
SBAC-PAD '99 11th Symposium on Compute r Architecture and High Performance Computing - Natal - Brazil 77

A parallelization technique applied to the
computation of rotating flows in cavities

Rudnei Dias da Cunha", Álvaro Luiz de Bortolit

Postgraduate Progrnrrune on Applied Mathematics
lnstitute of Mathernatics

Federal University of Rio Grande do Sul
Av. Bento Gonçalves 9500- Agronomia - Prédio 43111 -A

91501-970 Porto Alegre· RS · BRAZIL

Abstract-
Jn this paper, we investigate the parallel solution to the rotating in

ternai ftow problems, using the Navier-Stokes equations as proposed in
[ST83] and [SPE85]. A Runge~Kutta time-stepping scheme was applied
to the equations and both sequential and message-passing implemen
tations were developed, the latter using MPI , and were tested on an
SGI Origin200 distributed, global shared memory parallel computer.
The results show that our approach to parallelize the sequential imple
mentation requires little effort whilst providing good results even for
medium-sized problerns, on this particular computer.

K~yword.<- Parallel computing; Message-passing; Computational
Fluid Dynamics.

I. lNTRODUCTION

Speziale and Thangam [ST83], and Speziale [SPE85] have
developed a formulation for the problem of rotating inter
nai ftows, i. e. detennining the behaviour o f "pressure-driven
laminar ftows in straight ducts, subjected to a steady span
wise rotation" (see [SPE85]). The goveming equations are
the Navier-Stokes equations and the continuity equation in a
rota ting framework, which can be written as follows

âiJ - -n- I -np -n2 - 2r. -- + 1i • V li = --V + 11 V 1J - .l>L X V
{)t p

Y'·v= O

(I)

(2)

where v is the velocity vector, P is the modified pressure
which includes both the gravitational and centrifugai force
potentia ls, n is the steady spanwise rotation, p is the density
o f the ftuid and 11 is the kinematic viscosity o f the fluid . The
axial pressure gradient âP I âz = -G is constant.

For a nonzero rotation rate, the velocity vector is of the

fonn v= u(x , y)i + u(.r., y)J + w(x, y)k, w being the axial
velocity and u and v representing the secondary flow. As the
rota tion is around J. it is o f the fonn Q = Q]; since the flow
properties are independent of z, equations (1) and (2) may be
written in component fonn as

âu âu âu I âP 2 - +u- +v- = ---+ 11\1 u - 2Qw (3)
ât âx ây p âx

"rudnei@mat.ufrgs.br
1dbortoli@mat.ufrgs.br

âv Dv âv I {) P
- + 1L- + u- = --- + 11V

2
11 (4)

ât âx ây p {)y

âw âw âw G - + u- +v- = - + 11\12w + illu {5)
{)t âx Dy p

Du + âv = 0 (6)
âx ây

Due to the simple fonn (6) of the continuity equation, it
follows that a secondary flow stream function tf; exists such
that the velocity components are

âú
1L = - - · '

ây
(7)

The function 1/; is the solution to the Poisson equation v2tf; =
âv I âx - Dtt I Dy = Ç, where Ç is the axial component o f the
velocity vector and is expressed by

D(âÇ DÇ 2 âw - + 1L- + V- = li V (+ 2Q- (8)
ât âx {)y ây

Introducing the veloci ty and length scales Wo and D, the
equations to be solved numerically are written as follows:

Ow Dw Dw I 2 - + u - + ·u- =C+ -\lw + 2Rou {9)
Dt âx ây Re

âÇ + u âÇ +v âÇ = __!__ v2r + 2Ro âw (10)
ât âx ây Re '> ây

\121/; = ç {li)

âú âti;
u = --· , v=-· (12)

â y âx

where Re and Ro are the Reynolds and rotation numbers,
C is the dimensionless pressure gradient, and the following
re lationships hold:

Re = WoDI11, Ro = QDIWo, C= G D /pWJ. (13)

The initial condition for w, i.e. a non-rotating flow, satisfies
the equation

(14)

78 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing - Natal- Braz.il

The reader is referred to [SPE85) for more details.
The set of equations (9)-(12) are to be computed numeri

cally and a rectangu1ar grid of M x N points, }J > N are
placed over a duct with length D and height H (H > D),
with spacings hz = D/(M + 1) and hy = Hf(N + 1);
therefore we may refer to the variables of interest in those
equations for an specific time-step t as discrete points on
the grid with indices i,j along the vertical and horizontal
directions respectively.

Boundary conditions are lt = O, 1; = O, w = O and 1/1 = O
on the walls o f the duct; also, by taking a Taylor's expansion
o f (11), boundary conditions on the axial vorticity at time-step
t are obtained and written as

8•i•l - , j ,L
t '>"i,M+l '>"i.!H

(i .M+l = 2h2
2!

(15)

8t!.· ' . - !f;'.
Ç

t - . l.) 2.]
O,j- 2h2

!/

In this work, we have used a modified explicit Runge-Kutta
time-stepping integration scheme, approximating time and
spatial derivatives by forward and central finite-differences
respectively. Other authors (see [PAF+97). [SOS97),
[KT97)) have used different approaches for ftuid dynam
ics simulations, mainly finite-element discretizations and im
plicit time-stepping integration schemes, and the paralleliza
tion is expressed via domain-decomposition.

li. DESCRIPTION OF THE EXPLICIT METHOD

The computation is divided in two maio parts. Initially, we
solve Equation (14) for w with an iterative method, writing
the Laplacian in central finite-differences and obtaining the
value o f w at the (i , j) cell from

(17)

where 6 = (2h; + 2h;)- 1, i = 1, 2, .. . , N , j =
1, 2, . . . , J.f, k = O, I , k,wz• and we proceed with the
iterations until

(18)

where f, is sufficiently small.
The second partis the solution of equations (9)-(12) which

is made using a modified explicit Runge-Kutta time-stepping
scheme [JST81), [DIC96), [BOR94). We proceed from time
step t to t + I as follows:

.O _ .L rO _ rt O _ L .0 _ L
1L' i.j - tl' i ,j• '> i, j - '>i .j • U; ,j - Ui ,j> l ' i .j - V; ,j (19)

k o h (c I n2 k-l 2R k-l
1Li · • = 1L' · · + O:k t + - v 1Li • • + OU · · -'-1 I,J Re I ,J I,J

k-1 vwi.j k-1 vwi ,j (20)
~ k- l ~ k-l)

U· · --- V· ·--
1'1 ôx 111 ây

(

!) .k
k· o 1 2 k-1 V 11' i.j r .. = r .. + O:k ht -v(·. + 2Ro---

'>I.J '>I.J Re I.J EJy

11~-:1....20___ _ v~-:1~
f)rk- 1 f)rk-1)

" 1 D:r. I.] Dy
(21)

(22)

âv~ . k . 1 .)
U · · =---

1.) ôy ,

~ ;.k
k VV.i; ,j li· .= --
I .} ÔX (23)

t+l 1\ rL+l rK t+ l 1\ .t+l .K (24)
wi.j = wi ,j • '>i,j = '>i .j• 1t i.j = ui.j • 1' i.j = vi ,j

where h1 is the time-step length, k = I , 2, ... , [((K
is the order of the Runge-Kutta scheme) and aCK> =
{ n:d f= 1 is the set o f weights for the integration, with
1)(3) = { 1/2, 1/2, 1 }, 1)(4) = { 1/4, 1/3, 1/2, I} and ll'(S) =
{1/4, 1/6, 3/8,1/2, I} (see [DIC96)). Ali derivatives ap
pearing in equations (20)-(23) are replaced by central finite
differences.

To stabilize the computation, the time-step h1 is chosen
such that at each iteration it satisfies the condition

Now the iterations in t proceed until

ll6(w)lloo + ll6(() lloo + 116(1/J) II oo +
ll6(u)l loo + ll6(v)lloo < f (26)

where 6(!) denotes f'+ 1
- /

1 and f is sufficiently small.
In case this tolerance has not been achieved, the boundary
conditions on the axial vorticity (are updated, using (15) and
(16), and another iteration is performed. The algorithm used
is outlined below:

Algorithm 11.1: Rotating ftow algorithm
1. initialize constants, boundary conditions, etc.

fork = 1, 2, ... ,kmax
2. compute (17)
3. Ü li wk+ l - wk lloo < Ew

then break;
endfor
fort =O, 1, ... , tmax

fork = 1, 2, . . . ,K
4. compute (20)-(23)

endfor
5. Ü ll6(w)lloo + ll6{()lloo + 116(1/;) lloo+

IIA(u)lloo + IIA(v)lloo < f

SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Braz.il 79

then break;
6. update boundary conditions on (using

equations (15)-(16)
7. correct ht using equation (25)

endfor
8. output the results.

III. PARALLELIZATION OF THE METHOD

The parallelization of an explicit method such as that de
scribed in the previous section requires a careful analysis of
the equations in use in order to ascertain the relationships
between the variables involved, since this will determine the
ftow of data in the code and between the many processors
collaborating in the parallel computation.

The parallel algorithm developed is based on the single
program, multiple-data, SPMD paradigm and we consider
that the number of processors available, p, is Iess than the
number of computational cells (M x N). No assumption is
made with regard to as how the processors are interconnected,
though both point-to-point communication and reduction op
erators are supposed to be available.

To partition the grid among the processors, we consider
that since the doma in is regular, the only major requirement to
attend is that we must partition it across the largest dimension,
thereby increasing the computation-communication ratio and
leading to a potential good parallel performance. In our case,
we divide the domain across]\1[(as i\1 > N), obtaining
m = 1\1/ p panels o f N cells, and assign to each one o f p
processors m x N contiguous cells; if ;.\1 is not an integer
multiple of p, then one extra row of N cells is assigned
to some r processors, where r is the modulus of 1\1jp (i .e.
these processors will store panels o f size (m + I) x N).
This partitioning leads to a logical interconnection of the
processors as i f they were on a linear array (a topology which
can be easily embedded on other physical interconnections
available in parallel computers, like hybercubes, 2D/3D grids
and others).

While other strategies could be followed to achieve load
balance between the processors, this one makes the commu
nication pattem regular, as each processar has to exchange at
most two rows of N cells with its two neighbours (ora single
row i f it is at one o f the ends o f the linear array).

lt should be stressed that though the partitioning by panels
is very simple, it can be used on a variety o f other problems,
including those involvirig complex geometries, i f the problem
is recast using generalized coordinates and type C- and 0-
grids (see [FLE91 , V.2,Ch.l2) and [FP96]).

Analysing the flow of data between equations (20)-(23),
we note that there is a feedback mechanism in the overall
Runge-Kutta scheme, as once a variable in the k-th step is
produced, it is used in the computation of the next variab1e in
sequence. This mechanism imp1ies the need o f data exchange

between the processors inside the Runge-Kutta scheme, in
order to compute the finite-differences approximations to the
derivatives.

Thus, once every processar has computed wk in their as
signed portion of cells using (20), they swap their left- and
right-most columns o f cells o f wk (say, w :.l and w:,rr•, where
the colon indicates a whole column) and also of çk- l with
their left and right neighbours (this is done in a single message
o f length 2N instead o f two messages o f Iength N to reduce
the effect o f message-passing Iatencies in the performance o f
the algorithm). Every processar is then able to compute çk
in their cells; afterwards, they exchange çk in the same way
in order to solve Poisson 's equation for 1/-•k and once this is
completed, '1/,·k is exchanged in order to compute the veloci
ties uk and vk . Therefore in every step o f the Runge-Kutta
scheme there are three data-exchanges between neighbouring
processors.

Also, note that the initial condition for w is the solution of
Equation (14); as it is solved in the forrn (17), the computation
can be organized such that one data exchange is suppressed,
since for the first iterations (i.e. for k = O at t = 0), a
processar will have already received columns w :.m and w : .l

from its left and right neighbouring processors, which has
been done in the last iteration prior to convergence using
(17).

The boundary conditions on u, v, w, '1/J and (can be com
puted without any communication due to their simple form.
For the update of the boundary conditions on (- equations
(15) and (16) - we use the same approach as explained in the
previous paragraph, since every processor will have stored
ç~;,,• and (t.t 1 o f its left and right neighbours, from the last
Runge-Kutta iteration.

The whole algorithm is organized by dividing the compu
tation of equations (20)-(23) into two parts: one that refers to
data stored locally in a single processar, and another which
depends on the local availability of data stored in its neigh
bouring processors. If now we make use of asynchronous
point-to-point communications (as present in MPI [MPI]),
then we can compute any one o f the variables involved using
the following algorithm:

Algorithm lll. I : Parallel computation o f a variable f
I . asynchronously send variable f to its left and
right neighbours

2. compute variable f with its local data, i.e.
from columns 2 to m - 1

3. request the m-th column of f from processar
p - I (left) and store locally into column O of f

4. request the 1-st column of f from processar
p + 1 (right) and store Iocally into column
m + 1 of f

5. compute columns 1 and m o f variable f

It is then possib1e to almost complete1y hide the time

80 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

spent communicating between two processors, provided lhe
amount of time spent in step 2 of the above algorithm is
greater than lhe time needed for lhe two point-to-point com
munications between a processar and its two neighbours. A
sufficiently large grid will allow lhis to happen; in our specific
case, we are interested when the ratio J\tf f N is large, since that
will maximize the amount of local computation for a given
p while keeping small (relative to lhe local computation) the
communication time. This approach has been successfully
applied in other parallel applications (see [CH93], [CH94],
[CH95] and [CUN97]).

However, there are two penalties brought about by the
para\lel computation of equations (20)-(23):

1. The amount o f time needed to set-up the asynchronous
sends and the retrieval of data from the local communi
cations buffer into the appropriate memory locations of
the user's program;

2. The computation of reductions, needed to obtain the
norrns used in the stopping cri teria o f the iterations.

We can not hide these times within the local computation
time and therefore they are the main causes for being unable
to achieve the optimal speed-up; but we may expect that by
dividing the storage o f the variables among p processors, the
use of processors with cache memories will provide some
interesting phenomenon for large size problems and small
number o f processors.

The parallel algorithm can now be described as follows.
Each processar stores its m columns o f N cells, for each vari
able (w, (,'!,(:, u and v) in arrays of size O: (N+l) , O: (m+ 1),

where the two extra rows and columns serve to hold the
boundary conditions values. Due to the simple forro of some
of the boundary conditions specified, one could argue that
it is not needed to store them; however this would lead to a
specific piece o f code be written to compute the equations in
lhe cells where the boundary conditions are involved.

We wrote the code to compute each o f the equations (20)
(23) as a pai r o f loops scanning the columns and rows o f the
array holding the variable values atthe cells. As an exaro
pie, we will show how a sequential code to compute l,i;fi in
Equation (20) was transforrned in to a parallel code according
to Algorithm Ill.l. The sequential code is as follows

+
+

DO J = 1 , M
DO I = 1,N

DXPSI = PSI(I,J-1) + PSI(I,J+1)
DYPSI = PSI(I-1,J) + PSI(I+1,J)
PSINEW(I,J) APSI*ZETANEW(I,J) +

END DO
END DO

BPSI* DXPSI +
CPSI*DYPSI

where APSI, BPSI and CPSI are constants involving hr
and hy. derived from the central finite-differences equations.
Its equivalent parallel version, using MPI , is

* 1. Asynchronously send PSI to its left and

right neighbours
CALL SNDRCV(MYID,P,PSI,NPl ,MP1,9 00, 1000,

+ IDSND,IDRCV)

* 2. Compute PSI with its local data
DO J = 2,MYM-l

+
+

DO I = 1,N
DXPSI = PSI(I,J-1) + PSI(I,J+1)
DYPSI = PSI(I -1, J) + PSI(I+1,J)
PSINEW(I,J) = APSI*ZETANEW(I, J) +

END DO
END DO

BPSPDXPSI +
CPSPDYPSI

* 3-4. Request columns from neighbouring
processors

CALL GETDATA(MYID,NPROCS,IDSND,IDRCV)

* S. Compute co1umns 1 and m of PSI
DO J = 1,MYM,MYM-1

+
+

DO I = l.N
DXPSI = PSI(I,J-1) + PSI(I, J+l)
DYPSI = PSI(I-l,J) + PSI(I+1,J)
PSINEW(I , J) = APSI*ZETANEW(I ,J) +

END DO
END DO

BPSI*DXPSI +
CPSI*DYPSI

where MYM is m and SNDRCV and GETDATA are sub
routines which call the MPI routines MPLISEND and
MPLIRECV, and MPLWAIT respectively. Note that by us
ing the MPLISEND and MPLIRECV routines we have an
asynchronous parallel implementation which maximizes the
use of the processors. A fully asynchronous implementation,
on the other hand, is not possible, for the underlying numer
ical method can not cope with the nonlinear instabilities that
may be generated by that kind of implementation .

With this approach, once a sequential version of the code
has been tested and certified to be producing lhe desired re
sults, it is easy to obtain its parallel version, since the second
pair of DO loops is the same as the first, apart from the ín
dices on J. It is less error-prone, since the loop body remains
unchanged; in fact, i f the first pair is encapsulated in a subrou
tine, having the índices on J as parameters, i f a modification
in the body o f the loops was required, then just a single part
o f the code would need auention. As for the performance o f
such code, i fone uses a compiler which is capable o f inlining
a subroutine, then it will not be affected by this approach.

Another possible way of writing the parallel code (which
we have also done) would be to provide lhree different parts
to handle lhe computation, depending on the position o f each
processar: the first, the last, and those in lhe middle of lhe
linear array. It is easy to see that this would increase three
fold the size of the code, and make it even more difficult to
maintain; one could make use of subroutines which would
certainly make the code more readable but, for an efficient
program execution, lhe subroutines should be inlined, thereby
increasing lhe object code size accordingly. As an example,

SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 81

with lhe first approach, lhe ratio of source code sizes of the
parallel to the sequential versions is 1.46 : 1, whereas for this
latter approach it was 3.28 : 1.

The other modification required in the sequential code to
produce the parallel version is in the computation of the
norms. This requires a reduction operation over severa! val
ues (i.e. the partia! norms) stored in the processors. Due to
the SPMD programming model used, the reduced value (i.e.
the oo-norm of a variable) is required to be present in every
processor. Therefore, a reduction, followed by a broadcast
of the reduced value to ali processors is employed, this be
ing implemented by the MPI routine MPI...ALLREDUCE. lt
is a costly operation; note that the reduction and broadcast
require sending/receiving severa! messages between the co
operating processors (with the associated latencies to set-up
the message transfers), albeit some of those may be done in
parallel.

As such, we look at Algorithm 11.1 and notice that norms
are required in steps 3, 5 and 7. Now we ask ourselves: can
we combine the reductions in the last two steps into a single
one, therefore reducing the latencies? If we consider that
the computational cost of a reduction of r values followed
by a broadcast is 2llog2 p J(() + r m, where (): and /~ are lhe
latency and the transfer rate between two processors (directly
related to each other), then it is easy to see that i f we combine
the five reductions needed in step 5 with the two reductions
in step 7, we will be saving one latency per reduction. For
the overall computation, we will have

and lhe savings will be greater for large p, as we shall see in
§IV-C.

With the above reasoning, if the sequential code corre
sponding to the computation o f steps 5 and 7 is written as

• 5. Compute norms
DO I = 1,5

NORMS(I) = 0.0

+

+

+

+

+

END DO
DO J = l,M

DO I = l,N
NORMS(l)

NORMS(2)

NORM$(3)

NORMS(4)

NORMS(5)

END DO
END DO

MAX(NORMS(l),ABS(W(I,J)
WNEW(I,J)))

MAX(NORMS(2),ABS(ZETA(I,Jl
ZETANEW(I,J)))

MAX(NORMS(J),ABS(PSI(I,J)
PSINEW(I,Jl))

MAX(NORMS(4),ABS(U(I,J)
UNEW(I,Jl l l

MAX(NORMS(5),ABS(V(I,J)
VNEW(I,Jl l)

NORM = NORMS(l) + NORMS(2) + NORMS(3) +
+ NORMS(4) + NORMS(5)

• 6. Update boundary conditions on ZETA

* 7. Time-step stabilization test
NORMS(l) = 0 .0
NORMS(2) = 0.0
DO J = l,M

DO I = l,N
NORMS(l) MAX(NORMS(l),ABS(UNEW(I,J)))
NORMS(2) MAX(NORMS(2),ABS(VNEW(I,J)))

END DO
END DO
MAXHT = 2.0*NU*(INVHXSQ+INVHYSQ) +

+ INVHX*NORMS(l) + INVHY*NORMS(2)
HT = MIN(HT , l .O/MAXHT)

then an equivalenl parallel code, including the computation
o f the 11 u lloo, 11 v lloo needed in step 7, is

• 5. Compute norms

+

+

+

+

+

DO I= 1,7
NORMS(I) =

END DO
DO J = l,MYM

DO I = l,N
NORMS(l)

NORMS(2)

NORMS(3)

NORMS(4)

NORMS(5)

NORMS(6)
NORMS(7)

END DO
END DO

0.0

MAX(NORMS(l) , ABS(W(I,J)
WNEW(I,J)))

MAX(NORMS(2),ABS(ZETA(I,J)
ZETANEW(I,J)))

MAX(NORMS(3) ,ABS(PSI(I,J)
PSINEW(I,J)))

MAX(NORMS(4) ,ABS(U(I,J)
UNEW(I,J)))

MAX(NORMS(5),ABS(V(I,J)-
VNEW (I , J)))

MAX(NORMS(6) ,ABS(UNEW(I,J)))
MAX(NORMS(7) ,ABS(VNEW(I,J)))

CALL MPI_ALLREDUCE(NORMS,REDUOUT ,7, MPI_REAL ,
+ MPI_MAX,MPI_COMM_WORLD,IERR)

NORM = REDUOUT(l) + REDUOUT(2) + REDUOUT(J) +

+ REDUOUT (4) + REDUOUT(5)

• 6. Update boundary conditions on ZETA

* 7. Time- step stabilization test
MAXHT = 2.0*NU*(INVHXSQ+INVHYSQ) +

+ INVHX*REDUOUT(6) + INVHY*REDUOUT(7)
HT = MIN(HT,l. O/MAXHT)

where REDUOUT is the buffer holding the reduced NORMS

values and which is present in ali processors after the call to
MPLALLREDUCE.

A. Output of the results

At the end o f the overall computation, we save the values o f
the variables involved in files for !ater analysis. We consider
that each processor has parallel access to lhe disk filesystem
and each processor is thus able to open its own file, ali p files
being written as simultaneously as possible. In our experi
ments, even for the Iarge problems, this proved to be efficient
and accounted for less then I% o f the run-time. An in-house

82 SBAC-PAD '99 J/th Symposium on Computer Architecture and High Performance Computing - Natal- Brazil

Fig. l. Typical results for a 64 x 32 mesh, Re = 279. From left to right: the
contour streamlines for the complete domain and the contours generated
by each processor.

dcveloped visualization program (see [JUS98]) is later used,
which opens the severa) files in sequence and exhibits the
data in a variety of forros (eg. colour maps, particle traces
and vector fields).

IV. EXPERIMENTS

A number of experiments were carried out on Silicon
Graphics Origin200 distributed, global access memory par
aliei computer located at the Brazilian National Supercom
puting Centre. Our software is a FORTRAN 77 code which
implements Algorithm 11.1 with the parallelization expressed
as in A1gorithm III.I . AIJ computations were carried out in
single-precision (32 bits) and with the computer in dedicated
mode.

The parallel computer used is a four-processor machine
in a twin-tower configuration, each tower equipped with two
MIPS R I 0000, 180MHz processors with I MB c ache mem

ory each, and interconnected via a CrayLink ™ cable. It
has an aggregate RAM memory size of 256MBytes. The
machine is a "scalable, shared-memory processar (S2MP)"
and it has a hierarchical memory, with increasing memory
access time for data requested from farther processors. It is
interconnected like a hypercube, with the use of CrayLink
cables and routers. For an Origin computer with 16 and 32

processors, XpressLink ™ interconnects are added to the in
terconnection network, making use of the spare ports on the
routers, minimizing latency and increasing the bandwidth.
Nonetheless, the fact remains that this machine does not have
a constant latency and transfer rate between any pair of pro
cessors.

A. Typical results

With regards to the ftow problem itself, typical results that
were obtained are shown in Figure 1, which shows the stream
lines for rf;. In that experiment, taken from [SPE85, p. 272],
R e = 279, Ro = 0.833, n = O. I rad/ s, G = 6 X w-4 /bf ft3

and ht = w-4 (throughout the iterations). The tolerance for
convergence for the initial condition on w was w-5 and it
was achieved in 2, 595 iterations, taking 0.0008s on two pro-
cessors. Convergence of the solution of the Navier-Stokes
equations using the three-term Runge-Kutta scheme (I{= 3)
for a tolerance o f w-4, took 406.9987 s after 202,255 itera-
tions. The figures show a similar appearance to that presented
in [SPE85, p. 272].

B. Scalability

TABLEI
RUN TIME (IN SECONDS PER ITERATION} ANO SPEED·UPS ON THE SGI

0RIGIN200.

Ji[X N p=1 p=2 p=3 p=4
16 X 16 0.0019 0.0018 0.0022 0.0024

1.0649 0.8836 0.7982
32 X J6 0.0031 0.0026 0.0026 0.0025

1.1795 1.1997 1.2 103
64 X 16 0.0058 0.0038 0.0034 0.0031

1.5190 1.7272 1.9086
128 X 16 0.0116 0.0068 0.0053 0.0045

1.7152 2.1810 2.5667
256 X 16 0.0224 0.0127 0.0094 0.0081

1.7643 2.3875 2.7770
32 X 32 0.0058 0.0039 0.0035 0.0033

1.4865 1.6426 I. 7815
64 X 32 0.0116 0.0068 0.0053 0.0047

1.7114 2.1770 2.4609
128 X 32 0.0226 0.0124 0.0093 0.0079

1.8245 2.4448 2.8567
256 X 32 0.0441 0.0236 0.0166 0.0133

1.8704 2.6489 3.3 11 7
512 X 32 0.0889 0.0466 0.0321 0.0265

1.9090 2.7719 3.3486
64 X 64 0.0224 0.0123 0.0092 0.0088

1.8199 2.4278 2.54 15
128 X 64 0.0442 0.0235 0.0168 0.0132

1.8844 2.6384 3.3605
256 X 64 0.0863 0.0458 0.0317 0.0246

1.8836 2.7232 3.504 1
512 X 64 0.1806 0.0900 0.0624 0.0469

2.0055 2.8940 3.8479
1024 X 64 42.5168 21.7635 14.4899 10.8587

1.9536 2.9342 3.9 155

The experimental results given in tables I and 11 shows
the run-time (in seconds/iteration) for severa! mesh sizes.
It can be seen that as the mesh sizes increase, the scalability
increases as well. Also noticeable is that in two cases (I 024 x
64 and 1024 x 128) a substantial increase of the run-time
occurs. Using the SGI per f ex performance analyser, which

SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 83

TABLE 11

RUN TIME (IN SECONOS PER ITERATION) ANO SPEEO·UPS ON THE SGI

ÜRIGIN200 (CONTINUEO).

MxN p=l p=2 p=3 p=4
!28 X !28 0.0869 0.0457 0.0317 0.0245

X

0 . 9 2 0 0

0.1615 0 4 6 8 6 9

0 9 5 8 6 9

X

!28

X X X
X X X X X X X X X

84 SBAC-PAD '99 11th Symposium on Compu ter Architecture and High Performance Computing - Natal - Brazi/

ACKNOWLEDGEMENTS

The authors wish to thank Mr. E. Meneghetti (Brazilian
National Supercomputing Centre) for his invaluable support
and FAPERGS (Research Support Agency o f the State o f Rio
Grande do Sul) for partia! financiai support.

The authors also wish to thank the referees for their com
ments which have helped to improve this paper.

The experiments in this work were carried out at the Na
tional Supercomputing Centre of the Federal University of
Rio Grande do Sul.

[CUN97)

[BOR94]

[CH93)

(CH94)

(CH95)

[DIC96)

[FLE9 1)

[MPI]

(FP96)

(JST81)

(JUS98)

(KT97)

(PAF+97)

[SOS97)

[SPE85)

(ST83]

REFERENCES

R.D. da Cunha. A benchmark study based on the parallel com
putation of the vector outer-product " = ,,,-r operation. Con
curr~ncy: Practia & Exptri~na, 9(8):803- 819, August 1997.
A.L. de Bonoli. Solution of incompressible tlows using a com
pressible flow solver. 129-94/18, DLR-IB, 1994.
R.D. da Cunha and T.R. Hopkins. Parallel preconditioned
Conjugate-Gradients methods on transputer networks. Trans
putu Communications, 1(2):111- 125, 1993. Also as TR-5-93,
Computing Laboratory, University of Kent at Canterbury, U.K.
R.D. da Cunha and T.R. Hopkins. A parallel implementation
o f the restaned GMRES iterative method for nonsymmetric sys
tems of linear equations. Advances in Computationa/ Math~
matics, 2(3):261-277, April 1994. Also as TR· 7-93, Computing
L:lboratory, University of Kent at Canterbury.
R.D. da Cunha and T.R. Hopkins. The Parallellterative Methods
(PIM) package for the solution of systems of linear equations
on parallel computers. Appli~d Numuical Muthematics, 19(1-
2):33- 50, November 1995.
E . Dick. lntroduction to Finiu Volume Tuhniques in Com
putational Fluid Dynamics, pages 270-297. J.F. Wendt (Ed.),
Computational Fluid Dynanúcs - An lntroduction (2nd Ed.).
Springer-Verlag, Berlin, 1996.
C.A.J. Fletcher. Compurational T~clmiqu~sfor Fluid Dynamics.
Spring-Verlag, Berlin, 2nd edition, 199 1.
Message Passing Interface Forum. MPI: A rnessage-passing
interface standard. TR CS-93-214, University of Tennessee,
November 1993.
J.H. Ferziger and M. Peri~. Compututional M~thods for Fluid
Dynamics. Springer-Verlag, Berlin, 1996.
A. Jameson, W. Schmidt, and E . Turkel. Nurnerical solution of
the Euler equations by fi nite volume methods using R unge- Kutta
time-stepping schemes. AIAA Paper 81-1259. 1981.
D.A.R. Justo. Visual. Manual do usuário, Laboratório Integrado
de Computação Científica. Instituto de Matemática. Universi
dade Federal do Rio Grande do S ul, 1998.
V. Kalro and T. Tezduyar. Parallel 3D computation of unsteady
tlows around circular cylinders. Parai/~/ Computing, 23:1235-
1248, 1997.
L. Paglieri, D. Ambrosi, L. Formaggia, A. Quaneroni, and A.L.
Scheinine. Parallel computation for shallow water tlow: a do
maio decomposition approach. Parai/~/ Computing. 23:126 1-
1277. 1997.
N. Satofuka, M. Obata, and T. Suzuki. Parallel computation of
super-lhypersonic flows on workstation network and Transputer
arrays. Paralld Computing, 23: 1293-1305, 1997.
C.G. Speziale. Numerical so1ution of rotating internai flows.
úctures in Appli~d Mathematics, 22:261-288, 1985.
C.G. Speziale and S. Thangarn. Numerical study of secondasy
tlows and roll-cell instabilities in rotating channel flow. Journal
of Fluid M~chanic.f, 130:377-395, 1983.

