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Abstract-
Jn this paper, we investigate the parallel solution to the rotating in

ternai ftow problems, using the Navier-Stokes equations as proposed in 
[ST83] and [SPE85]. A Runge~Kutta time-stepping scheme was applied 
to the equations and both sequential and message-passing implemen
tations were developed, the latter using MPI , and were tested on an 
SGI Origin200 distributed, global shared memory parallel computer. 
The results show that our approach to parallelize the sequential imple
mentation requires little effort whilst providing good results even for 
medium-sized problerns, on this particular computer. 

K~yword.<- Parallel computing; Message-passing; Computational 
Fluid Dynamics. 

I. lNTRODUCTION 

Speziale and Thangam [ST83], and Speziale [SPE85] have 
developed a formulation for the problem of rotating inter
nai ftows, i. e. detennining the behaviour o f "pressure-driven 
laminar ftows in straight ducts, subjected to a steady span
wise rotation" (see [SPE85]). The goveming equations are 
the Navier-Stokes equations and the continuity equation in a 
rota ting framework, which can be written as follows 

âiJ - -n- I -np -n2 - 2r. -- + 1i • V li = --V + 11 V 1J - .l>L X V 
{)t p 

Y'·v= O 

( I ) 

(2) 

where v is the velocity vector, P is the modified pressure 
which includes both the gravitational and centrifugai force 
potentia ls, n is the steady spanwise rotation, p is the density 
o f the ftuid and 11 is the kinematic viscosity o f the fluid . The 
axial pressure gradient âP I âz = -G is constant. 

For a nonzero rotation rate, the velocity vector is of the 

fonn v= u(x , y)i + u(.r., y)J + w(x, y)k, w being the axial 
velocity and u and v representing the secondary flow. As the 
rota tion is around J. it is o f the fonn Q = Q]; since the flow 
properties are independent of z, equations (1 ) and (2) may be 
written in component fonn as 

âu âu âu I âP 2 - +u- +v- = ---+ 11\1 u - 2Qw (3) 
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âw âw âw G - + u- +v- = - + 11\12w + illu {5) 
{)t âx Dy p 

Du + âv = 0 (6) 
âx ây 

Due to the simple fonn (6) of the continuity equation, it 
follows that a secondary flow stream function tf; exists such 
that the velocity components are 

âú 
1L = - - · ' 

ây 
(7) 

The function 1/; is the solution to the Poisson equation v2tf; = 
âv I âx - Dtt I Dy = Ç, where Ç is the axial component o f the 
velocity vector and is expressed by 

D( âÇ DÇ 2 âw - + 1L- + V- = li V ( + 2Q- (8) 
ât âx {)y ây 

Introducing the veloci ty and length scales Wo and D, the 
equations to be solved numerically are written as follows: 

Ow Dw Dw I 2 - + u - + ·u- =C+ -\lw + 2Rou {9) 
Dt âx ây Re 

âÇ + u âÇ +v âÇ = __!__ v2r + 2Ro âw ( 10) 
ât âx ây Re '> ây 

\121/; = ç {li ) 

âú âti; 
u = --· , v=-· (12) 

â y âx 

where Re and Ro are the Reynolds and rotation numbers, 
C is the dimensionless pressure gradient, and the following 
re lationships hold: 

Re = WoDI11, Ro = QDIWo, C= G D /pWJ. (13) 

The initial condition for w, i.e. a non-rotating flow, satisfies 
the equation 

( 14) 
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The reader is referred to [SPE85) for more details. 
The set of equations (9)-(12) are to be computed numeri

cally and a rectangu1ar grid of M x N points, }J > N are 
placed over a duct with length D and height H (H > D ), 
with spacings hz = D/( M + 1) and hy = Hf(N + 1); 
therefore we may refer to the variables of interest in those 
equations for an specific time-step t as discrete points on 
the grid with indices i,j along the vertical and horizontal 
directions respectively. 

Boundary conditions are lt = O, 1; = O, w = O and 1/1 = O 
on the walls o f the duct; also, by taking a Taylor's expansion 
o f ( 11 ), boundary conditions on the axial vorticity at time-step 
t are obtained and written as 

8•i•l - , j ,L 
t '>"i,M+l '>"i.!H 

(i .M+l = 2h2 
2! 

( 15) 
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In this work, we have used a modified explicit Runge-Kutta 
time-stepping integration scheme, approximating time and 
spatial derivatives by forward and central finite-differences 
respectively. Other authors (see [PAF+97). [SOS97), 
[KT97)) have used different approaches for ftuid dynam
ics simulations, mainly finite-element discretizations and im
plicit time-stepping integration schemes, and the paralleliza
tion is expressed via domain-decomposition. 

li. DESCRIPTION OF THE EXPLICIT METHOD 

The computation is divided in two maio parts. Initially, we 
solve Equation ( 14) for w with an iterative method, writing 
the Laplacian in central finite-differences and obtaining the 
value o f w at the (i , j) cell from 

(17) 

where 6 = (2h; + 2h;)- 1, i = 1, 2, .. . , N , j = 
1, 2, . . . , J.f, k = O, I .... , k,wz• and we proceed with the 
iterations until 

( 18) 

where f, is sufficiently small. 
The second partis the solution of equations (9)-(12) which 

is made using a modified explicit Runge-Kutta time-stepping 
scheme [JST81 ), [DIC96), [BOR94). We proceed from time
step t to t + I as follows: 

.O _ .L rO _ rt O _ L .0 _ L 
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where h1 is the time-step length, k = I , 2, ... , [( (K 
is the order of the Runge-Kutta scheme) and aCK> = 
{ n:d f= 1 is the set o f weights for the integration, with 
1)(3) = { 1/2, 1/2, 1 }, 1)(4) = { 1/4, 1/3, 1/2, I} and ll'(S) = 
{1/4, 1/6, 3/8,1/2, I} (see [DIC96)). Ali derivatives ap
pearing in equations (20)-(23) are replaced by central finite
differences. 

To stabilize the computation, the time-step h1 is chosen 
such that at each iteration it satisfies the condition 

Now the iterations in t proceed until 

ll6(w)lloo + ll6(() lloo + 116(1/J) II oo + 
ll6(u)l loo + ll6(v)lloo < f (26) 

where 6(!) denotes f'+ 1 
- /

1 and f is sufficiently small. 
In case this tolerance has not been achieved, the boundary 
conditions on the axial vorticity (are updated, using (15) and 
(16), and another iteration is performed. The algorithm used 
is outlined below: 

Algorithm 11.1: Rotating ftow algorithm 
1. initialize constants, boundary conditions, etc. 

fork = 1, 2, ... ,kmax 
2. compute ( 17) 
3. Ü li wk+ l - wk lloo < Ew 

then break; 
endfor 
fort =O, 1, ... , tmax 

fork = 1, 2, . . . ,K 
4. compute (20)-(23) 

endfor 
5. Ü ll6(w)lloo + ll6{()lloo + 116(1/;) lloo+ 

IIA(u)lloo + IIA(v)lloo < f 
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then break; 
6. update boundary conditions on ( using 

equations (15)-(16) 
7. correct ht using equation (25) 

endfor 
8. output the results. 

III. PARALLELIZATION OF THE METHOD 

The parallelization of an explicit method such as that de
scribed in the previous section requires a careful analysis of 
the equations in use in order to ascertain the relationships 
between the variables involved, since this will determine the 
ftow of data in the code and between the many processors 
collaborating in the parallel computation. 

The parallel algorithm developed is based on the single
program, multiple-data, SPMD paradigm and we consider 
that the number of processors available, p, is Iess than the 
number of computational cells (M x N). No assumption is 
made with regard to as how the processors are interconnected, 
though both point-to-point communication and reduction op
erators are supposed to be available. 

To partition the grid among the processors, we consider 
that since the doma in is regular, the only major requirement to 
attend is that we must partition it across the largest dimension, 
thereby increasing the computation-communication ratio and 
leading to a potential good parallel performance. In our case, 
we divide the domain across ]\1[ (as i\1 > N), obtaining 
m = 1\1/ p panels o f N cells, and assign to each one o f p 
processors m x N contiguous cells; if ;.\1 is not an integer 
multiple of p, then one extra row of N cells is assigned 
to some r processors, where r is the modulus of 1\1jp (i .e. 
these processors will store panels o f size ( m + I) x N). 
This partitioning leads to a logical interconnection of the 
processors as i f they were on a linear array (a topology which 
can be easily embedded on other physical interconnections 
available in parallel computers, like hybercubes, 2D/3D grids 
and others). 

While other strategies could be followed to achieve load
balance between the processors, this one makes the commu
nication pattem regular, as each processar has to exchange at 
most two rows of N cells with its two neighbours (ora single 
row i f it is at one o f the ends o f the linear array). 

lt should be stressed that though the partitioning by panels 
is very simple, it can be used on a variety o f other problems, 
including those involvirig complex geometries, i f the problem 
is recast using generalized coordinates and type C- and 0-
grids (see [FLE91 , V.2,Ch.l2) and [FP96]). 

Analysing the flow of data between equations (20)-(23), 
we note that there is a feedback mechanism in the overall 
Runge-Kutta scheme, as once a variable in the k-th step is 
produced, it is used in the computation of the next variab1e in 
sequence. This mechanism imp1ies the need o f data exchange 

between the processors inside the Runge-Kutta scheme, in 
order to compute the finite-differences approximations to the 
derivatives. 

Thus, once every processar has computed wk in their as
signed portion of cells using (20), they swap their left- and 
right-most columns o f cells o f wk (say, w :.l and w:,rr•, where 
the colon indicates a whole column) and also of çk- l with 
their left and right neighbours (this is done in a single message 
o f length 2N instead o f two messages o f Iength N to reduce 
the effect o f message-passing Iatencies in the performance o f 
the algorithm). Every processar is then able to compute çk 
in their cells; afterwards, they exchange çk in the same way 
in order to solve Poisson 's equation for 1/-•k and once this is 
completed, '1/,·k is exchanged in order to compute the veloci
ties uk and vk . Therefore in every step o f the Runge-Kutta 
scheme there are three data-exchanges between neighbouring 
processors. 

Also, note that the initial condition for w is the solution of 
Equation ( 14 ); as it is solved in the forrn ( 17), the computation 
can be organized such that one data exchange is suppressed, 
since for the first iterations (i.e. for k = O at t = 0), a 
processar will have already received columns w :.m and w : .l 

from its left and right neighbouring processors, which has 
been done in the last iteration prior to convergence using 
(17). 

The boundary conditions on u, v, w, '1/J and ( can be com
puted without any communication due to their simple form. 
For the update of the boundary conditions on ( - equations 
( 15) and ( 16) - we use the same approach as explained in the 
previous paragraph, since every processor will have stored 
ç~;,,• and (t.t 1 o f its left and right neighbours, from the last 
Runge-Kutta iteration. 

The whole algorithm is organized by dividing the compu
tation of equations (20)-(23) into two parts: one that refers to 
data stored locally in a single processar, and another which 
depends on the local availability of data stored in its neigh
bouring processors. If now we make use of asynchronous 
point-to-point communications (as present in MPI [MPI]), 
then we can compute any one o f the variables involved using 
the following algorithm: 

Algorithm lll. I : Parallel computation o f a variable f 
I . asynchronously send variable f to its left and 
right neighbours 

2. compute variable f with its local data, i.e. 
from columns 2 to m - 1 

3. request the m-th column of f from processar 
p - I (left) and store locally into column O of f 

4. request the 1-st column of f from processar 
p + 1 (right) and store Iocally into column 
m + 1 of f 

5. compute columns 1 and m o f variable f 

It is then possib1e to almost complete1y hide the time 
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spent communicating between two processors, provided lhe 
amount of time spent in step 2 of the above algorithm is 
greater than lhe time needed for lhe two point-to-point com
munications between a processar and its two neighbours. A 
sufficiently large grid will allow lhis to happen; in our specific 
case, we are interested when the ratio J\tf f N is large, since that 
will maximize the amount of local computation for a given 
p while keeping small (relative to lhe local computation) the 
communication time. This approach has been successfully 
applied in other parallel applications (see [CH93], [CH94], 
[CH95] and [CUN97]). 

However, there are two penalties brought about by the 
para\lel computation of equations (20)-(23): 

1. The amount o f time needed to set-up the asynchronous 
sends and the retrieval of data from the local communi
cations buffer into the appropriate memory locations of 
the user's program; 

2. The computation of reductions, needed to obtain the 
norrns used in the stopping cri teria o f the iterations. 

We can not hide these times within the local computation 
time and therefore they are the main causes for being unable 
to achieve the optimal speed-up; but we may expect that by 
dividing the storage o f the variables among p processors, the 
use of processors with cache memories will provide some 
interesting phenomenon for large size problems and small 
number o f processors. 

The parallel algorithm can now be described as follows. 
Each processar stores its m columns o f N cells, for each vari
able (w, (,'!,(:, u and v) in arrays of size O: ( N+l) , O: (m+ 1), 

where the two extra rows and columns serve to hold the 
boundary conditions values. Due to the simple forro of some 
of the boundary conditions specified, one could argue that 
it is not needed to store them; however this would lead to a 
specific piece o f code be written to compute the equations in 
lhe cells where the boundary conditions are involved. 

We wrote the code to compute each o f the equations (20)
(23) as a pai r o f loops scanning the columns and rows o f the 
array holding the variable values atthe cells. As an exaro
pie, we will show how a sequential code to compute l,i;fi in 
Equation (20) was transforrned in to a parallel code according 
to Algorithm Ill.l. The sequential code is as follows 

+ 
+ 

DO J = 1 , M 
DO I = 1,N 

DXPSI = PSI(I,J-1) + PSI(I,J+1) 
DYPSI = PSI(I-1,J) + PSI(I+1,J) 
PSINEW(I,J) APSI*ZETANEW(I,J) + 

END DO 
END DO 

BPSI* DXPSI + 
CPSI*DYPSI 

where APSI, BPSI and CPSI are constants involving hr 
and hy. derived from the central finite-differences equations. 
Its equivalent parallel version, using MPI , is 

* 1. Asynchronously send PSI to its left and 

right neighbours 
CALL SNDRCV(MYID,P,PSI,NPl ,MP1,9 00, 1000, 

+ IDSND,IDRCV) 

* 2. Compute PSI with its local data 
DO J = 2,MYM-l 

+ 
+ 

DO I = 1,N 
DXPSI = PSI(I,J-1) + PSI(I,J+1) 
DYPSI = PSI(I -1, J) + PSI(I+1,J) 
PSINEW(I,J) = APSI*ZETANEW(I, J ) + 

END DO 
END DO 

BPSPDXPSI + 
CPSPDYPSI 

* 3-4. Request columns from neighbouring 
processors 

CALL GETDATA(MYID,NPROCS,IDSND,IDRCV) 

* S. Compute co1umns 1 and m of PSI 
DO J = 1,MYM,MYM-1 

+ 
+ 

DO I = l.N 
DXPSI = PSI(I,J-1 ) + PSI(I, J+l) 
DYPSI = PSI(I-l,J) + PSI(I+1,J) 
PSINEW(I , J) = APSI*ZETANEW( I ,J) + 

END DO 
END DO 

BPSI*DXPSI + 
CPSI*DYPSI 

where MYM is m and SNDRCV and GETDATA are sub
routines which call the MPI routines MPLISEND and 
MPLIRECV, and MPLWAIT respectively. Note that by us
ing the MPLISEND and MPLIRECV routines we have an 
asynchronous parallel implementation which maximizes the 
use of the processors. A fully asynchronous implementation, 
on the other hand, is not possible, for the underlying numer
ical method can not cope with the nonlinear instabilities that 
may be generated by that kind of implementation . 

With this approach, once a sequential version of the code 
has been tested and certified to be producing lhe desired re
sults, it is easy to obtain its parallel version, since the second 
pair of DO loops is the same as the first, apart from the ín
dices on J. It is less error-prone, since the loop body remains 
unchanged; in fact, i f the first pair is encapsulated in a subrou
tine, having the índices on J as parameters, i f a modification 
in the body o f the loops was required, then just a single part 
o f the code would need auention. As for the performance o f 
such code, i fone uses a compiler which is capable o f inlining 
a subroutine, then it will not be affected by this approach. 

Another possible way of writing the parallel code (which 
we have also done) would be to provide lhree different parts 
to handle lhe computation, depending on the position o f each 
processar: the first, the last, and those in lhe middle of lhe 
linear array. It is easy to see that this would increase three
fold the size of the code, and make it even more difficult to 
maintain; one could make use of subroutines which would 
certainly make the code more readable but, for an efficient 
program execution, lhe subroutines should be inlined, thereby 
increasing lhe object code size accordingly. As an example, 
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with lhe first approach, lhe ratio of source code sizes of the 
parallel to the sequential versions is 1.46 : 1, whereas for this 
latter approach it was 3.28 : 1. 

The other modification required in the sequential code to 
produce the parallel version is in the computation of the 
norms. This requires a reduction operation over severa! val
ues (i.e. the partia! norms) stored in the processors. Due to 
the SPMD programming model used, the reduced value (i.e. 
the oo-norm of a variable) is required to be present in every 
processor. Therefore, a reduction, followed by a broadcast 
of the reduced value to ali processors is employed, this be
ing implemented by the MPI routine MPI...ALLREDUCE. lt 
is a costly operation; note that the reduction and broadcast 
require sending/receiving severa! messages between the co
operating processors (with the associated latencies to set-up 
the message transfers), albeit some of those may be done in 
parallel. 

As such, we look at Algorithm 11.1 and notice that norms 
are required in steps 3, 5 and 7. Now we ask ourselves: can 
we combine the reductions in the last two steps into a single 
one, therefore reducing the latencies? If we consider that 
the computational cost of a reduction of r values followed 
by a broadcast is 2llog2 p J( () + r m, where (): and /~ are lhe 
latency and the transfer rate between two processors (directly 
related to each other), then it is easy to see that i f we combine 
the five reductions needed in step 5 with the two reductions 
in step 7, we will be saving one latency per reduction. For 
the overall computation, we will have 

and lhe savings will be greater for large p, as we shall see in 
§IV-C. 

With the above reasoning, if the sequential code corre
sponding to the computation o f steps 5 and 7 is written as 

• 5. Compute norms 
DO I = 1,5 

NORMS(I ) = 0.0 

+ 

+ 

+ 

+ 

+ 

END DO 
DO J = l,M 

DO I = l,N 
NORMS(l) 

NORMS(2) 

NORM$(3) 

NORMS(4) 

NORMS(5) 

END DO 
END DO 

MAX(NORMS(l),ABS(W(I,J)
WNEW(I,J))) 

MAX(NORMS(2),ABS(ZETA(I,Jl
ZETANEW(I,J))) 

MAX(NORMS(J),ABS(PSI(I,J)
PSINEW(I,Jl)) 

MAX(NORMS(4),ABS(U(I,J)
UNEW(I,Jl l l 

MAX(NORMS(5),ABS(V(I,J)
VNEW(I,Jl l) 

NORM = NORMS(l) + NORMS(2) + NORMS(3) + 
+ NORMS(4) + NORMS(5) 

• 6. Update boundary conditions on ZETA 

* 7. Time-step stabilization test 
NORMS(l) = 0 .0 
NORMS(2) = 0.0 
DO J = l,M 

DO I = l,N 
NORMS(l) MAX(NORMS(l),ABS(UNEW(I,J))) 
NORMS(2) MAX(NORMS(2),ABS(VNEW(I,J))) 

END DO 
END DO 
MAXHT = 2.0*NU*(INVHXSQ+INVHYSQ) + 

+ INVHX*NORMS(l) + INVHY*NORMS(2) 
HT = MIN(HT , l .O/MAXHT) 

then an equivalenl parallel code, including the computation 
o f the 11 u lloo, 11 v lloo needed in step 7, is 

• 5. Compute norms 

+ 

+ 

+ 

+ 

+ 

DO I= 1,7 
NORMS(I) = 

END DO 
DO J = l,MYM 

DO I = l,N 
NORMS(l) 

NORMS(2) 

NORMS(3) 

NORMS(4) 

NORMS(5) 

NORMS(6) 
NORMS(7) 

END DO 
END DO 

0.0 

MAX(NORMS(l) , ABS(W(I,J)
WNEW(I,J) )) 

MAX(NORMS(2),ABS(ZETA(I,J )
ZETANEW(I,J) )) 

MAX(NORMS(3) ,ABS(PSI(I,J)
PSINEW(I,J))) 

MAX(NORMS(4) ,ABS(U(I,J) 
UNEW(I,J))) 

MAX(NORMS(5),ABS(V(I,J)-
VNEW ( I , J) ) ) 

MAX(NORMS(6) ,ABS(UNEW(I,J))) 
MAX(NORMS(7) ,ABS(VNEW(I,J))) 

CALL MPI_ALLREDUCE(NORMS,REDUOUT ,7, MPI_REAL , 
+ MPI_MAX,MPI_COMM_WORLD,IERR) 

NORM = REDUOUT(l) + REDUOUT(2) + REDUOUT(J) + 

+ REDUOUT (4) + REDUOUT(5) 

• 6. Update boundary conditions on ZETA 

* 7. Time- step stabilization test 
MAXHT = 2.0*NU*(INVHXSQ+INVHYSQ) + 

+ INVHX*REDUOUT(6) + INVHY*REDUOUT(7) 
HT = MIN(HT,l. O/MAXHT ) 

where REDUOUT is the buffer holding the reduced NORMS 

values and which is present in ali processors after the call to 
MPLALLREDUCE. 

A. Output of the results 

At the end o f the overall computation, we save the values o f 
the variables involved in files for !ater analysis. We consider 
that each processor has parallel access to lhe disk filesystem 
and each processor is thus able to open its own file, ali p files 
being written as simultaneously as possible. In our experi
ments, even for the Iarge problems, this proved to be efficient 
and accounted for less then I% o f the run-time. An in-house 



82 SBAC-PAD '99 J/th Symposium on Computer Architecture and High Performance Computing - Natal- Brazil 

Fig. l. Typical results for a 64 x 32 mesh, Re = 279. From left to right: the 
contour streamlines for the complete domain and the contours generated 
by each processor. 

dcveloped visualization program (see [JUS98]) is later used, 
which opens the severa) files in sequence and exhibits the 
data in a variety of forros (eg. colour maps, particle traces 
and vector fields). 

IV. EXPERIMENTS 

A number of experiments were carried out on Silicon 
Graphics Origin200 distributed, global access memory par
aliei computer located at the Brazilian National Supercom
puting Centre. Our software is a FORTRAN 77 code which 
implements Algorithm 11.1 with the parallelization expressed 
as in A1gorithm III.I . AIJ computations were carried out in 
single-precision (32 bits) and with the computer in dedicated 
mode. 

The parallel computer used is a four-processor machine 
in a twin-tower configuration, each tower equipped with two 
MIPS R I 0000, 180MHz processors with I MB c ache mem

ory each, and interconnected via a CrayLink ™ cable. It 
has an aggregate RAM memory size of 256MBytes. The 
machine is a "scalable, shared-memory processar (S2MP)" 
and it has a hierarchical memory, with increasing memory 
access time for data requested from farther processors. It is 
interconnected like a hypercube, with the use of CrayLink 
cables and routers. For an Origin computer with 16 and 32 

processors, XpressLink ™ interconnects are added to the in
terconnection network, making use of the spare ports on the 
routers, minimizing latency and increasing the bandwidth. 
Nonetheless, the fact remains that this machine does not have 
a constant latency and transfer rate between any pair of pro
cessors. 

A. Typical results 

With regards to the ftow problem itself, typical results that 
were obtained are shown in Figure 1, which shows the stream
lines for rf;. In that experiment, taken from [SPE85, p. 272], 
R e = 279, Ro = 0.833, n = O. I rad/ s, G = 6 X w-4 /bf ft3 

and ht = w-4 (throughout the iterations). The tolerance for 
convergence for the initial condition on w was w-5 and it 
was achieved in 2, 595 iterations, taking 0.0008s on two pro-
cessors. Convergence of the solution of the Navier-Stokes 
equations using the three-term Runge-Kutta scheme (I{= 3) 
for a tolerance o f w-4, took 406.9987 s after 202,255 itera-
tions. The figures show a similar appearance to that presented 
in [SPE85, p. 272]. 

B. Scalability 

TABLEI 
RUN TIME (IN SECONDS PER ITERATION} ANO SPEED·UPS ON THE SGI 

0RIGIN200. 

Ji[ X N p=1 p=2 p=3 p=4 
16 X 16 0.0019 0.0018 0.0022 0.0024 

1.0649 0.8836 0.7982 
32 X J6 0.0031 0.0026 0.0026 0.0025 

1.1795 1.1997 1.2 103 
64 X 16 0.0058 0.0038 0.0034 0.0031 

1.5190 1.7272 1.9086 
128 X 16 0.0116 0.0068 0.0053 0.0045 

1.7152 2.1810 2.5667 
256 X 16 0.0224 0.0127 0.0094 0.0081 

1.7643 2.3875 2.7770 
32 X 32 0.0058 0.0039 0.0035 0.0033 

1.4865 1.6426 I. 7815 
64 X 32 0.0116 0.0068 0.0053 0.0047 

1.7114 2.1770 2.4609 
128 X 32 0.0226 0.0124 0.0093 0.0079 

1.8245 2.4448 2.8567 
256 X 32 0.0441 0.0236 0.0166 0.0133 

1.8704 2.6489 3.3 11 7 
512 X 32 0.0889 0.0466 0.0321 0.0265 

1.9090 2.7719 3.3486 
64 X 64 0.0224 0.0123 0.0092 0.0088 

1.8199 2.4278 2.54 15 
128 X 64 0.0442 0.0235 0.0168 0.0132 

1.8844 2.6384 3.3605 
256 X 64 0.0863 0.0458 0.0317 0.0246 

1.8836 2.7232 3.504 1 
512 X 64 0.1806 0.0900 0.0624 0.0469 

2.0055 2.8940 3.8479 
1024 X 64 42.5168 21.7635 14.4899 10.8587 

1.9536 2.9342 3.9 155 

The experimental results given in tables I and 11 shows 
the run-time (in seconds/iteration) for severa! mesh sizes. 
It can be seen that as the mesh sizes increase, the scalability 
increases as well. Also noticeable is that in two cases ( I 024 x 
64 and 1024 x 128) a substantial increase of the run-time 
occurs. Using the SGI per f ex performance analyser, which 
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TABLE 11 

RUN TIME (IN SECONOS PER ITERATION) ANO SPEEO·UPS ON THE SGI 

ÜRIGIN200 (CONTINUEO). 

MxN p=l p=2 p=3 p=4 
!28 X !28 0.0869 0.0457 0.0317 0.0245 

X 

0 . 9 2 0 0  

0.1615 0 4 6 8 6 9  

0 9 5 8 6 9  

X 

!28 

X  X X 
X X  X  X  X  X  X  X  X  
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