
SBAC-PAD '99 11th Symposium on Compute r Arclzitecture and High Peiformance Computing - Natal- Brazil 59

Process Prefetching for a Simultaneous
Multithreaded Architecture*

Ronaldo A. L. Gonçalves t, Rafael L. Sagula t, Tiarajú A. Diverio, Philippe O. A. Navaux §

Federal Univcrsity of Rio Grande do Sul
lnfonnatics Institute and PPGC/UFRGS

Po. Box 15064-91501-970
Porto Alegre. RS. Brazil

{ronaldog. sagula. diverio. navaux} @inf.ufrgs.br

Ab.ttract-
Traditional supcrscalar architectures shall eventually prove inca

pable of taking full advantage of billions of transistors to be available
in lhe future generations of microprocessors if they remain limited by
dataflow dependencies. Thus, SMT (Simultaneous Multithreadcd) ar
chitccture may be a possiblc solution to this problem, as far as it can
fctch and execute a great deal of instruction flows and at thc same time
hiding both high latency operations and data dependencies. But this ca
pability of SMT architecture depcnds on the cxistence of multithreaded
applica tions and on some effective fctching instruction mechanism that
will guarantee the presence of rcady threads in the LI i-cache to be used
throughout context switching.

SEMPRE (Superscalar Execution ofMultiple PRocEsses) is a type of
SMT architecture which makes use of various processes to be found in
today's operating systems devcloped to supply instructions to its SMT
pipeline. This paper proposes and evaluates an effectual mechanism
that prefetches instructions from awaiting processes in order to guaran
tce adequate context switching. An analytical model of such a mecha
nism was dcveloped through using DSPN (Deterministic and Stochastic
Petri Nets) and the results have shown that its use improves the dispatch
width by 25% when realistic parameters are uscd. This method reduces
the problem of cache degradation (present on many SMT architectures)
and tolerates L2 delays of up to 9 cycles in some cases without the loss
of performance.

Kt)~vurdJ-SMT, Prefetch, Modeling.

I. I NTRODUCTION

History shows that despite technological advancc on VLSI
and reduction of clock cycle time, a number of other tech
niqucs has been developed to increase the performance of
computers [PAT 90]. One of the most promising proposals
is the simultaneous multithreaded architecture (SMT), which
can execute a lot of instructions from different streams si
multaneously, maximizing the.hardware utilization.

Although SMT turned out to be a very good technique its
development has been held back by 3 well-known problems:
I) the lack o f multithreaded applications; 2) the increase o f
i-cache degradation as · the number o f threads raises ([TUL
95], [GUL 96]); and 3) volume o f hardware implementation.

This architecture was designed to execute multiple pro
cesses instead of multi pie threads, by advantage being taken

• Work supported by CNPq and CAPES
t Phd. Student at PPGCIUFRGS: Professor at DINIUEM
l Msc. Studcnt at PPGC/UFRGS
§ Advisors at PPGC/UFRGS

of existent parallelism among different applications, which is
greater than the one among threads o f the same application.
The existence of communication among applications is far
more rare than among threads. So, the problem number I is
solved by replacing threads by processes.

Consequently, a single SEMPRE processor can substitute
for many conventional processors, making possible its uti
lization by different users through terminais. Such possibili ty
is expected to warrant financiai investments on the SEMPRE
design. Moreover, the high hardware volume required to de
velop this kind of architecture will not pose any problem,
once the next generation o f integrated circuits sets bi llions of
transistors on a chip. Therefore, in a near future, problem
number 3 will naturally work itself out.

This architecture also provides hardware support to pro
cess scheduling, and a new set o f instruction that a llows the
operating system to manage processes with minimal CPU
overhead. So, the waste time with both scheduling and con
text switching among processes will be insignificant, enhanc
ing the performance of the whole system.

The main goal of this work is to propose and evaluate a
new prefetch mechanism called "Process Prefetching" aim
ing at working out problem number 2. This mechanism
makes use of SEMPRE specific features, and conceals the
degradation o f the L I i-cache through prefetching instruc
tions of various processes before they are needed. The pro
posed mechanism is evaluated as well as compared wi th a
similar SMT architecture which does not prefetch instruc
tions.

Section li presents an overview of related works about
SMT and cache degradation. Section III describes the
main parts of SEMPRE architecture and details the proposed
prefetch mechanism. Section IV introduces briefty the use
of Analytical Modeling and shows the models used in this
work. Sections V and VI show the results and conclusions,
respectively.

11 . RELATED W ORKS

The main object of a multithreaded architecture is to max
imize processor utilization at the occurrence of high latency

60 SBA C-PAD '99 I I r h Symposium on Computer Architecture and High Performance Computing - Natal - Brazil

operations, like those caused by i-cache misses or data de
pendencies ([LAU 94]). Unfortunately, such latencies can
only be concealed if therc are enough instructions availablc
from other threads previously stored on LI i-cache during thc
context switching.

Laudon, Gupta e Horowitz ([LAU 94]) had proposed a
technique for multithreadcd execution called Interleaving,
that could be applied on traditional superscalar processors
to allow the execution of monothreaded as well as multi
threaded applications, without enlarging the hardware. Oth
erwise, Govindarajan c Nemawarkar ([GOY 92]) designed a
multiprocessar called SMALL that was composed by many
indcpendent proccssing units.

The major part of multithreaded architcctures is based on
replication of both instruction paths and storage structures
from conventional superscalars in order to support multi
threading. Hirata et ai. ([HIR 92]) developed a SMT that
has multiple rcgister banks, instruction queues and program
counters for each thread. Also, Wallace, Calder c Tullsen
([WAL 98]) designed a SMT architecture with severa! regis
tcr renaming tables to support the execution of both thrcads
and paths simultaneously.

There are two approaches for multithreaded execution:
concurrcnt ([TSA 96]) and simultaneous ([TUL 95]). The
forrner allows intcrlcaving of execution of different applica
tions like the one made by operating systems, so just one
process runs in the pipeline at a time. That technique hides
high latency operations but doesn't maximize the utilization
of functional units, once each application has specific fea
tures and requires functional units of different types more
intensively. The second approach hides high latency opera
tions and maximizes the hardware utilization by simultane
ously dispatching instructions from different threads. This
one is known as Simultaneous Multithreaded (SMT).

A lot of research is done on this ficld ([SIG 96], [AKK
98]. [GOO 98], [HIL 98]. [LO 98]) and many ofthem ([AGA
92]. [CRA 93] e [THE 94]) have shown that during simulta
neous multithreaded execution the instruction cache suffers
so much degradation dueto reduction of locality. On the ex
periments made by Tullscn [TUL 95], the i-cache conflicts
were the most dominant factors to the occurrence of wasted
cycles, for examplc, increasing the number of threads' from
I to 8, the LI i-cache miss rate increased from I% to 14%.
In subscquent work, Tullsen ([TUL 96]) concluded that sig
nificant performance could be reached using a suitable fetch
policy. Even so, among ali architectural parameters used in
that experiment, the fetch width could be the main bottleneck
o f thc SMT architecture.

Another important observation was made by Lo ([LO
98]). He showed that there are two kind of cache interfer
ences: destructive interference, which occurs when the in
structions/data from a thread are changed by the ones from
another thread, increasing i-cache miss rate; and constructive

interference, which occurs when the same instructions/data
are required by many threads, reducing bus load.

Using a multithreaded processar, Gulati ([GUL 96])
showed that increasing the threads' number from I to 6 the
averagc cache hit rate decreases from 97.33% to 76.2 1%, that
implics in an increase o f 21.7% on the cache miss rate.

Nemirovsky ([NEM 98]) also showed that when the num
ber of streams increases the cache interference raises too
reaching 200% in the worst case for 4 streams.

The main question about cache issue with SMT is whether
there is enough parallelism to increase the occupancy of the
processar resources ([BUR 99]) or not. Thus, the fetch unit
can be a bottleneck. Even ifthe processar uses many memory
leveis, Rinker ((RIN 98]) showed that cache miss rate could
be reduced by I% only. In some cases, cache degradation
could reach 50% of processar idleness. SEMPRE architec
ture can reduce these problems according to next sections.

111. SEMPRE ARCHITECTURE

The SEMPRE architecture (Superscalar Execution ofMul
tiple PRocEsses) was proposed in ([GON 98] , [GON 98a])
and is similar to a traditional SMT, but it executes pro
cesses instead of threads. It adds new instructions that im
plement tasks usually done by the operating system. Its su
perscalar pipeline, showed in the Figure I, contains 5 main
stages (fetch, decode, execute, finish and conclusion) and
providcs usual techniques such as branch prediction (spec
ulative fetch), simple register renaming and out-of-order ex
ecution for ready instructions.

Thc architecture has multiple slots to store fctched instruc
tions from different processes. These processes are sched
uled from FP (waiting process queue) that keeps a descrip
tor (idcntification, program counter, timc-slice, status and
so on) for evcry process waiting to be schedulcd. Insidc of
each slot there is a RDP register, that contains both program
counter and time-s! ice inforrnation for one process, and a FI
queue (for fetched instructions). Also, there is a register bank
(frame) to keep the contexts for each process crcated in the
architecture. In to arder to simplify its implementation, the
i-cache is indexed by the real address, thus the translation of
virtual to real address is done before the i-cache access. The
functional units are shared by ready instructions which can
be dispatched in-order from slots.

During instruction fetching, just one line is fetched from
i-cache per cycle for each slot, in a round-robin way. After
a slot has been selected, the fetching can be done using the
program counter contained in the respective RDP register and
the instructions are inserted in the respective FI. When it is
necessary to switch context for a slot, other process must be
scheduled from FP and the respective RDP must be updated.

The old descriptor must remain in the pipeline (in FA or FT
queucs) until the last instruction has been concluded, coming
back to the FP queue. Usually, context switching shall be

SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 61

done in three differcnt situations: I) on the occurrence of
i-cache misses; 2) on the detection of one of the new instruc
tions; and 3) after process time-slice has been finished. The
new instructions are: create, kill , suspend, resume and run
now.

Fig. I. Ovcrview of SEMPRE Architec!Ure

The decode stage executes 3 main activitics (not necessar
ily in one single cyclc): instruction scheduling from slots,
decoding of those instructions (including simple renaming)
and dispatching to issue buffers (FRm). Thc instructions lo
catcd at thc cnd of the slots (last instructions) must be de
coded and just the rcady instructions (without dependencies)
are scheduled to be dispatched. This decision was taken bc
cause the out-of-order execution o f not ready instructions in
SMT couldn't bc advantageous ([HIL 98]) besides to dirty
thc issue buffcrs with long latency instructions, but after the
developmcnt o f simulator other alternatives can bc evaluated .

In the execution stage, cach functional unit executes the
instructions placed on its issue buffer. Thc instructions are
removed in-order from FRm and after that the results are
sent to finish stage which updates the correct entry of the
reorder buffer (FRd) setting the "finished" tag. The conclu
sion stage performs an in-order checking of the last entry
from each FRd and removes "fi nished" instructions from it.
At this time, the results of those instructions are updated on
the correct register frame. When the execution of the Jast
instruction of a context is finished , its descriptor is removed
from FT and put back in the FP queue. Also, the conclu
sion stage controls the accuracy o f the speculative execution,
exception and death of processes.

Like other SMT, one of the greatest challenges of SEM
PRE project is the development of an efficient fetch mech
anism, that must be able to fetch instructions from different

streams and to sustain high bandwidth for the next stages of
the pipeline. This mechanism is proposed in the next sub
section.

A. Prefetch Mechanism

A simple alternative to reduce i-cache miss penalty on
single-threaded processors is to use instruction prefetch
mcchanisms ([LEE 95]). One side effect of this k.ind of
mechanism is the Joad of the bus, but the obtained speedup
justifies the investments in bus bandwidth. The kind of
misses present on that proccssors is known as intra-thread i
cache miss anda more detailed study about d iffcrent prefetch
policies for it was done by Tatiana ([TAT 99)). In SMT archi
tectures, the great number of threads sharing the same cache
forces another kind of miss: the inter-threads i-cache miss,
that occur when a just scheduled thread causes the remova)
of the instructions from another thread that a lready was in
the cache.

The i-cache misses on SMT architectures don't cause so
much prejudices than on single-threaded architectures, bc
cause they can be hidden by the context switching. But, this
benefice can not be possible once thcre are not ready thrcad
stored in LI i-cache during a context switching. So, it is
necessary the development of a prefetch mcchanism that be
able to anticipate the fetching o f instructions from L2 to L I
i-cache for a thread before that it is scheduled for execution.

When the scheduling is done by operating system or by
another program, the inter-thrcads i-cachc miss can 't be de
tected and a thread can just be fetched after i-cache miss.
However, when the architecture has knowledge about the
scheduling policy, such as SEMPRE does, the prefetching
can work according to that in order to an ticipatc the storing
of threads in LI. This prefetch mechanism can eliminate the
inter-threads interference as well as hide the intra-thread i
cache misses.

Thc fetch stage of the SEMPRE pipeline was redesigncd
to support that prefetch mechanism, as shown in Figure 2.
The fetch unit transfeer instructions from L I i-cache for
those processes located in the slots, looking to the program
counter in RDP registers, and putting thc instructions in the
FI queues. Simultaneously, the prefetch unit makes thc fetch
ing of instructions from L2 cache of those processes located
in the FP queue, and puts their instruc tions in the LI i-cache,
looking on the program counter in the correct fie lds from FP.
To control this mechanism, each entry of FP queue has a bit
called "miss-status" that shows whether a process is or is not
in the L I i-cache.

Once a process is prefetched its miss-status flag is set to
I . Every time a process is stalled because i-cache miss it is
switched, going back to FP queue. Then its miss-status flag
is reset to O. The performance of this technique depends on
the availability of "prefetched" threads in the FP queue. Note
that a process can be stalled by UO or time-slice Jeaving its

62 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

L2 cache

Prelelch Logic

L1 i-~ache

:-----i f-l~ ~-----;
i i

.... t .. :... I . I I I :
~ ... , ... ·:. ~ .. , ,···: ,. ·:·· , .. :i

,'11111111
• : I : ; 1
•,, ,,,,,,,,,,. I

I

Oispatch

Fig. 2. Simplitied Scheme of Prefelch Model

miss-status flag unchanged. The SEMPRE architecture uses
round-robin scheduling algorithm but that prefetch technique
isn ' t limited to it. Also, in the Figure 2, therc is a token ring
linking ali slots only to represent the round-robin schedul
ing and to help on the good understanding of the analytical
model.

A full simulator for SEMPRE architecture is being devel
oped but will be available only at the beginning of the next
year. So, to make easy its implementation as well as predict
its behavior the fetch unit was modeled analytically. That is
described in the next section.

IV. ANALYTICAL MODELING

Usually, two techniques can be used to estimate the perfor
mance of a computer architecture before its implementation
([JAI 91). [SAG 99)): computational simulation and analyti
cal modeling. The former is the most widely used technique,
once it a llows the implementation of the model with more
details, but it takes too much programming and computing
time to implement and produce useful results. On the othcr
hand, the analytical models can be implemented and solved
in much less time, but their results are not so accurate as those
ones obtained by simulation. That happens because the over
simplification of the models.

The research activity. on analytical modeling field is quite
intensive and many computer systems (and architectures)
are being modeled and evaluated using such methodology
([MAR 84], [SAA 90], [YAM 94]. [JAC 96] e [KAN 97],
[CAR 97], [COU 91], [GUN 98]. [ROB 94]. [SAH 96]. [SIL
92]). In [YAM 94]. the results obtained by an analytical
model differs only by 4% of the ones obtained by conven
tional simulation showing that even simple models can pro
duce good results.

In this work, a tool called DSPNExpress [LIN 98] was
used to create and solve the analytical models ofthe fetch and
prefetch mechanisms. The mathematical formalism used was
the DSPN (Deterministic and Stochastic Petri Net) which is
a kind o f extension o f the original Petri nets ([PET 62]. [LIN
98)). Its application to model and evaluate performance of
computer architectures has been successfull in many other
works ([SAA 90], [LIN 98], [MOR 98]. [SAG 99a]).

The modelcd prefetch scheme works on the waiting pro
cesses queue prefetching their instructions from the L2 cache
to the L I i-cache independently o f the L2 cache-miss dclay.
Note that intra-thread i-cache misses continue to occur, but
it guarantees the hiding o f such delay by thc prefctching of
another process. The created models and the obtained rcsults
are shown on the next section.

A. Models

Owing to ali slots being dependent upon the samc prcrcq
uisites for utilization, they will maintain an cquivalcnt be
havior, which fact makes easy the modelling o f the prcfetch
mechanism, as only a generic model for one slot must be
developed. So, the joint behavior of the prefetch and fetch
mechanisms can be reached by resolving that simple model.
The reduced model of the prefetch mechanism is presented
in Figure 3, That model i f composed o f 3 essential parts: I)
the left most part that represents the complete model of one
slot; 2) the right-most part, that represcnts ali the other slots
ofthe architecture; and 3) the FP queue (or "process queue"),
which is located in thc middle o f the model and interacts with
ali slots (left and right sides of the modcl). Figure 4 detai ls
the left-most part o f this model.

In Figure 3 there is no instructions of the waiting pro
cesses in LI i-cache in the initial state. Thus, thcre is an
initial loss of cache performance, while the instructions are
not fetched. When those instructions are fetched, the process
initiates its execution on the slot until the occurrencc of an
i-cache miss. After that, the missed process goes back to the
"process queue" and waits for the prefetch mechanism. Note
that, in this mechanism, LI i-cache doesn't care about re
questing the missed !ines to the L2 cache, because this work
will be done by the prefetch mechanism.

Fig. 3. Peui Nel of lhe Fe1ch Mechanism

SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 63

In this paper, we consider "dispatch throughput" as the
number of instructions available for being dispatched at each
cycle, that means the number of instructions present on the
Jast positions of the slots ' instruclion queue and ready for
dispatching. Due to the main goal of this work is to evalu
ate the perfonnance o f the proposcd prcfetch mechanism, the
dispatch throughput can be used as a good perfonnance met
ric. The stages after the fetching were not modeled because
thcy are the same for ali the studied cases ("best", "SEM
PRE" and "no-prefetch") and it's not the goal ofthis paper to
measure the IPC o f that architecture.

To_ ... _,_ .. ---
Fig. 4. DSPN Modcl of One Slot

In Figure 4 it is shown the complete model for one slot.
Placc p/ represents the marked place of Figure 2 and con
trols the round-robin fetch mechanism. Only one slot has its
p/ place marked at a time, indicating the slot that is being
fetched at that cycle. If place p~ is marked and the slot is
busy (place "Busy Slot" marked), then transition ti fires.

The region labeled HITIMISS Decision simulates the be
havior of the LI i-cache. Both transitions Li MISS and Li
H/T are enabled at the same time, but only one is fired.

I f the requested line is present in the L I i-cache, the to
ken enables the Fetch transition and after I cycle thc corre
sponding Fetch Buffer is fulfilled with the fetched instruc
tions. Then this slot is marked as "busy" (Busy Slot= I) and
a token is sent to the next slot. If a LI i-cache miss occurs
then after I cycle a token is sent to the "process queue" and
another one is sent to the next slot, leaving this slot " idle"
(Busy Slot=O). .

I f thc slot is idle and there is at least one process ready to
be scheduled on the Process Queue, then transition t2 is fired
and the slot is filled with that process (token). After that,
the usual fetch mechanism takes place. If there are no ready
processes, the transition t3 is fired and the fetch control is
sent to the next slot (at the next cycle).

The processes waiting on the Process Queue are repre
scnted by tokens on the Waiting place and they have to wait

for as many cycles as is the L2 cache delay plus I. That is
the delay o f the prefetch mechanism as stated on Section III.

The region labeled as Dispatch represents the next stages
of the pipeline. The dispatch throughput is measured at this
point. Once the behavior of ali slots is the same, the total
throughput of the model can be obtained by multiplicating
the throughput of one slot by the number of slots.

Two other models were based on the SEMPRE model.
They rcpresent the best and worse cases and have little mod
ifications compared to the original one. The best case is con
sidered to the one where there are always prefetched pro
cesses waiting to execute. So the slot never waits to be filled
by a new process. This model eliminates the "prefetch de
Jay" and "inter-threads interference" effects. The case where
the prefetch mechanism does not exist and the slot waits for
the LI i-cache miss resolution every time a LI i-cachc miss
takes place is the worst case. In this model, the missed line is
fetched on the L2 c ache only when the miss event takes place,
so there is no work being done on the L2 cache i f there is no
miss (only data accesses).

V. RESULTS

Ali Figures present an indcx that describes the parameters
used on the models. For each model, there is an 5-uple that
describes it: (fetch width, #slots, L I i-cache hit, prefetch/L2
delay, #processes). Thc basic configuration uses realislic pa
rameters: (8, 8, 80%, 4, 16), which represents an architec
ture that fetches 8 instruction per cycle, has 8 fetch slots, L I
i-cache hit of 80%, prefetch delay of 4 cycles (3 for L2 plus
I for prefetch logic compensation [SHA 97]); and I6 waiting
processes in the proccss queuc initially.

7

•

--
t- --

o
0.1

==-!\ ·.~---::N.tt 1 =::
I I

~ .
J.---:7 .. /

-f..--- /_,)1'·/
- -~/i -

~ ~ · -
- - ----

OA 0.1 0.7 0.1 OJI

Fig. 5. Dispatch Throughput vs. Hit Ratc

The behavior of the three modeis with the LI i-cache hit
variation is depicted in the Figure 5. When a LI i-cache hit
higher than 80%, the proposed prefetch mechanism takes the
same dispatch throughput as the best case. It happens bc
cause the hit rate is not sufficient to overcome the throughput

64 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing ·Natal- Brazil

of the prefetch mechanism, so the number of missed pro
cesses per cycle is lower than the number of prefetched pro
cesses. That keeps the process queue always with I or more
prefetched processes.

When the LI i-cache hit is too Jow, the proposed mecha- l
nism behaves just like the worst case. However, such hit rates I
(lower than 55%) are not so usual and can be easily solved I
improving the L 1 i-cache configuration. Obviously, the best
case overcomes the other ones in more than I 00%, because
context switching does not effect this model.

The best performance obtained by the proposcd mcthod is
achieved when the LI i-cache hit is between 70% and 85%,
which corresponds to a gain of 9% to 18% over the worst
case. Those are satisfactory results, once low i-cache hit rates
(Iike those obtained on the experiments) are expected when
thc number o f threads grows ([TUL 95), [TUL 96)).

-e I

....---::::::::-t··--··--··············
t·~~--~--- 1 I : -···-·······-······-

1 - . _.._

0.~--------~--------~.~--------!~------~. -
Fig. 6. Disp:llch Throughput vs. Number of Slots

On the graph o f the Figure 6 it is possible to compare the
proposed mechanism with the best case when the slots' num
ber changes from 4 to 8. In that figure, when the i-cache
miss rate is 90%, the performance of both architectures stay
the same. However, when the i-cache miss rate decreases
I 0%, the penalty for the proposed mechanism decreases too,
because the higher is the slots' number the higher is the prob
ability o f occurrence o f L I i-cache miss.

The Figure 7 shows the behavior o f various configurations
when L2 cache delay grows up. In every case. the proposed
mechanism overcomes the worst model but the advantage bc
comes greater when th.e LI i-cache hit grows. It's possible
to verify that relative speedup begin small, increases and re
duces again. The best performance is achieved when the L2
delay is 12 cycles and the L I i-cache hit is 90%. In that case,
the dispatch throughput for the proposed mechanism is 25%
greater than the "no-prefetch" mechanism.

The graphs show the prefetch mechanism keeps the
throughput high even with high L2 delays, while the perfor
mance of the "no-prefetch" mechanism decreases when the

·.~~-7--~~~.~~7--~.~.~~.o~~~~--.~2~,~.~ .. ~~.s~,..
~Ooloy

Fig. 7. Dispatch Throughput vs. Prefetch/L2 Delay

L2 delay increases. When L2 delay is 9 cycles and LI i-cache
hit is 90% for instancc, the prefetch mechanism achieves al
most the same performance as the "no-prefetch" mechanism
whcn L2 delay is 4 cycles. In that situation, the proposed
mechanism can hide L2 latencies 125% higher than the "no
prefetch" one. The Figure 7 also shows that the lower the LI
i-cache hit thc lower the advantage of the proposed mecha
nism.

Figure 8 shows the use of a greater number of processes
guarantees that a fetch width of 8 instruction on the proposed
mechanism behaves as the best case for an architecture with
8 slots.

·.~--~.----~-----~,----~q~--~ .. ~--~~~~--~. --
Fig. 8. Disp:uch Throughput vs. Fetch Width

VI. CONCLUSIONS

This work proposes a prefetch mechanism for a simultane
ous multithreaded architecture called SEMPRE that has ad
ditional skills to schedule and execute processes instead of
threads. This mechanism was modeled analytically and the

SBAC-PAD'99 llth Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 65

results are shown.
That modeling allows us to conclude that the varia

tion of both fetch width and slots' number don't have so
much intluence on the performance of the proposed prefetch
mechanism. Nevertheless, the architectural parameters that
most constrains the performance of that simultaneous multi
thrcaded architecture are the L 1 i-cache hit rate as well as the
L2 delay. These techniques produce good results, but should
be seen just as tools for the behavioral analysis of the mod
eled system.

The proposed mechanism proves to be efficient handling
those problems and improves the dispatch width by 25% in
some cases. Also, it tolerates L2 delays up to 9 cycles when
L I i-cache hit rate is 90% with the same performance o f a
similar architccture with L2 delay of 4 cyclcs, that is an ad
vantage of 125%.

The results show that the proposed prefetch mechanism
improves the performance of a SMT fetch mechanism that
uses a round-robin algorithm. However, in future works other
scheduling algorithms must be evaluated.

ACKNOWLEDGMENTS

The authors of this paper would like to thank Brazilian
financiai agencies CAPES and CNPq which havc supported
this work.

REFERENCES

(AGA 921 Performance TradeofJ.f in Multitlrreaded Processors IEEE
Transactions on Parnllel and Distributed Systems. 3(5):525·539.
September, 1992.

(AKK 98) Akkary. H.; Driscoll. M. A.: A Dynamic Multitlrreading Pro
ce.uor Proceedings ofthe MICR0-3 1: ACMIIEEE lntemational
Symposium on Microarchitecture, Dallas, Texas. Dccember,
1998.

[BUR 99) Bums. J.: Gaudiot J.-L.: Exploring the SMT Fetch Bouleneck
Procccdings of the MTEAC'99 (in conjunction with HPCA-5).
Orlando. Aorida.. 1999.

[CAR 971 Carvalho, L.: Uma Ferramenta para Modelagem de Sistemas
de Comunicação. Computação e Confiabilidade. Msc. Thcsis.
COPPEIUFRJ. Brazil, 1997.

[COU 91 I Couvillion, J.: Freire, R.: Johnson. R.; Obal 11. W.D.; Qureshi,
M.A.; Rai, M.: Sandcrs, W.H.; Tvedt, J.E.: Performability Mod
eling with UltraSAN IEEE Software. vol. 8, no. 5, Sept. 1991 .
pp. 69-80.

[CRA 93) McCrackin. D.C.: Tire Synergistic Effec/ ofTirread Sclreduling
and Caclring in Multithreaded Computus COMPCON Spring,
pages 157-164. 1993.

[GON 981 Goncalves. R. A. L.: Navaux, P. O. A.: SEMPRE: Uma Ar
quite/lira SrrpuEscalar com Multiplos PRocessos em Execucao
Anais, X SBAC-PAD. Buzios, Brazil, Scp, 1998.

[GON 98al Gonçalves, R. A. L.: Navaux, P. O. A.: Proposta de
uma Arquitetura Multi-Tirreading Voltada para Sistemas Multi
Processos IV Congresso Argentino de Ciencia da Computação·
CACIC'98, Neuquen. Argentina.. Oct, 1998.

[GOO 98) Goosens, B. T. : The Tlrreads Pracessor Procccdings of the
MTEAC'98. Workshop on Multithreaded Execution, Architec
ture and Compilation: held in conjunction with HPCA-4, Las
Vegas, Nevada, February, 1998.

[GOV 92] Govindarajan. R.: Nemawarka:r. S. S.: SMAU: A Sca/able Mul
tithreaded Arclritecture to Exploit Large Lacaliry Proceedings
of the Fourth IEEE Symposium on Parallel and Distributed Pro
cessing, Dallas, TX. Dcc. 1992.

[GUL 96] Gulati, M.; Bagherzadeh, N.: Performance Study of a Mul
tithreaded Superscalar Microprocessor Proceedings of the
HPCA-2, Califomia, February, 1996.

[GUN 98) Gunther. N. J.: Tire
Practical Performance Analyst: Performance-by-Design Teclr
niquesfor Distri~uted Systems McGraw-Hill, 1998.

[EGG 97) EGGERS, Susan J. et ai: Simultaneous Multitlrreading: A Plat
form for Next-Generation Processors IEEE Micro, V.l7. n.5.
Sep/Oct 1997.

[H IL 98) Hily, S.: Seznec, A.: Out-of-Order Execution May Not Be Cost
Effcti,·e on Processors featuring Simulwneous Multitlrreading
IRISA (Institui de Recherche en lnformatique et Systemes Ala
toires. Publication Interne 1179, March, 1998.

[HIR 92) Hirnta, H. et ai: An Elementary Proce.uor Architecture witlr Si
multaneous lnstruction lssuing from Multiple Tlrreads Procccd
ings of lhe 19th Annual lntemational Symposium on Computcr
Architccture, ACM & IEEE-CS. 1992.

[JAC 96) Jacob, B. L. ; Chen. P. M.: Silverman, S. R. ; Mudge, T. N.:
An Analytical Model for De.tigning Memory Hierarchies IEEE
Transactions on Computer, Vol. 45, No. 10, Oct/1996.

(JAI 91] Jain, R.: Tire Art of Compute r Sy.flems Performance Analysis
John Wilcy and Sons, New York, 1991.

[KAN 97] Kant, L.; Sanders, W.H.: Analysis of tire Distribution of Con
.recrrtive Ce/1 Losses in an ATM Switclr Using Stoclrastic Activ
ity Networks Special lssue of lntemational Joumal of Computcr
Systems Science & Engineering on ATM Switching, vol. 12. no.
2, March 1997, pp. 117- 129.

[LAU 94) Laudon, J. et ai: lnterleaving: A Multithreading Techniqrre Ttlr
geting Multiprocessors and Workstations Proceedings of the ln
temational Conference on ASPLOS. Oct, 1994.

[LEE 95] Lee, D. et ai: /nstruction Caclre Fetch Policies for Specu/ative
Execution Procecdings of the 22th Intemational Symposium on
Computer Architccture (ISCA'22). ltaly. 1995.

(LIN 981 Lindemann. C. : Performance Modeling witlr Deterministic and
Stoclra.rtic Petri Nets John Wiley and Sons, 1998.

[LO 98) Lo, J.L. et ai: An Analysis of Database Work/oad Performance
on Simultaneous Multithreaded Processors Proceedings of thc
25th Annual lntemational Symposium on Computer Architec
ture, Junc, 1998.

[MAR 84) Marsan, M.; Baldo, G.; Conte, G.: A C/ass of Generalized
Stoclrastic Petri Nets for tire Performance Evaluation of Mul
tiprocessar Systems ACM Transactions on Computcr Systcms,
May 1984.

[MAR 98] Marcuello, P., Gonz lcz. A .: Contrai and Data Dependence
Speculation in Multitlrreaded Proce.uors Proceedings of the
MTEAC'98 (In conjunction with HPCA-4), Las Vegas, Nevada.
February. 1998.

[MOR 981 Moreno, E. D.: Kofuji, S . T.: Um Modelo RPDE para Brrsca
Antecipada de Dados num Mrrltiprocessador Bauado em wn
Simples Ntí SMP X SBAC-PAD. Anais. Búzios, RJ, 28-30 Sep.
1998.

[NEM 98) Ncmirovsky, M., Yarnamoto, W. : Quantitative Strrdy on Data
Coches on a Mrrltistreamed Arclritectrrre Proccedings of the
MTEAC'98 (In conjunction with HPCA-4), Las Vegas. Nevada.
February. 1998.

[PAT 90] Patterson. D. A.: Hennessy. J. L.: Computer Architecture: A
Quamirative Approach Morgan Kaufmann Publishcrs. 1990.

[PAR 91 I Park, W.; et ai: Performance Advcmtages of Multitlrreaded Pro
cessors Proceedings of the lntemational Conferencc on Parallel
Processing, 1991.

[PET 62) Pctri, C. A.: Kommunilwtion mil Automaten Ph.D. Thesis, Uni
versity ofBonn, Germany, 1962.

[RIN 98] Rinker. R.E, Tarnma, R., Najjar, W.: Evaluation of
Caclre Assisted Multithreaded Architecture Procecdings of the
MTEAC'98 (In conjunction with HPCA-4), Las Vegas. Nevada..
February, 1998.

[ROB 94) Robertazzi, T. Computer Networks and Systems: Queuing Tlre
ory and Performance Evaluation Springer-Verlag, 1994.

[SIG 96) Sigmund, U.; Ungerer, T.: /demifying Boulenecks in a Multi
tlrreaded Superscalar Microprocessor Procecdings of the EU
ROPAR '96, Lyon, August, 1996.

66 SBAC-PAD '99 11th Symposium on Computer Architecture and High Performance Computing - Natal - Brazil

[SAA 90] Saavedra-Barrera, R. H.; Culler, D. E.; von Eicken, T.: Analysis
of Multithreaded Architectures for Para/lei Computing 2nd An
nual ACM Symposium on Para.! lei Algorithms and Architecture;
Cn:tc. Grcece; July, 1990, pp. 169-178.

[SAG 99] Sagula, R. L.; Diverio, T.; Navaux, P. O. A.: Modelagem
AnaliÍica: Formalümos e Ferramentas. Trabalho Individual
789. PPGCIUFRGS. 1999.

[SAG 99a] Sagula. R. L.; Gonçalves, R. A. L.; Diverio, T. A.; Navaux, P.
O. A.: A Uti/izaç tw de Modelagem AnaliÍica 110 Projeto de Ar
quitetura de Proce.uadoru. CLEUPANEL'99. Assunción, PY.
Sept/1999.

[SAH 96) Sahner, Robin A.; Trivcdi, Kishor S.: Puliafito, A.: Performance
and Reliability Analy.fi.t of Computer Systems: An Example
Baud Approach Using the SHARPE Software Package Kluwer
Acadcmic Publishers, 1996.

[SHA 97) Shanley, T.: Pemium Pro and Pentium 11 System Architecture.
Addison-Wcs1ey. 1997.

[SI L 92) Silva, E.; Muntz, R.: Métodos Computacionais de Solução de
Cadeias de Markov: Aplicações a Sistemas de Computação e
Comunicação VIII Escola de Computação, Gramado-RS. 1992.

[TAT 99] Serra, T.; Bampi, S.: Mecanismos de Pré-Busca em Máquinas
R/SCTrabalho Individual 829, PPGCIUFRGS. 1999.

[THE 94] Thekkath, R.; Eggers, S.J.: The Effectivene.u of Multiple Hard
ware Contexts Proceedings. Sixth lntemational Conference on
Architectural Support for Programming Languages and Operat
ing Systems pages 328-337. Octobcr, 1994.

[TSA 96) Tsai. J .. Y. & Yew; P.-C.: The Superthreaded Architecture:
Thread Pipelining with Run-7ime Data Dependence Checking
and Control Speculation Proceedings of the Conference on Par
aliei Architccturcs and Compilation Techniques • PACT96, Oc
tobcr. 1996.

[TUL 95) Tullsen, D. M. et ai: Simultaneous Multithreading: Maximil·
ing On-Chip Paralleli.fm Proceedings of the ISCA'95, Sant3
Margherita Ligure, haly, Computer Architccture Ncws, n.2,
v.23. 1995.

[TUL 96) Tullsen. D.M. et ai: Exp/oiting Clzoiet: /nstruction Fetch and
lssue on an lmplememable Simultaneous Multitlzreading Pru
ce.fsor Proceedings of the 23rd ISCA. Philadelphia, PA. May,
1996.

[WAL 98) Wall:~ce. S.: Calder. B.: Tullsen. D. M.: Threaded Multiple Path
E.xecution Proceedings of the 25th lntemational Symposium on
Cornputer Architecturc. Junc, 1998.

[YAM 94) Yarnasnoto. W.: Serrano, M.; Talcott, A.; Wood. R.; Nc
rnirovsky, M. : Performance Estimation of Multistreamed, Su
persca/ar Prucessors Proceedings of the Hawaii lntemational
Confercnce on Systems Sciences, January. 1994.

