 

(a) 

(b) 

Data dependences may occur among instructions belong
ing to the same tlow. These data dependences will be re
ferred to as intra-ftow data dependences. In addition, the 
simu1taneous execution o f multiple fl ows introduces data de
pendences involving instructions from different tlows. Data 
dependences in this new class will be called inter-fiow data 
dependences. Figure 3 shows an cxample of inter-flow data 
dependence. 
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Fig. 3. Example of inter-tlow data dependence. 

The SUB instruction in the parent ftow s0 writes into reg
ister R3, while the OR instruction in child flow s1 reads from 
thal register. If no preceding instruction in flow s 1 writes in to 
R3, lhe value read from R3 by lhe OR instruction should be 
the one produced by the SUB instruction. The OR instruc
tion in s 1 can be executed only after the SUB instruction is 
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completed, therefore establishing a data dependence between 
fiows so and s1. 

Each fiow has a separate state. Therefore, data produced in 
one fiow usually does not interfere in the state of other fiows. 
However, it may happen that data produced by instructions 
in a certain ftow need to be visible to instructions in other 
fiows. Figure 4(a) shows an example. In this figure, the SUB 
instruction in ftow so writes in to register R3. The value writ
ten into R3 should be visible to instructions in fiows so and 
s2. In contrast, the value produced by SUB should not be vis
ible to those instructions in fiows s1 and S3. Actually, data 
visibility among fiows is a consequence of, and is determined 
by, inter-flow data dependences. 

.. I 
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Fig. 4. Data visibility among multiplc nows. 

Thereforc, a rule is necessary to control data visibility 
among instructions from the multiple fiows. The following 
scope rui eis defined: the scope o f instructions in fiow s com
prises the instructions in the flows descending from s. Or, in 
other words, data produced in a certain fiow should be visible 
only to the descending fiows. 

A priori, the scope of a certain instruction covers aLI in
struclions in descendant fiows. However, the scope can 
"shrink" as execution evolves. In the example shown in Fig
ure 4(b), the ANO instruction in flow s2 also writes into reg
ister R3. Now, subsequent instructions in s2 reading from 
R3 should get the value produced by the AND instruction, in
stead of the value from the SUB instruction in fiow so (in 
such situations, intra-ftow dependences override inter-flow 
dependences). Thus, once the ANO instruction is fetched, the 
scope o f the SUB instruclion becomes restricted to those in
structions preceding the ANO instruction. For this reason, the 
scope o f instructions is more precisely referred to as dynamic 
scope. 

III . THE MULFLUX ARCHITECTURE 

The previous section described the abstract model o f mul
tiple flows o f execution, as considered in this work. This sec-

tion presents an architectural substrate to support that model. 
This substrate, called the MULFLUX architecture, requires 
the same mechanisms found in conventional, speculative su
perscalar architectures. But, in order to support multiple 
ftows of execution, such mechanisms were extended in the 
MULFLUX architecture in the following ways: (I) the fetch 
mechanism is extended to access instructions from multiple 
ftows, and to create, cancel and rename fiows. Notice that 
branch prediction is completely eliminated; (2) the decode 
and dispatch mechanisms are extended to handle inter-fiow 
data dependences and to implement the scope rule; and (3) 
the commit mechanism is extended to maintain the states as
sociated with multi pie flows of control. 

A. Executing Multiple Flows ofControl 

The MULFLUX architecture is built around an extension of 
the register renaming and speculative execution mechanism 
found in the MIPS RIOOOO processor (8]. Before discussing 
the extension to multiple fiows of control, it is adequate to 
briefiy describe the operation of the basic register renaming 
mechanism. It comprises three components: (I) the mapping 
table keeps the correspondence between the id of a logical 
register, indicated in the instruction, and the id of the physi
cal register which actually stores data; (2) the active list con
tains id's of physical registers that are no Ionger mapped to 
logical registers and which can not be reused because the cor
responding instructions have not been completed yet; and (3) 
a free list, which contains id's o f physical registers that are 
currently unmapped. 

Let us consider that instruction AOO Rl I R2 I R3 arrives 
at the renaming stage and that, at this moment, the mapping 
table has the mappings I ~ 32 (i.e., logical register I is 
mapped to physical register 32), 2 ~ 33, 3 ~ 34. In addition, 
suppose that logical id 40 is at the head o f the free list. Logi
cal source registers are renamed to physical registers accord
ing to the current mapping table state, while the logical desti
nation register is renamed to a physical register indicated by 
the id retrieved from the free list. Therefore, after renaming, 
the instruction becomes ADO R32 I R33 I R40. As part of 
the renaming process, the mapping table is updated with the 
new mapping 3 ~ 40, while the previous mapping 3 ~ 34 is 
saved in the aclive list. Insertions in the active list follow the 
static instruction order. 

The id of a physical register returns from the aclive list to 
the free list only when two conditions are met: (1) the id is at 
the head o f the active list and (2) the instruction which moved 
the id from the mapping table to the active list has been exe
cuted. These two conditions ensure that ali instructions that 
read a physical register have done so before its id returns to 
the free list and the register is reutilized. 

To support speculative execution, a scheme is necessary to 
discard the mappings which are created by instructions fol
lowing a mispredicted branch. In other words, it is necessary 



46 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 

to recover the mapping table to the state existing before the 
access of the mispredicted branch. This can be achieved by 
using the mappings saved in the active list. When a mispre
dicted branch is found, mappings subsequent to the branch 
entry in the active list are copied back to the mapping ta
ble. When a mapping is undone, the physical register id is 
moved from the mapping table to the free list. Notice that 
speculative results are implicitly discarded when mappings 
subsequent to a mispredicted branch are undone. 

This scheme does not require data storage replication to 
keep the correct architectural state: a single register file keeps 
both the speculative and the correct state. For such reason, 
the mechanism smoothly extends to support multiple flows 
of execution, as described next. 

8. Extension to Multiple Flows of Control 

As Figure 5 shows, the extended register renaming mech
anism consists of replicated mapping tables, a single active 
list and a single free list. The number of mapping tables is 
one of the factors that determines the maximum number of 
aclive flows. 

mapping tables 

1- treelist 

111 I 

li 
1111 
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Fig. 5. The extended register renaming mechanism. 

A mapping table is allocated when a child flow is cre
ated. It keeps the mappings established by instructions be
longing to the child flow. When a logical destination register 
is mapped to a physical register, a pair (Fn. Rd) is inserted 
into the aclive list. Here, Fn is the instruction's flow number 
and Rd is the physical register id displaced from the mapping 
table by the new mapping. 

The mapping table allocated to the child flow inherits the 
mappings stored in the parent's mapping table. Inter-flow de
pendences are thus automatically satisfied, because instruc
tions in the child flow will read the same physical registers 
in use by the parent flow at the moment of child flow cre
ation. The scope rule is satisfied due to the use of multi pie 
mapping tables and the single free list. If instructions from 
different flows write into the same Jogical register, this reg
ister will be mapped differently for the two instructions, as 
the mapping tables are distinct and the physical register id is 
retrieved from a single free list. 

Flow cancellation involves discarding the dispatched in
structions belonging to that flow. This is done using the flow 

numbers stored in the active list. An instruction is labeled 
as discarded i f the Jeast significant bit of its Fn in the active 
list matches the least significant bit of Fn of the flow being 
cancelled. 

C. Handling id Duplicares 

In a register renaming mechanism, it is necessary to keep 
the uniqueness of physical register ids. However, physical 
ids are replicated when a mapping table inherits inforrnation 
from another table. These duplicates can reach the free list, 
therefore breaking physical id uniqueness, in two situations: 
( 1) duplicates are inserted in to the active list i f instructions 
from sibling flows write into the same logical register, before 
one o f the flows is cancelled. From the active list, duplicates 
may return to the free list; and (2) a duplicate physical id may 
retum to the free list from a mapping table associated with a 
cancelled flow. 

These two special cases must be handled in order to guar
antee physical id uniqueness. Both can be treated by using 
a counter associated with each physical register, which indi
cates the number of duplicate id's for that physical rcgister. 
Whenever a newly allocated mapping table is initialized, the 
counters corresponding to the copied physical id's are incre
mented. When a physical id is removed from the active Iist, 
the corresponding counter is decremented. In this case, the 
id returns to the free list if the counter is zero after being 
decrcmcnted. When a flow is cancelled, the counters cor
responding to the physical id's found in the flow's mapping 
table are ali decremented. Again, a physical id returns to the 
free list only if the counter becomes zero after decrement. 

D. lntra-fiow Data Dependences 

Besides handling inter-flow data dependences, the register 
renaming mechanism eliminates false intra-flow data depen
dences. An additional mechanism is necessary to handle true 
intra-flow data dependences. 

Instructions are dispatched to issue buffers attached to the 
functional units. Instructions are issued out of order to the 
functional units according to operand availability. The issue 
buffer has an invalid bit for each instruction's operand. An 
invalid bit is also associated with each physical register. This 
bit is set when the physical register is mapped to a logical 
destination register, thus indicating that a new value will be 
written in that physical register. 

During dispatch, the invalid bit in the issue buffer is set if 
the invalid bit of the corresponding physical source register 
is also set. Upon instruction completion, the invalid bit o f the 
physical destination register is reset. In addition, the physi
cal destination register id is broadcast to the issue buffers. 
The invalid bits of matching source register id's in the issue 
buffers are then reset, possibly enabling instructions for is
sue. Input operands are read from physical source registers 
when an instruction is issued to a functional unit. 
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E. Fetchingfrom Multiple Flows ofContro/ 

Instructions from a certain ftow are stored into aftow fetch 
buffer (FFB), shown in Figure 6. Each FFB comprises: a 
busy bit, which indicates whether the FFB is allocated to a 
ftow; aftow number register, which contains the ftow num
ber; a program counter register; and an instruction FIFO. 

Fig. 6. lns1ruc1ion felching in lhe MULFLUX archileclure. 

A child flow is only created if there is a free FFB for it. 
Otherwise, the branch instruction is assumed as not-taken 
and fetching continues along the parent ftow. As parto f child 
flow crcation, the program counter register of the allocated 
FFB is initialized with the branch's target address, and the 
flow number rcgister is initialized with the child's ftow num
ber. Finally, the busy bit is set. The parent flow continues 
with thc FFB already allocated to it. 

FFB deallocation uses the infonnation in the flow num
ber registers. Recall that flow cancellation is decided when a 
branch instruction is processed; either the parent flow or the 
child ftow, and the appropriate descendants, have to be dis
cardcd. If thc parent flow has to be discarded, ali FFBs with 
a O as the least significant bit in the flow number register are 
released (i.e., their busy bits are reset). If the child ftow has 
to bc discarded, the FFBs deallocated are those with a I as 
the lcast significant bit in the ftow number register. 

F. Organization ofthe Mulftux Architecture 

Thc mechanisms described so far appear as components of 
a pipeline with six stages: fetch (I F), decode (DC), dispatch 
(OS), issue (IS), execute (EX) and write-back (WB). 

Stage IF comprises the multiple ftows fetch mechanism 
described in the previous subsection. In addition to decoding, 
stage DC performs register renaming, mapping table alloca
tion and mapping table initialization. Renamed instructions 
are inserted into dispatch queues, located in stage DS. This 
stage sends instructions from the dispatch queues to the ap
propriate issue buffers, stalling when there is no free issue 
buffer. 

Control transfer instructions are executed in stage DS by 
a branch unit. Unconditional control transfer instructions are 
processed by the branch unit in the same cycle they are dis
patched. Conditional transfer instructions are also processed 
in the dispatch cycle if the required operands are available. 
Otherwise, the branch instruction waits in one of the issue 

buffers attached to the branch unit. The branch unit executes 
branch ·instructions sequentially and in the order they enter 
the issue buffers. As instructions from the same ftow are dis
patched in order, branch instructions along a ftow (and, in 
particular, along the correct ftow) are executed in order. 

Stage IS updates the status of instructions in the issue 
buffers according to instruction completion. If the appropri
ate functional unit is free, stage IS selects a ready instruction 
from the associated issue buffers, reads source data from the 
register file and sends instruction and data to the functional 
unit. 

Stage EX has muhiple integer functional units, a data 
memory access unit anda floating-point unit. Upon receiving 
the resuh from a functional unit, stage WB sends the physical 
destination register id back to stage IS and writes the result 
into the appropriate physical register. It also sets the done 
bit in the aclive list entry corresponding to the completed in
struction. 

Further implementation details of this architecture can be 
found in [9]. In particular, we show how to implement du
plicate id control through a mechanism functionally equiva
lent to the counter-based scheme explained before, but which 
uses simpler bit vectors instead of actual countcrs. 

IV. EVALUATION OF MULFLUX 

A. Experimental Framework 

In order to evaluate the performance of the execution 
model proposed here, we have built a trace-driven simula
tor (hereafter called MULFLUX simulator) for the architecture 
described in the previous section. In our experiments, traces 
were generated by using an execution-driven simulator of a 
scalar, pipelined implementation of the SPARC architecture 
[ 10]. 

The performance gains obtained with the MULFLUX archi
tecture were evaluated by comparing its (average) ipc with 
the ipc delivered by a conventional superscalar architecture. 
The latter is hereafter referred to as the reference architec
ture. Our reference architecture resembles the PowerPC 604 
and PowerPC 620 architectures [ 11 ), [ 12). It has the same 
number of pipeline stages found in MULFLUX architecture. 
It employs the Tomasulo algorithm to handle data depen
dences, a BHT [2) for dynamic branch prediction and are
order buffer with future register file [2) to support speculative 
execution. The dispatch width is four instructions per cycle. 
Finally, the reference architecture has four integer functional 
units and one pipelined memory functional unit, with eight 
reservation stations for each unit. It also includes a 32 KB 
instruction cache and a 32 KB data cache. The ipc of the 
reference architecture was obtained by using another trace
driven simulator, which also uses the trace files generated by 
the SPARC simulator as input. 

In the experiments, we have used eight integer programs 
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from SPEC92 and SPEC95. These programs were compiled 
into SPARC executable code by using the GNU gcc-2.7.2 C 
compiler, with -0 optimization ftag. 

B. Results and Analysis 

Performance of MULFLUX was measured as a function of 
two architectural parameters: the maximum number o f active 
ftows and the dispatch width. The values for the maximum 
number of active flows are: 2, 4, 8 and 16 ftows. The values 
for the dispatch width are 2 times and 4 times the maximum 
number of active ftows. For instance, for a maximum of 2 
active flows, we consider dispatch widths of 4 and 8 instruc
tions/cycle. 

The remaining parameters of the MULFLUX architecture 
were fixcd as follows: per-ftow fetch width is 4 instruc
tions/cycle; FFBs and dispatch queues have 16 entries each; 
the speculation depth is 16 branches; there are 4 integer units 
and 1 memory unit, each one with 8 issue buffers; and there 
are 5 result buses, shared by the functional units. 

Figure 7 depicts the performance of the MULFLUX archi
tecture. The white bar corresponds to the performance of 
the reference, single-ftow superscalar architecture. The other 
two bars indicate the MULFLUX performance, for dispatch 
widths (DW) of 2 and 4 times the maximum number of ac
live flows. 

When there are at most 2 active ftows, the smallest gain 
was 2.5% (mBBksim program with DW = 4), while thc high
est gain was 81.6% (vortex program with DW = 8). By 
changing the dispatch width from 4 instructions/cycle to 8 
instructions/cycle, the performance gain ranges from 1.6% 
(mBBksim) to 12.3% (compress). 

When wc allow at most 4 active ftows, performance gain 
ranges from 27.2% (eqntott with DW = 8) and 105.3% 
(vortex with DW = 16). By increasing the dispatch width 
from 8 instructions/cycle to 16 instructions/cycle, the maxi
mum observed gain is 2.3%. 

When the maximum number of active ftows is either 8 or 
16 ftows, we observe performance returns smaller than in the 
previous two cases. With 8 aclive ftows and DW = 16, the 
minimum performance gain is 27.2%, the same measured 
with 4 active flows. The maximum gain is 109.8%, close to 
the highest gain obtained with 4 active ftows (105.3%). With 
8 active flows, an increase in the dispatch width resulted in a 
performance gain of at most 1.55%. 

An important effect is observed when the maximum num
ber of active flows is 16 ftows. Performance decreases 
relative to the case with 8 active ftows, for the following 
programs: espresso, eqntott, gcc, m88ksim and 
i jpeg. The decrease is only 0.52% for the espresso pro
gram, but it is as high as 11 .8% for the gcc program. 

This behavior comes from the fact that the number of re
sources, mainly issue buffers, is not adequate for the large 
number o f aclive ftows. In consequence, instruction dispatch 
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Fig. 7. Performance gains ofthe MULFLUX architecture. 

frequently stalls dueto unavailable issue buffers. In addition, 
destructive interference among ftows increases when there 
is a large number of active flows. lnstructions from wrong 
ftows interfere by being dispatched before instructions be
Jonging to correct ftows. Wrong instructions occupy issue 
buffers, delaying the dispatch of correct instructions. In this 
case, cycles consumed with the execution of wrong instruc
tions become visible. The probability of such interference 
increases with the number o f active flows. 

We notice that performance is more sensitive to the dis
patch width as the number of active ftows is smaller. As we 
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have seen, with at most 2 active flows, performance increases 
by up to 12.3% when the dispatch width is doubled. How
ever, with 8 active flows, the increase obtained by doubling 
the dispatch width is only 1.55%. 

One important measure is the average number of active 
flows active at a certain moment. This infonnation is useful 
to optimize resource replication in the architecture. Figure 
8 shows the distribution of active flows, when the maximum 
number of flows is 2, 4 and 8 flows. Each bar indicate the 
percentage of the total number of cycles in which we have a 
certain number o f active flows. The plots show that the max
imum flow capacity is utilized most of the time. In the three 
cases and for almost ali programs, the maximum number of 
active fiows is reached over 60% of the time. This behavior 
is attributable to the high dynamic count of branch instruc
tions in integer programs. The only observed exception is 
the ijpeg program, when the maximum number of active 
flows is either 4 or 8 flows. For that program, only 3 ftows 
are aclive most o f the time. 
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Fig. 8. Distribution of the number of active flows. 

Another important mcasure is the dispatch width utiliza-

TABLEI 
DISPATCH WIDTH UTILIZATION FOR MAXFLOW = 2. 

Program Percentage of Dispatched Instruclions 
I 2 3 4 

espresso 1.6% 3.6% 4.9% 42.8% 
eqntott 2.5% 3.6% 3.9% 57.3% 
go 3.3% 3.6% 4.7% 48.7% 
compress 16.4% 10.5% 2.3% 50.3% 
gcc 5.5% 5.0% 5.4% 50.0% 
m88ksim 3.7% 3.4% 6.8% 43.1 o/o 
ijpcg 0.0% 3.7% 8.2% 56.0% 
vonex 2.9% 2.7% 3.1% 66.3% 

TABLE 11 

DISPATCH WIDTH UTILIZATION FOR MAXFLOW = 4 . 

Protr.un Per«t!UJC ()l [)n,....C:haJ lnwvc:tKJn~ 
I 2 J • • K 

C>f"C»> Y.9'i 9,7'.1. 70'4 S.6'i: L6'ol 2.7'ol 2.1~ lS.I'i 
cqn10U 11.)'1. 5.2• 2.9'0 11.2• ).1~. l.llt ) . I"' lK.O'<. 

'" 5.()01, l .8'L 2.7'<> 8.l'l 4.8~ 2.711> 3.111. 41 .4'J. 
"""~"<» IO.KCJ. 9.9'> l .l 'J ll..l<l 7.3'il 7.6':1! l.llt 19.1{( 
&« 6.211. 4.4'1 l 9'i 12.6<1. 5.6'1> 4,4'iC ) .7'1 34.1\1 
mBihim 1.7~ 1.9\1. jf)'l 17" 2.7'4 5.6. ) ... 37.6\t 
•11"1 6.0'1 2.1"1 2.1•1 25.0'1. O.O'it 0.3. 2.411 l i .Oit 
vono 2.8'1> 2.6'1 2 ..... 19.4\t 3.7'l 2.7'A. 3.211 41,l'J, 

tion. This infonnation is useful for the appropriate dimen
sioning of the dispatch width, a parameter criticai to the im
plementation cost. Tables I, li and III show the the utilization 
o f the available dispatch width when the maximum number 
of active flows is 2, 4 and 8 fiows, respectively. The dis
patch width is always 2 times the maximum number o f flows 
(i.e., the tables correspond to dispatch widths of 4, 8 and 16 
instructions/cycle respectively). Each column in a table indi
cates the percentage of the total number of cycles in which a 
certa in number o f instructions were dispatched. 

With a maximum of 2 fiows (and a dispatch width of 4 
instructions/cycle), the full dispatch width is utilized from 
43% to 66% o f the cycles. For a maximum o f 4 active flows 
(dispatch width o f 8 instructions/cycle), we still observe con
siderable utilization of the full dispatch width. In this case, 
full utilization occurs from 19% to 41 o/o o f the cycles. How
ever, with a maximum of 8 fiows (dispatch width of 16 in
structions/cycle}, full width utilization is smaller, occurring 
only on 3% o f the cycles for the compres s program, and at 
most during 37% of the cycles for the espresso program 
(see Table III on the next page). 

V. CONCLUDING REMARKS 

The idea o f simultaneously pursuing multiple branch paths 
has been considered of difficult implementation, as it re
quires hardware resources exponential to the number of ac
live flows. However, during the last decade, advances in 
integration technology have made possible the implementa
tion of complex microarchitectures. Severa! parallel microar
chitectures that require aggressive resource replication have 
been proposed recently. Compared with those, the MULFLUX 
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TABLE 111 

OISPATCH WIOTH UTILIZATION FOR MAXFLOW = 8 . 

"""""' rtrcen~oaac o( Di~dtol IIUU'UCl1GN 
1 2 ) 4 s 6 1 _ ...... 

... 11;4 4.)\l ) .Mio 6.4'4 2.1'1. 2.6'1. 2.7'1. 
cqruou 1.7'4 7.2<1. 4.610 10.9'4 ) .6'1. 2.1'4 2.1 .. ,. 7.4<1. S.l'i. 42\l 6.9'1. ) .0'4 2.6'4 2.2'J 
<Omp«» 12.0'l 6,()'1, S.2'1- U'l. 1.5'1. 6.2'4 ) .\1'1. 

'"' 7.4'J S.6'l S.O'l 11.4<1. 4.1'1. 2.7'1> 2.4'1. 
m88k.Wm 6.l'A 4.29. ).11'4 10.0'1 4.1'1 l .l ... 2J 'l 
OJJ'<I 12.2,. 2.1~ 4.2 ... 16.7'1o 0.0'1. ).9'1 0.0'4 

"'"'"' 7.0'1 l.S'i. 28'l 18.)'1. ) .1'1 2.19. 1.1• 

microarchitccture has a simpler implementation. 
The concept of multiple Hows of control as exploited in 

this research work has provided promising results, with per
formance gains o f up to I 09% for a configuration supporting 
a maximum of 16 active ftows. Among those configurations 
hcre considered, configuration with a maximum of 4 active 
flows exhibited the best compromise between performance 
and resource replication: it provided a performance gain of 
I 05% and full dispatch width utilization o f up to 41 %. 

We intend to continue the research along severa! inves
tigative tracks. In order to obtain better dispatch width 
utilization, it is necessary to determine the adequate bal
ance between the number of active ftows and machine par
allelism. Another important aspect is the organization o f the 
cache subsystem to support instruction accesses from differ
ent ftows. Finally, in order to reduce the average number of 
active ftows, we intend to use confidence assignment to con
trol flow creation. 
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