
SBAC-PAD'99 11th Symposium 011 Computer Architecture and High Peiformance Computing - Natal- Brazi/ 53

A study on the performance of
two-level exclusive caching

Enric Musoll and Mario Nemirovsky

XStream Logic. Inc.
San Jose. CA 95 I 29

{enric,mario}@xstreamlogic.com

Abstracr-
This work presents a study on thc performance of a level-two cachc

configured as a viclim storage for the evicted !ines o f lhe level-one cache.
This two-level cache configuralion, known as txclu.(ive caclring, is eval
uated for a wide range of lcvel-onc and level-two sizes and associalivily
degrecs, and the miss ratios of both leveis are compared to those of lhe
two-level inclusive caching.

Although the two-level exclusive strategy has lower miss ratios than
the inclusive one by increasing the effective associativity and capacity,
the replacement policy of lhe exclusive caching organization forces the
invalidation of cnlries in lhe level-lwo cache, which rcduces thc benefits
of having a viclim level-lwo cache. The cffect of these invalidalions on
the overall performance of a level-two exclusive caching organization is
evaluated . For typical two-level cache configurations in which the levcl
lwo cache is direct-mapped, the performance of the cxclusive caching is
as much as 60% better for code fetches and as much as 75% for data
accesses.

Keywords-Exclusive caching, Inclusive caching, Level-lwo cache

I. INTRODUCTION

Bridging the gap between fast processor cycle times and
slow off-chip memory access times is still an important is
sue to tacklc when designing a high-performance micro
processor [HP95). Caches help in reducing this speed mis
match. With increasing leveis of integration, designers have
more die space for caches. Since a large cache pays off in
performance, it is usual to see the cache space to be doubled
from one processor generation to the next.

However, increasing the size of a cache does not come for
free; the larger a cache is, the larger its access time. Thus,
organizing the available cache space in two or more leveis
of cache is a popular technique for obtaining both a fast ac
cess and a large cache capacity [Prz90). This is accomplished
today by having a small level-one (LI) cache that can be ac
cessed usually within one processor cycle, and a larger level
two (L2) cache that may take severa! cycles to access [SL88),
and both leveis are integrated along with the processor in the
same die [Gwe98). As performance requirements and tran
sistor budgets increase, more leveis of cache hierarchy may
be seen in future generations o f micro-processors.

Taking advantage of the spatial and temporal locality of
the memory references, the most recently used data will be
stored in the LI cache, thus minimizing the latency of future
accesses to this data. The question that arises now is what to

store in the L2 cache. The answer will define which type of

two-level caching strategy to use.
The most widely accepted multi-levei caching stratcgy is

caiJed fully inclusive. Under an inclusive organization, the
contents of the levei i cache are at aiJ time guaranteed to
reside somewhere in the levei i + 1 cache. This inclusion
property imposes some restrictions on the associativity de
gree and number of sets of the leveis of the cache hierarchy
for efficiently using lhe space in the cache leveis [BW88).
For example, when a line is evicted from levei i + 1, it has
to be invalidated in levei i to maintain the inclusiveness prop
erty. These invalidations in the levei i cache do not occur
under certain number o f sets and associativity degrees o f lev
eis i and i + 1. When the inclusion property is not imposed
by the multi-levei cache controller, the multi-levei cache sys
tem becomes partially inclusive. These type of invalidations
may degrade the performance of the levei i cache. Thus, the
multi-levei cache controller could decide not to perform these
invalidations, in which case the system becomes partially in
clusive.

In a partially inclusive organization, thus, some data may
reside in levei i but not in levei i + 1. This implies that, in a
multi-processor environment, leveis i and i + 1 will have lo
be snooped when another processor checks for the presence
o f a particular data since it can be in any o f both leveis. Some
caches dedicate a read portjust for snooping since a snoop re
ply usually needs to be provided right after the snoop request
was issued. This extra read port increases the arca and access
time o f the cache. In those c aches that do not have a dedicated
snoop port, the snoop traffic may hinder the performance of
the cache since one of the read ports may be allocated by a
snoop access and, therefore, it can not be used by a pending
cache request issued by the processor core.

In a fully inclusive scenario, however, the rest of the pro
cessors just need to snoop the outer-most levei of cache since
this levei contains ali the data within the rest of the leveis.
Thus, from the point o f view o f simplicity o f handling snoop
accesses, a fully inclusive strategy makes more sense than a
panially inclusive one.

Another strategy for two-Jevel caching is called exclu
sive [JW93). The objective of this strategy is to mitigate the
problem of duplication of data that the fully inclusive cache
organization has. This is accomplished by a mechanism that

54 SBAC-PAD'99 1 lth Symposium on Compute r Architecture and High Performance Computirzg- Natal- Brazil

guarantees that no duplicated !ines are present in the cache
leveis. As in the inclusive strategies, most recently accessed
!ines are kept in the faster level-one cache. The exclusive
caching has two advantages over the fully-inclusive organi
zation:

• the effective associativity degree of the cache space is
increased; and

• the capacity of the cache space is better utilized since
there is no duplication of data.

However, some drawbacks arise when implementing an ex
clusive organization :

• the L I cache needs to be snooped to guarantee the cache
coherency; and

• the algorithm that guarantees the exclusion property is
more complex than the one forcing the inclusion prop
erty. As it will be seen !ater, the exclusion strategy re
quires more accesses to both leveis to guarantee the ex
clusion property.

Moreover, the replacement policy of the exclusive caching
organization forces the invalidation of entries in the L2 cache,
which diminishes the advantage of a better utilization of the
cache space. The effect of line invalidations in the L2 cache
on the overall performance if the exclusive caching will be
evaluated.

In the sequei, this work will compare the performance
o f the fully-inclusive and exclusive two-level caching strate
gies. Having already stated the implementation differences
between both strategies, the metrics that will be used to com
pare them will be the code fetchldata miss ratios for both lev
eis. Moreover, the term L2 performance will be used to des
ignate the performance of the two-level cache system. For
the inclusive caching, the performance of the L2 is the per
formance of the whole cache hierarchy, but it is not for the
exclusive strategy since the performance o f the L I needs to
be added to the L2 one to obtain the overall cache system
performance.

This work extends the study done in [JW93) with a more
in-depth analysis o f the miss ratios o f the L I c ache plus the
study of the effect that the invalidated !ines in the L2 cache
forced by the exclusive caching strategy have in the perfor
mance.

In Section 11, the detailed algorithms used in this work for
maintaining the inclusiveness and exclusiveness property in a
two-level cache hierarchy are explained. Section III explains
the case in which the exclusive caching strategy forces a line
invalidation in the L2 cache. Section IV presents the results
obtained by simulating three integer and three fl oating-point
SPEC95 programs. Finally, Section V wraps up this work
with the conclusions.

11. ALGORITHMS TO GUARANTEE THE FULLY

INCLUS IVENESS ANO EXCLUS IVENESS PROPERTIES

This Section explains the algorithms used in this work to
maintain the fully inclusiveness and exclusiveness properties
in a two-level cache system. For each strategy, the actions
taken in each o f the f ou r possible scenarios (L I hit & L2 hit,
LI hit & L2 miss, LI miss & L2 hit, and L I miss & L2 miss)
will be detailed .

In a two-level cache system, two alternatives exist for the
time at which the L2 cache is accessed:

• access the L2 cache simultaneously with the L I cache,
irrespectively of whether there will be a miss in the L I.
This reduces the effective access time of the L2 when
there is a miss in the LI cache; and

• access the L2 cache only when there is a miss in the L I
c ache. This results in a larger effective access time o f the
L2 cache (the L21atency plus the latency of determining
the LI hitlmiss outcome).

The second alternative has the advantage of a potential
lower power consumption since the L2 cache may be dis
abled (thus not consuming power) while determining the L I
hitlmiss outcome. The first approach, however, consumes
useless power when there is an LI hit (which happens quite
often i f the LI cache is reasonable large).

The two access strategies may also have a different behav
ior on the performance (i.e. the miss ratios) of the L2 cache.
The reason is that when a cache is accessed, the state of the
replacement policy may be modified. This modification may
affect how future]ines will be replaced. If the cache is not
accessed (and, therefore, lhe replacement state is not modi
fied), the sequence of I ines to be henceforth replaced may be
different compared to the previous case. lf, however, the L2
cache is direct-mapped or the replacement algorithm does not
depend on whether the cache has been accessed or not, then
there is no performance difference between both L2 cache
access strategies.

In this work, the simultaneously L2 cache access strat
egy is implemented for both inclusive and exclusive caching.
Moreover, the replacement policy considered is LRU.

A. Fully-inclusive cachirzg algorithm

• LI hit & L2 hit
- The requested data is obtained from the L I cache.

• LI hit & L2 miss (this case does not happen in a fully
inclusive cache system)

• LI miss & L2 hit
- The requested data is obtained from the L2 cache.
- The line containing the requested data is transfered

from the L2 c ache to the L I cache.
- If a line has to be evicted from the LI dueto the L2

cache line coming in, then the evicted line is just
thrown away. If a write-though policy mechanism is
implemented in the L I c ache (the most common case

SBAC-PAD '99 1 lth Symposium on Computer Architecture and High Peiformance Computing- Natal- Brazil 55

in a fully-inclusive scenario), the evicted tine will not
be dirty.

• LI miss & L2 miss
- The requested data is obtained from the tine brought

from the third levei o f the memory hierarchy (a third
levei of cache or main memory).

- The incoming tine is placed in both the LI and L2
c aches.

If a tine has to be evicted from the L2 cache, it may
occur that it is dirty. In this case, it has to be updated
into the third levei of memory hierarchy; otherwise it
is thrown away.

- If a line has to be evic ted from the L2 cache, the
L I c ache h as to be looked-up to check whether the
evicted line from the L2 is present. If this is the case,
this tine is invalidated in the LI cache.

B. Exclusive caching algorithm

• L I hit & L2 hit (this case does not happen in an exclu
sive cache system)

• LI hit & L2 miss
- The requested data is obtained from the L I cache .

• LI miss & L2 hit
- The requested data is obtained from the L2 cache.
- The tine containing the requested data is invalidated

from the L2 c ache and transfered to the L I cache.
- If a valid tine has to be evicted in the LI due to the

L2 cache tine coming in, the evicted tine is placed in
the L2 cache. In this case, if a tine has to be evicted
from the L2 cache to make room for the incoming
line, it may occur that it is dirty, in which case it has to
be updated into the third levei of memory hierarchy;
otherwise it is thrown away.

• LI miss & L2 miss
- The requested data is obtained from the tine brought

from the third levei o f the memory hierarchy.
- The incoming tine is placed in the LI cache.
- If a valid line has to be evic ted in the LI due to the

tine coming in, the evicted tine is placcd in the L2
cache. In this case, i f a line has to be evicted from the
L2 cache to make room for the incoming tine, it may
occur that it is dirty, in which case it has to updated
in to the third levei o f memory hierarchy; otherwise it
is thrown away.

Table I shows, for each of the four scenarios and for both
caching strategies, the number of cache accesses to both lev
eis. An access is defined to be any look-up, invalidation or
update o f a cache (at least two accesses in each case occur,
since both leveis of cache are looked-up in parallel). The
Table shows that, for the most common scenario (LI hit &
L2 hit for the fully inclusive strategy, and LI hit & L2 miss
for the exclusive one), the number of accesses is the same.
However, for the second most common case (L I miss & L2

TABLEI

NUMBER OF LI ANO L2 CACHE ACCESSES .

Caching Strategy
Scenario Fully I nclusive Exclus i ve

LI hit & L2 hit 2 NA
LI hit & L2 miss NA 2
LI miss & L2 hit 3 4

LI miss & L2 miss 5 4

hit for both), the exclusive strategy presents two more cache
accesses. This shows that the algorithm to force the exclu
siveness property is more complex than the one to impose the
fully inclusiveness property.

The last scenario in Table I comprises, for example, a li
the cold misses. In this scenario, forcing the inclusiveness
property requires one more access to the cachc system.

III . L2 INVALIDAT IONS IN THE EXCLUSIVE CACHI NG

In the previous Section it has been shown that, for the
exclusive caching strategy, a line in thc L2 cache (hence
forth namcd 1 ine2) will always be invalidated in the rather
common L I miss & L2 hit scenario. This invalidated tine
will bc placed in the L I cache, which may cause a different,
valid tine from the LI cache (henceforth named 1 inet) to be
cvicted and sent to thc L2 cache. At this point, two situations
may happen (let L2Set(linej) represent the L2 set index in
the L2 cache for tine 1inej):

(a) L2Set(lineJ) =/; L2Set(line2). 1ine1 will not
be placed in to the same location where the invalidated
1 ine2 originally was. Thereforc, a potential val id
tine from the L2 cache (henceforth named 1ine2E)
will have to be evicted to make room for the incoming
1ine1 .

(b) L2Set(line1) = L2Set(1ine2). 1ine1 will be
placed, most Iikely, in the same location where the inval
idated 1 ine2 originally was beca use the replacement
algorithm tries to find an invalidated spot to place the
incoming tine.
The only case in which it may not go to the same place is
when there are more invalid spots (i n other ways) in the
same set. In this case, the replacement algori thm may
choose any ofthe invalidated spots to place thc incoming
Jine. This case, however, is not very common since the
cache is usually filled up with valid tines.

Therefore, when situation (a) happens, a "hole" (i.e. an in
validated spot) is created in the L2 cache. Let this situation
be henceforth named as an non-exact swap between LI and
L2. Although the original content of this spot (i.e. 1ine2) is
not lost (since it was placed in the LI cache) a tine in the L2
(1 ine 2E) could have been evicted out o f the two-level cache
system1 . However, if 1ine2E is referenced in the near future

1 However. not ali the holes have a negative impact on the L2 cache
performance.

SBAC-PAD'99 11th Symposium on Computer Architecture and High Perfomzance Computitzg- Natal- Brazil 57

L•~-............. u• u ... - u_ "'._-.....-.....u ...

Fig. I. LI miss ratio results. Inclusive vs. Exclusive.

Thus, both the increase in associativity and capacity makes
the exclusive caching better than the fully inclusive. How
cver, this increase in performance could be higher if only
cxact swaps occur in the exclusive caching, as explained in
Seclion III.

B. Exclusive vs. No-ho/es caching

Figure 3 compares the exclusive and the no-holes caching
strategies to evaluate the degradation of the L2 performance
due to the non-exact swaps. Note that the LI performance is
not studied since it is very low for the no-holes caching.

The Figure shows that the non-exact swaps have almost no
effect on the L2 performance. For the cache configurations
studied in this work, we have observed that, in average, at
most 12% of the non-exact swaps in the exclusive caching
ncgatively affect the performance. This maximum percent
age corresponds to the case in which both the LI and the L2
caches are 32KB and direct-mapped . For larger L2 caches,
and also for Jarger L2 associativity degrees, this percentage
soon drops to almost zero. Moreover, the number of non
exact swaps correspond to less than 10% of ali the accesses
to the cache system . In any case, the miss ratio increase due
to non-exact swaps is, in average, always less than 15%.

Even with this decrease in L2 performance, the exclusive
caching strategy has always better LI and L2 performances
than those of the fully-inclusive caching. For typical two
level cache configurations, the performance of the exclusive
caching is as much as 60% better for code fetches and as

much as 75% for data accesses.

V. CONCLUSIONS

This work presents a study on the performance o f the two
Jevel exclusive caching strategy. The exclusive caching is
compared against the fully-inclusive one for 6 SPEC95 pro
grams and for severa! sizes and associativity degrees o f level
one and Jevel-two caches.

The exclusive caching strategy always presents better per
formance e a y 4 . 4 9 T m
 1 2 8 f o 1 T d
 (T 1 6 8 T c 1 . 4 3 T d
 (e x c l u s i v e 2 T c 1 . 7 T 6 3 4 0 1 9 d
 (T 1 6 4 2 d a t a) T . 6 3 4 c 9 . 5 0 0 9 . 5 5 3 8 . 5 4 4 0 4 . 6 5 T m
 (t w x c l u s i j
 0 . 3 2 2 g
 0 0 1 1 6 5 v i t y 7 i n 1 9 0 7 i n 3 6 5) 6 2 1 3 7 w r 2 g
 - 0 S h o r t T m
 (o) T j
 0 . 0 6 7 j
 0 . 3 2 2 g
 0 0 1 T 8 7 v i t y 7 i n 1 9 0 7 i n 3 8 4 . 4 1 3 7 w r 2 g
 - 0 a
 0 . 0 2 4 4 0) T j
 1 7 3 6 g
 0 . 0 0 H T d
 (f o 1 T d
 (T 1 7 7 8 d a t a) T . T d
 (e x c l u s i v e 2 0 T c 1 . 4 3 M 6 3 4 0 6 3 l u s i v e 9 1 8
 0 T c 1 0 T d
 (e a y 4 . 4 9 T m
 1 2 2 5 . 1) T 4 8 T c 4 . 3 2 1 L e T d
 (f o 1 T d
 (T c T 1 _ 3 1 7 . 3 5 6 T c 0 7 i n 4 2 4 . 7 h 1 3 7 w r 2 g
 - 0 v y . 6 3 4 0 r 2 . 3 4 2 7 v i t y 7 i n 1 9 0 7 i n 4 j 5) 5 9 h 1 3 7 w r 2 g
 - 0 A 0 T d
 (e T j
 0 . 1 7 6 1 5 3 5 . 1) T 8 7 5
 0 T c 1 s i m u d
 (a l w r 2 . 3 4 2 0 T 1 4 4 h e) 2 T j 1 7 g
 0 . 0 0 l a t i 8 8 T c T j
 0 . 1 7 h e)) 3 0 8
 0 T c 1 o 5 0 l w r 2 . 3 4 2 7 6 4 7 5
 0 T c 1 n 0 T d
 (e T j
 0 . 1 7 6 1 3 8 h e) g
 0 3 5
 0 T c 1 s t d
 (a l w r 2 . 3 4 2 0 T T 1 _ 3 1 7 . 4 6 5 . c 4 0 7 i n 4 8 T j 1 2 h 1 3 7 w r 2 g
 - 0 u d 8 8 T c T j
 0 . 1 7 h e) 7 i n 1 9 0 7 i n 4 9 2 5 6 7
 1 3 7 w r 2 g
 - 0 y 6 3 4 0 5) T j
 7
 7 1 1 1 9 0 7 i n 4 9 6) 0 - t 1 3 7 w r 2 g
 - 0 o f t w o - 6 3 4 0 r 2 . 3 4 2 7 v i t y 7 i n 1 9 0 7 i n 5 1 9 . 0 6 1 1 3 7 w r 2 g
 - 0 l T d
 (f o 1 T d
 (T 1 1 8 2 5 . 1) T 1 8 T c 1 . 4 3 e v e T d
 (f x c l u s i v h e)) 4 5 t w!

58 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Compuring- Natal- Brazil

uo.. ... --._... .u,. uo.. u .• u u.,.

ua.. u•
uc..-.............. u,•

Fig. 2. L2 miss ratio rcsults. Inclusive vs. Exclusivc.

uo..-.,.. .u• UD.--IIIIII· Ia"""'•U1- uo. u •••

111,r:·-:~,"
I i ; I : :

lllllllll •..
ua.. u•

ua..-...... -.-... .utt•

Fig. 3. L2 miss ratio results. Exclusive vs. No-Holes.

