
SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing. Natal- Brazil 43

Performance Evaluation of a Microarchitecture
With Multiple Flows of Control

Francisco Santos1, Rafael R. Santos4
, Anna Dolejsi Santos3 , Eliseu M. C. Filho1, Philippe O. A. Navaux2

1 COPPE-Universidade Federal do Rio de J311eiro
Rio de Janeiro, RJ, Brasil- { fcsantos, eliseu} @cos.ufrj.br

2 Universidade Federal do Rio Grande do Sul
Porto Alegre. RS, Brasil · navaux@inf.ufrgs.br

3 Universidade Federal Fluminense
Niteroi, RJ, Brasil - 311nads@dcc.uff.br
4 Universidade de Santa Cruz do Sul

Santa Cruz do Sul. RS, Brasil- rrsantos@inf.ufrgs.br

Abstract-
This work presents a new approach to exploit the Instruction-Levcl

Parallelism. In the MULFLUX microarchitecture each branch in
struction spawns lwo different ftows, corresponding to the two possible
branch paths. Instructions from both ftows are executed speculalively
in parallel. Cycles consumed by discarded instructions are not visible,
because lhe correct instructions also have been executed. The concept
of multi pie ftows of conlrol as exploited in this research work h as pro
vided promising results, with perfonnance gains of up to 109% for a
configuration supporting up to 16 aclive ftows. Among lhe configura·
tions considered here, lhe configuralion with a maximum of 4 aclive
ftows exhibited the best compromise between perfonnance and resource
replication: il provided a perfonnance gain of lOS% and full dispatch
width ulilization of up to 41 %.

Keywords-
Multiple Flows, Superscalar, Speculative Execution

I. INTRODUCTION

Modem high-performance microprocessors employ a
pipelined superscalar architecture [I] to exploit Instruction
Level Parallelism (ILP). The performance of a superscalar
architecture is signiticantly constrained by control depen
dences [2]. Control dependences restrict performance by re
ducing the utilization o f the fetch bandwidth and by avoiding
instructions from different basic blocks to enter the dynamic
execution window.

Lam and Wilson [3] evaluate two alternatives for relaxing
control flow constraints. These are contrai dependence anal
ysis and multi pie jlows of control. Control dependence anal
ysis is a software technique that discovers parallelism from
different regions o f code, each with its own control flow. The
concept of following multiple flows of control is viewed as
the architectural suppoi'lto fully exploit the additional paral
lelism exposed by control dependence analysis.

In this work, flows of control are not explicitly associated
with statically defined pieces of code. Instead, they are im
plicitly created by branch instructions. More precisely, each
branch instruction spawns two different flows, correspond
ing to the two possible branch paths. Instructions from both
flows are executed speculatively in paraJlel. Once a branch

outcome is determined, instructions in the wrong path are
discarded, as in the conventional speculative model. How
ever, cycles consumed by discarded instructions are not vis
ible, because the correct instructions have been executed in
paraJlcl. In addition, the correct flow of control can advance
considerably while previous branches are blocked due to
(data) dependences. In the conventional speculative model,
the single flow of control can also advance in the presence of
blocked branch instructions but, i f the first dispatched branch
is mispredicted, this advantage is Jost.

Othcr works have also pursued execution models based on
multiple flows of execution. Wallace et ai. [4] devised a
scheme caJled threaded multiple path execution, which ac
tually employs a simultaneous multithreading [5] architec
ture to speculatively execute multiple branch paths. When
ever the number of executing threads is less than the total
number of hardware contexts, lhe spare contexts are used to
fetch and execute along the less likely path of a branch in
struction. Klauser et ai. [6] proposed an execution model
called selective eager execution and its corresponding sub
strate, lhe PolyPath processo r. As in our work, their purpose
is to overcome mispredicted branch penalties by executing
both paths originated by a branch instruction. Chronologi
cally, the present work has been one o f the first to investigate
a practical execution model based on multiple flows of con
trol [7].

The remainder o f this paper is organized as follows. Sec
tion 2 introduces the concept of multiple flows of control.
Section 3 describes MULFLUX, an architecture supporting
the parallel execution o f multi pie flows o f control. Section 4
shows experimental results assessing the performance o f this
architecture. Section 5 concludes the paper Jisting potential
areas for future work.

11. A MODEL OF MULTIPLE FLOWS OF CONTROL

The parallel execution o f multiple flows o f control can be
represented through a binary tree, called Dynamic Jnstruc-

44 SBAC-PAD'99 11th Symposium on Computer Arclzitecture and Higlz Performance Computing- Natal- Brazil

tion Flow Tree (DIFf). Each node in lhe DIFf corresponds to
a fetched branch instruction which has not been resolved yet.
The ares of the DIFf represent lhe dynamic execution flow
along the paths that originate from the branch instructions.
The DIFf is called dynamic because its topology changes
during the program execution, according to the resolution of
branch instructions. Figure 1 shows a simple DIFf. Two in
struction flows, s0 and s1 originate from the branch instruc
tion b0 . By convention, the dynamic execution flow leading
to a branch instruction continues along the not-taken path of
the branch. This flow is refcrred to as the parent fiow. The
new instruction ftow originated from a branch instruction is
called the clzildfiow, and it comprises the instructions along
the taken path o f the branch.

.o 1

'"~'
,.;~o.O ,.:~~a.,

Fig. I . Examplc of a Dynamic lnstruction Flow Trec (DIFT).

In our model, branch instructions are executed sequen
tially, according to the order in which they are fetched. When
the outcome of a branch instruction is determined, the flow
along the wrong branch path should be cancelled. In addi
tion, flows descending from lhe wrong ftow should also be
cancelled. Flow cancellation requires some sort of identifi
cation, from which it is possible to determine the tlows that
should bc cancelled.

For that purpose, a Flow Number (Fn) is assigned to each
tlow in the DIFf. The tlow number has a bit for each levei in
the DIFf, with the least significant bit corresponding to levei
l = 1 (DIFf leveis are counted starting from the root) . The
number of bits in the flow number is given by the maximum
allowed DIFf depth (which, by its turn, depends on the avail
able architectural resources). A bit O indicates an instruction
tlow along the not-taken palh of a branch, while a bit 1 indi
cates a flow along the laken path. As Figure 1 shows, from
branch bo, flow so has a ftow number Fn = xxxO, as it runs
alonga not-taken path in levell = 1. The child flow s1 has
Fn = xxx 1, because it runs along a taken path in levell = 1.
In the above, x means a don ' t care.

Flow numbers are used in lhe following way during flow
cancellation. If the outcome of a branch instruction is not
taken, all the descending tlows with least significant bit 1 in
their flow numbers are cancelled. Similarly, if lhe branch
outcome is taken, descending ftows with least significant bit
O in the flow numbers are cancelled. After cancellation,
lhe remaining flows should be renamed: Flow renaming is

achieved by simply shifting flow number bits one position to
the right. A new DIFf is obtained after flow cancellation and
subsequent flow renaming. In the example shown in Figure
2, branch bo is taken. Dashed tines in Figure 2(a) indicate
the cancelled flows. Figure 2(b) shows the resulting DIFf
after flow renaming. Notice that, as branches are executed
sequentially in order, the branch currently being processed is
the one in the DIFf root.

.. y-----<~'
b1 b2

s0~2 s1 , "
Fn • xxOO Fn • xx10 Fn • xx01,,

, , ,

' s3
',Fn • xx11

' ' '

Fig. 2. Flow cancellation and tlow renaming.

A. lnter-fiow Data Dependences

(a)

(b)

Data dependences may occur among instructions belong
ing to the same tlow. These data dependences will be re
ferred to as intra-ftow data dependences. In addition, the
simu1taneous execution o f multiple fl ows introduces data de
pendences involving instructions from different tlows. Data
dependences in this new class will be called inter-fiow data
dependences. Figure 3 shows an cxample of inter-flow data
dependence.

10

t SUB R1.R2. R3

.O ~R R3.Ro.Ro

/ ~

/\z Á
Fig. 3. Example of inter-tlow data dependence.

The SUB instruction in the parent ftow s0 writes into reg
ister R3, while the OR instruction in child flow s1 reads from
thal register. If no preceding instruction in flow s 1 writes in to
R3, lhe value read from R3 by lhe OR instruction should be
the one produced by the SUB instruction. The OR instruc
tion in s 1 can be executed only after the SUB instruction is

SBAC-PAD'99 1 lth Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 45

completed, therefore establishing a data dependence between
fiows so and s1.

Each fiow has a separate state. Therefore, data produced in
one fiow usually does not interfere in the state of other fiows.
However, it may happen that data produced by instructions
in a certain ftow need to be visible to instructions in other
fiows. Figure 4(a) shows an example. In this figure, the SUB
instruction in ftow so writes in to register R3. The value writ
ten into R3 should be visible to instructions in fiows so and
s2. In contrast, the value produced by SUB should not be vis
ible to those instructions in fiows s1 and S3. Actually, data
visibility among fiows is a consequence of, and is determined
by, inter-flow data dependences.

.. I

(b)

Fig. 4. Data visibility among multiplc nows.

Thereforc, a rule is necessary to control data visibility
among instructions from the multiple fiows. The following
scope rui eis defined: the scope o f instructions in fiow s com
prises the instructions in the flows descending from s. Or, in
other words, data produced in a certain fiow should be visible
only to the descending fiows.

A priori, the scope of a certain instruction covers aLI in
struclions in descendant fiows. However, the scope can
"shrink" as execution evolves. In the example shown in Fig
ure 4(b), the ANO instruction in flow s2 also writes into reg
ister R3. Now, subsequent instructions in s2 reading from
R3 should get the value produced by the AND instruction, in
stead of the value from the SUB instruction in fiow so (in
such situations, intra-ftow dependences override inter-flow
dependences). Thus, once the ANO instruction is fetched, the
scope o f the SUB instruclion becomes restricted to those in
structions preceding the ANO instruction. For this reason, the
scope o f instructions is more precisely referred to as dynamic
scope.

III . THE MULFLUX ARCHITECTURE

The previous section described the abstract model o f mul
tiple flows o f execution, as considered in this work. This sec-

tion presents an architectural substrate to support that model.
This substrate, called the MULFLUX architecture, requires
the same mechanisms found in conventional, speculative su
perscalar architectures. But, in order to support multiple
ftows of execution, such mechanisms were extended in the
MULFLUX architecture in the following ways: (I) the fetch
mechanism is extended to access instructions from multiple
ftows, and to create, cancel and rename fiows. Notice that
branch prediction is completely eliminated; (2) the decode
and dispatch mechanisms are extended to handle inter-fiow
data dependences and to implement the scope rule; and (3)
the commit mechanism is extended to maintain the states as
sociated with multi pie flows of control.

A. Executing Multiple Flows ofControl

The MULFLUX architecture is built around an extension of
the register renaming and speculative execution mechanism
found in the MIPS RIOOOO processor (8]. Before discussing
the extension to multiple fiows of control, it is adequate to
briefiy describe the operation of the basic register renaming
mechanism. It comprises three components: (I) the mapping
table keeps the correspondence between the id of a logical
register, indicated in the instruction, and the id of the physi
cal register which actually stores data; (2) the active list con
tains id's of physical registers that are no Ionger mapped to
logical registers and which can not be reused because the cor
responding instructions have not been completed yet; and (3)
a free list, which contains id's o f physical registers that are
currently unmapped.

Let us consider that instruction AOO Rl I R2 I R3 arrives
at the renaming stage and that, at this moment, the mapping
table has the mappings I ~ 32 (i.e., logical register I is
mapped to physical register 32), 2 ~ 33, 3 ~ 34. In addition,
suppose that logical id 40 is at the head o f the free list. Logi
cal source registers are renamed to physical registers accord
ing to the current mapping table state, while the logical desti
nation register is renamed to a physical register indicated by
the id retrieved from the free list. Therefore, after renaming,
the instruction becomes ADO R32 I R33 I R40. As part of
the renaming process, the mapping table is updated with the
new mapping 3 ~ 40, while the previous mapping 3 ~ 34 is
saved in the aclive list. Insertions in the active list follow the
static instruction order.

The id of a physical register returns from the aclive list to
the free list only when two conditions are met: (1) the id is at
the head o f the active list and (2) the instruction which moved
the id from the mapping table to the active list has been exe
cuted. These two conditions ensure that ali instructions that
read a physical register have done so before its id returns to
the free list and the register is reutilized.

To support speculative execution, a scheme is necessary to
discard the mappings which are created by instructions fol
lowing a mispredicted branch. In other words, it is necessary

46 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

to recover the mapping table to the state existing before the
access of the mispredicted branch. This can be achieved by
using the mappings saved in the active list. When a mispre
dicted branch is found, mappings subsequent to the branch
entry in the active list are copied back to the mapping ta
ble. When a mapping is undone, the physical register id is
moved from the mapping table to the free list. Notice that
speculative results are implicitly discarded when mappings
subsequent to a mispredicted branch are undone.

This scheme does not require data storage replication to
keep the correct architectural state: a single register file keeps
both the speculative and the correct state. For such reason,
the mechanism smoothly extends to support multiple flows
of execution, as described next.

8. Extension to Multiple Flows of Control

As Figure 5 shows, the extended register renaming mech
anism consists of replicated mapping tables, a single active
list and a single free list. The number of mapping tables is
one of the factors that determines the maximum number of
aclive flows.

mapping tables

1- treelist

111 I

li
1111

IIC1ivelisl

Fig. 5. The extended register renaming mechanism.

A mapping table is allocated when a child flow is cre
ated. It keeps the mappings established by instructions be
longing to the child flow. When a logical destination register
is mapped to a physical register, a pair (Fn. Rd) is inserted
into the aclive list. Here, Fn is the instruction's flow number
and Rd is the physical register id displaced from the mapping
table by the new mapping.

The mapping table allocated to the child flow inherits the
mappings stored in the parent's mapping table. Inter-flow de
pendences are thus automatically satisfied, because instruc
tions in the child flow will read the same physical registers
in use by the parent flow at the moment of child flow cre
ation. The scope rule is satisfied due to the use of multi pie
mapping tables and the single free list. If instructions from
different flows write into the same Jogical register, this reg
ister will be mapped differently for the two instructions, as
the mapping tables are distinct and the physical register id is
retrieved from a single free list.

Flow cancellation involves discarding the dispatched in
structions belonging to that flow. This is done using the flow

numbers stored in the active list. An instruction is labeled
as discarded i f the Jeast significant bit of its Fn in the active
list matches the least significant bit of Fn of the flow being
cancelled.

C. Handling id Duplicares

In a register renaming mechanism, it is necessary to keep
the uniqueness of physical register ids. However, physical
ids are replicated when a mapping table inherits inforrnation
from another table. These duplicates can reach the free list,
therefore breaking physical id uniqueness, in two situations:
(1) duplicates are inserted in to the active list i f instructions
from sibling flows write into the same logical register, before
one o f the flows is cancelled. From the active list, duplicates
may return to the free list; and (2) a duplicate physical id may
retum to the free list from a mapping table associated with a
cancelled flow.

These two special cases must be handled in order to guar
antee physical id uniqueness. Both can be treated by using
a counter associated with each physical register, which indi
cates the number of duplicate id's for that physical rcgister.
Whenever a newly allocated mapping table is initialized, the
counters corresponding to the copied physical id's are incre
mented. When a physical id is removed from the active Iist,
the corresponding counter is decremented. In this case, the
id returns to the free list if the counter is zero after being
decrcmcnted. When a flow is cancelled, the counters cor
responding to the physical id's found in the flow's mapping
table are ali decremented. Again, a physical id returns to the
free list only if the counter becomes zero after decrement.

D. lntra-fiow Data Dependences

Besides handling inter-flow data dependences, the register
renaming mechanism eliminates false intra-flow data depen
dences. An additional mechanism is necessary to handle true
intra-flow data dependences.

Instructions are dispatched to issue buffers attached to the
functional units. Instructions are issued out of order to the
functional units according to operand availability. The issue
buffer has an invalid bit for each instruction's operand. An
invalid bit is also associated with each physical register. This
bit is set when the physical register is mapped to a logical
destination register, thus indicating that a new value will be
written in that physical register.

During dispatch, the invalid bit in the issue buffer is set if
the invalid bit of the corresponding physical source register
is also set. Upon instruction completion, the invalid bit o f the
physical destination register is reset. In addition, the physi
cal destination register id is broadcast to the issue buffers.
The invalid bits of matching source register id's in the issue
buffers are then reset, possibly enabling instructions for is
sue. Input operands are read from physical source registers
when an instruction is issued to a functional unit.

SBAC-PAD'99 llth Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 47

E. Fetchingfrom Multiple Flows ofContro/

Instructions from a certain ftow are stored into aftow fetch
buffer (FFB), shown in Figure 6. Each FFB comprises: a
busy bit, which indicates whether the FFB is allocated to a
ftow; aftow number register, which contains the ftow num
ber; a program counter register; and an instruction FIFO.

Fig. 6. lns1ruc1ion felching in lhe MULFLUX archileclure.

A child flow is only created if there is a free FFB for it.
Otherwise, the branch instruction is assumed as not-taken
and fetching continues along the parent ftow. As parto f child
flow crcation, the program counter register of the allocated
FFB is initialized with the branch's target address, and the
flow number rcgister is initialized with the child's ftow num
ber. Finally, the busy bit is set. The parent flow continues
with thc FFB already allocated to it.

FFB deallocation uses the infonnation in the flow num
ber registers. Recall that flow cancellation is decided when a
branch instruction is processed; either the parent flow or the
child ftow, and the appropriate descendants, have to be dis
cardcd. If thc parent flow has to be discarded, ali FFBs with
a O as the least significant bit in the flow number register are
released (i.e., their busy bits are reset). If the child ftow has
to bc discarded, the FFBs deallocated are those with a I as
the lcast significant bit in the ftow number register.

F. Organization ofthe Mulftux Architecture

Thc mechanisms described so far appear as components of
a pipeline with six stages: fetch (I F), decode (DC), dispatch
(OS), issue (IS), execute (EX) and write-back (WB).

Stage IF comprises the multiple ftows fetch mechanism
described in the previous subsection. In addition to decoding,
stage DC performs register renaming, mapping table alloca
tion and mapping table initialization. Renamed instructions
are inserted into dispatch queues, located in stage DS. This
stage sends instructions from the dispatch queues to the ap
propriate issue buffers, stalling when there is no free issue
buffer.

Control transfer instructions are executed in stage DS by
a branch unit. Unconditional control transfer instructions are
processed by the branch unit in the same cycle they are dis
patched. Conditional transfer instructions are also processed
in the dispatch cycle if the required operands are available.
Otherwise, the branch instruction waits in one of the issue

buffers attached to the branch unit. The branch unit executes
branch ·instructions sequentially and in the order they enter
the issue buffers. As instructions from the same ftow are dis
patched in order, branch instructions along a ftow (and, in
particular, along the correct ftow) are executed in order.

Stage IS updates the status of instructions in the issue
buffers according to instruction completion. If the appropri
ate functional unit is free, stage IS selects a ready instruction
from the associated issue buffers, reads source data from the
register file and sends instruction and data to the functional
unit.

Stage EX has muhiple integer functional units, a data
memory access unit anda floating-point unit. Upon receiving
the resuh from a functional unit, stage WB sends the physical
destination register id back to stage IS and writes the result
into the appropriate physical register. It also sets the done
bit in the aclive list entry corresponding to the completed in
struction.

Further implementation details of this architecture can be
found in [9]. In particular, we show how to implement du
plicate id control through a mechanism functionally equiva
lent to the counter-based scheme explained before, but which
uses simpler bit vectors instead of actual countcrs.

IV. EVALUATION OF MULFLUX

A. Experimental Framework

In order to evaluate the performance of the execution
model proposed here, we have built a trace-driven simula
tor (hereafter called MULFLUX simulator) for the architecture
described in the previous section. In our experiments, traces
were generated by using an execution-driven simulator of a
scalar, pipelined implementation of the SPARC architecture
[10].

The performance gains obtained with the MULFLUX archi
tecture were evaluated by comparing its (average) ipc with
the ipc delivered by a conventional superscalar architecture.
The latter is hereafter referred to as the reference architec
ture. Our reference architecture resembles the PowerPC 604
and PowerPC 620 architectures [11), [12). It has the same
number of pipeline stages found in MULFLUX architecture.
It employs the Tomasulo algorithm to handle data depen
dences, a BHT [2) for dynamic branch prediction and are
order buffer with future register file [2) to support speculative
execution. The dispatch width is four instructions per cycle.
Finally, the reference architecture has four integer functional
units and one pipelined memory functional unit, with eight
reservation stations for each unit. It also includes a 32 KB
instruction cache and a 32 KB data cache. The ipc of the
reference architecture was obtained by using another trace
driven simulator, which also uses the trace files generated by
the SPARC simulator as input.

In the experiments, we have used eight integer programs

48 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

from SPEC92 and SPEC95. These programs were compiled
into SPARC executable code by using the GNU gcc-2.7.2 C
compiler, with -0 optimization ftag.

B. Results and Analysis

Performance of MULFLUX was measured as a function of
two architectural parameters: the maximum number o f active
ftows and the dispatch width. The values for the maximum
number of active flows are: 2, 4, 8 and 16 ftows. The values
for the dispatch width are 2 times and 4 times the maximum
number of active ftows. For instance, for a maximum of 2
active flows, we consider dispatch widths of 4 and 8 instruc
tions/cycle.

The remaining parameters of the MULFLUX architecture
were fixcd as follows: per-ftow fetch width is 4 instruc
tions/cycle; FFBs and dispatch queues have 16 entries each;
the speculation depth is 16 branches; there are 4 integer units
and 1 memory unit, each one with 8 issue buffers; and there
are 5 result buses, shared by the functional units.

Figure 7 depicts the performance of the MULFLUX archi
tecture. The white bar corresponds to the performance of
the reference, single-ftow superscalar architecture. The other
two bars indicate the MULFLUX performance, for dispatch
widths (DW) of 2 and 4 times the maximum number of ac
live flows.

When there are at most 2 active ftows, the smallest gain
was 2.5% (mBBksim program with DW = 4), while thc high
est gain was 81.6% (vortex program with DW = 8). By
changing the dispatch width from 4 instructions/cycle to 8
instructions/cycle, the performance gain ranges from 1.6%
(mBBksim) to 12.3% (compress).

When wc allow at most 4 active ftows, performance gain
ranges from 27.2% (eqntott with DW = 8) and 105.3%
(vortex with DW = 16). By increasing the dispatch width
from 8 instructions/cycle to 16 instructions/cycle, the maxi
mum observed gain is 2.3%.

When the maximum number of active ftows is either 8 or
16 ftows, we observe performance returns smaller than in the
previous two cases. With 8 aclive ftows and DW = 16, the
minimum performance gain is 27.2%, the same measured
with 4 active flows. The maximum gain is 109.8%, close to
the highest gain obtained with 4 active ftows (105.3%). With
8 active flows, an increase in the dispatch width resulted in a
performance gain of at most 1.55%.

An important effect is observed when the maximum num
ber of active flows is 16 ftows. Performance decreases
relative to the case with 8 active ftows, for the following
programs: espresso, eqntott, gcc, m88ksim and
i jpeg. The decrease is only 0.52% for the espresso pro
gram, but it is as high as 11 .8% for the gcc program.

This behavior comes from the fact that the number of re
sources, mainly issue buffers, is not adequate for the large
number o f aclive ftows. In consequence, instruction dispatch

2.1
2.4

2.2
2.0 ...
1.8

~ :;

Max Flows =2

t i~txMuf-.. L wow.u:.....,.._

~r r I
r

I

' I I ! i

I I ' I
'

1.0
O. I
0.8
0 4

0.2
o. o

ESP E~ GO CMP GCC Mel UP Ycw:4

0 ,4

0 .2
0 .0

2.0
2.4
22
2.0
1.1
1.6

~ ::;

Max Flows =4

Max Flows =8

l i~ .. --
t W~···--

tJ~ I

I í I
1.0
0.1 ...
0 .4

0 .2
0.0

ESP EQH GO CMP GCC Mil UP VOA

Max Flows = 16

!.:t-i-- --·-
22 t loW'DW•ZXYitlfl.._

• WOWe<UtiMi#tl

ur·; ;~ Q, 1.2•

1.0 t
0 0.
0,15 r

0.4.
0.2 .

O.O ESP ~EOH~~GOIU.JCMPIIUGC--C .!.JMI·I~UPIU.VIOR..__J

Fig. 7. Performance gains ofthe MULFLUX architecture.

frequently stalls dueto unavailable issue buffers. In addition,
destructive interference among ftows increases when there
is a large number of active flows. lnstructions from wrong
ftows interfere by being dispatched before instructions be
Jonging to correct ftows. Wrong instructions occupy issue
buffers, delaying the dispatch of correct instructions. In this
case, cycles consumed with the execution of wrong instruc
tions become visible. The probability of such interference
increases with the number o f active flows.

We notice that performance is more sensitive to the dis
patch width as the number of active ftows is smaller. As we

SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 49

have seen, with at most 2 active flows, performance increases
by up to 12.3% when the dispatch width is doubled. How
ever, with 8 active flows, the increase obtained by doubling
the dispatch width is only 1.55%.

One important measure is the average number of active
flows active at a certain moment. This infonnation is useful
to optimize resource replication in the architecture. Figure
8 shows the distribution of active flows, when the maximum
number of flows is 2, 4 and 8 flows. Each bar indicate the
percentage of the total number of cycles in which we have a
certain number o f active flows. The plots show that the max
imum flow capacity is utilized most of the time. In the three
cases and for almost ali programs, the maximum number of
active fiows is reached over 60% of the time. This behavior
is attributable to the high dynamic count of branch instruc
tions in integer programs. The only observed exception is
the ijpeg program, when the maximum number of active
flows is either 4 or 8 flows. For that program, only 3 ftows
are aclive most o f the time.

Max Number o f Flows = 2.

Max Number o f Flows = 4.

... ~-----------; ... =·-j

! :JJ: lWLL~~~! ; ~ - i
i •• .
~ ~- . .
o.

20 · ...
O ESP f:OH 00 CNtP OCC VOA

Max Number of Flows = 8.

Fig. 8. Distribution of the number of active flows.

Another important mcasure is the dispatch width utiliza-

TABLEI
DISPATCH WIDTH UTILIZATION FOR MAXFLOW = 2.

Program Percentage of Dispatched Instruclions
I 2 3 4

espresso 1.6% 3.6% 4.9% 42.8%
eqntott 2.5% 3.6% 3.9% 57.3%
go 3.3% 3.6% 4.7% 48.7%
compress 16.4% 10.5% 2.3% 50.3%
gcc 5.5% 5.0% 5.4% 50.0%
m88ksim 3.7% 3.4% 6.8% 43.1 o/o
ijpcg 0.0% 3.7% 8.2% 56.0%
vonex 2.9% 2.7% 3.1% 66.3%

TABLE 11

DISPATCH WIDTH UTILIZATION FOR MAXFLOW = 4 .

Protr.un Per«t!UJC ()l [)n,....C:haJ lnwvc:tKJn~
I 2 J • • K

C>f"C»> Y.9'i 9,7'.1. 70'4 S.6'i: L6'ol 2.7'ol 2.1~ lS.I'i
cqn10U 11.)'1. 5.2• 2.9'0 11.2•).1~. l.llt) . I"' lK.O'<.

'" 5.()01, l .8'L 2.7'<> 8.l'l 4.8~ 2.711> 3.111. 41 .4'J.
"""~"<» IO.KCJ. 9.9'> l .l 'J ll..l<l 7.3'il 7.6':1! l.llt 19.1{(
&« 6.211. 4.4'1 l 9'i 12.6<1. 5.6'1> 4,4'iC) .7'1 34.1\1
mBihim 1.7~ 1.9\1. jf)'l 17" 2.7'4 5.6.) ... 37.6\t
•11"1 6.0'1 2.1"1 2.1•1 25.0'1. O.O'it 0.3. 2.411 l i .Oit
vono 2.8'1> 2.6'1 2 19.4\t 3.7'l 2.7'A. 3.211 41,l'J,

tion. This infonnation is useful for the appropriate dimen
sioning of the dispatch width, a parameter criticai to the im
plementation cost. Tables I, li and III show the the utilization
o f the available dispatch width when the maximum number
of active flows is 2, 4 and 8 fiows, respectively. The dis
patch width is always 2 times the maximum number o f flows
(i.e., the tables correspond to dispatch widths of 4, 8 and 16
instructions/cycle respectively). Each column in a table indi
cates the percentage of the total number of cycles in which a
certa in number o f instructions were dispatched.

With a maximum of 2 fiows (and a dispatch width of 4
instructions/cycle), the full dispatch width is utilized from
43% to 66% o f the cycles. For a maximum o f 4 active flows
(dispatch width o f 8 instructions/cycle), we still observe con
siderable utilization of the full dispatch width. In this case,
full utilization occurs from 19% to 41 o/o o f the cycles. How
ever, with a maximum of 8 fiows (dispatch width of 16 in
structions/cycle}, full width utilization is smaller, occurring
only on 3% o f the cycles for the compres s program, and at
most during 37% of the cycles for the espresso program
(see Table III on the next page).

V. CONCLUDING REMARKS

The idea o f simultaneously pursuing multiple branch paths
has been considered of difficult implementation, as it re
quires hardware resources exponential to the number of ac
live flows. However, during the last decade, advances in
integration technology have made possible the implementa
tion of complex microarchitectures. Severa! parallel microar
chitectures that require aggressive resource replication have
been proposed recently. Compared with those, the MULFLUX

50 SBAC-PAD'99 11th Symposium 011 Computer Architecture and High Performance Computing - Natal - Brazil

TABLE 111

OISPATCH WIOTH UTILIZATION FOR MAXFLOW = 8 .

"""""' rtrcen~oaac o(Di~dtol IIUU'UCl1GN
1 2) 4 s 6 1 _

... 11;4 4.)\l) .Mio 6.4'4 2.1'1. 2.6'1. 2.7'1.
cqruou 1.7'4 7.2<1. 4.610 10.9'4) .6'1. 2.1'4 2.1 .. ,. 7.4<1. S.l'i. 42\l 6.9'1.) .0'4 2.6'4 2.2'J
<Omp«» 12.0'l 6,()'1, S.2'1- U'l. 1.5'1. 6.2'4) .\1'1.

'"' 7.4'J S.6'l S.O'l 11.4<1. 4.1'1. 2.7'1> 2.4'1.
m88k.Wm 6.l'A 4.29.).11'4 10.0'1 4.1'1 l .l ... 2J 'l
OJJ'<I 12.2,. 2.1~ 4.2 ... 16.7'1o 0.0'1.).9'1 0.0'4

"'"'"' 7.0'1 l.S'i. 28'l 18.)'1.) .1'1 2.19. 1.1•

microarchitccture has a simpler implementation.
The concept of multiple Hows of control as exploited in

this research work has provided promising results, with per
formance gains o f up to I 09% for a configuration supporting
a maximum of 16 active ftows. Among those configurations
hcre considered, configuration with a maximum of 4 active
flows exhibited the best compromise between performance
and resource replication: it provided a performance gain of
I 05% and full dispatch width utilization o f up to 41 %.

We intend to continue the research along severa! inves
tigative tracks. In order to obtain better dispatch width
utilization, it is necessary to determine the adequate bal
ance between the number of active ftows and machine par
allelism. Another important aspect is the organization o f the
cache subsystem to support instruction accesses from differ
ent ftows. Finally, in order to reduce the average number of
active ftows, we intend to use confidence assignment to con
trol flow creation.

REFERENCES

[I) Smith, J. E. , Sohi, G. S ., Tire Microarchirecrure of Supersca/ar Pro·
cessors, Proc. IEEE, Vol. 83, No. 12, Dec. 1995, pp. 1609-1624.

[2) Patterson, 0., Hennessy, J., Compurer Arclrirecrure: A Quanrirarive
Approaclr, 2nd. Ed., Morgan-Kaufmann, San Francisco, CA, 1997.

[31 Lam, M. S., R. P. Wilson, Limirs o[Co11rro/ Flow 011 Paral/elism, Proc.
19th lntcmational Symposium on Computer Architecture, 1992, pp.
46-57.

(4) Wallace, S ., Brad Calder, Tlrreaded Mulriple Parir Execurio11. Proc. of
the 25th lntemational Symposium on Computer Architecture, 1998,
pp. 238-249.

[5) Tullsen, O. M., S. J. Eggers, Simulra11eous Mulritlrreadi11g: Maximiz
illg 011-Cirip Parallelism, Proc. of the 22nd lntemational Symposium
on Computer Architecture, 1995, pp. 392-403.

(6) Klauser, A., A. Paithankar, Se/ecrive Eager Execurio11 011 rire PolyParlr
Arclritecrure, Proc. ofthe 25nd lntemational Symposium on Computer
Architecture, 1998, pp. 25(}..259.

(7] Muljlux: Superscalar Arclrirectures wirlr Mulriple lnsrruction Flows.
Rescarch Project Proposal submitted to lhe Brazilian National Re
scarch Council, 1995.

(8) MIPS Technologies Inc., MIPS R/0000 Microprocessor User's Man
ual, Mountain View, CA., 1995.

(9] MULFLUX: A Superscalar Arclrirecturt witlr Multiple Flows of Con
rrol, Proceedings of the ProTem-CC 111 Project Evaluation Workshop,
May 1999. (also available at http://www.cos.ufrj.br/riiulflux)

(I O] Sun Microsystems, Tire SPARC Architecturt Manual, Mountain View,
CA. 1987.

[li) IBM Corp., PowerPC 604 RISC Microprocessor Teclmical Summary,
IBM Order Number MPR604TSU-OI .

[12] Oiep, T. A., J. P. Shen, Peiformance Evaluation of lhe PowerPC
620 Microarcllitecrure, Proc. of the 22nd lntemational Symposium on
Computer Architecture, 1995, pp. 163- 175.

I 9 lO
2.0'1. 1.7'4 1.9'1.
4.0'1).5'l I 0'4
). 19.).4'4 U'4
1.a l . l'l).1)'1.

l9'1o 4.6'1o 32'1.
lU 2.1'1 2.9'1,
u-. IJ'l 4.4'1
4,4'1. S.6'l 2.6'1.

11
1.9'1.
12 '1o
2.4'1o
) .7'1
2.1'4
2.6'4
l.l'l
1.7<1.

12 ll I' IS 16
1.1 .. 1.1 .. 1,911, 1.5 ..) 7.)\l
20'1 l.l't 0.1\l 0.511 ll.l"-
3.69. 2.1'4 1.1'4 2.0'l 21.6'1
1.S'l 4.0'1. 1.8<1. 2.2\1) .1'1
2.2'4 2.7'l 2J'l 2.1 ... 16.7'1
) ,JI(, 2.6'4 2,49. 2.2'4 22.K'l
O.O'l 2.1'1 O,O'l O.O'l 6.2'1
2.4'1. 2.711 20'1 1.41J 1S4'l

