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Abstract-
We describe the first parallel version or CPTEC's General 

Circulation Model, targeting a 4 processor, shared memory 
NEC SX4. This paper emphasizes techniques to parallelize 
vintage production code, keeping results reproducible. 
Measured speed-ups compare favorably with Amdahl 's Law 
predicted values. 
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I. BACKGROUND AND MOTJVATION 

The General Circulation Model (GCM) is lhe program 
that generates the daily global weather and the seasonal 
climate forecasts of the Brazilian Center for Weather 
Prediction and Climate Studies (CPTEC) of the National 
Institute of Space Research (INPE). 

CPTEC's GCM has its roots on COLA's (Center for 
Ocean Land and Atmosphere Studies) GCM. A late 1980's 
cooperation agreement granted CPTEC access to the source 
code and the technology for its usage and modification. The 
code was ported to a single processor NEC SX3 by early 
1990. It took around four. years to build lhe software 
infrastructure (data acquisition, pre-processing, post­
processing, product generation and delivery) to run GCM 
on production mode, as well as to transform GCM into a 
production program (including lhe insertion of triangular 
lruncation). To estimate lhis effort, il suffices lo slale lhat 
lhe infrastructure and lhe GCM have around the same 
number of source code tines (3 1000 each). 

Since November 1994 lhe model and the infrastructure 
have been successfully used for daily production runs at 
CPTEC. Around July 1998, CPTEC updated its computer 
facility to a 4 processor NEC SX4, sparking a model 
modernization project that requires lhe parallelization of 
GCM. 

The model moderf]ization project will produce a new 
version of GCM, wilh deep modifications on its 
mathematical aspects (e.g., from an Eulerian model to a 
Semi-Lagrangean model), software technology aspects 
(from pure procedural to semi-object oriented) and 
computational model aspects (from sequentialto clusters of 
shared memory parallel machines). The first product of this 
enterprise is a shared memory parallel version of GCM, 

maintammg the original mathematical and software 
technology characteristics. 

This paper describes techniques used to generate lhis 
first product and some ofthe parallelizing issues involved. 

11. CHARACTERIZING THE COMPUTATION 

A meteorological description of GCM can be found at 
[BON 96] and at [KIN 97]. Our description is limited to lhe 
computational aspects required for the understanding of the 
parallelization procedure. 

The forecast program advances lhrough discrete forecast 
time. At each time step it computes lhe state of the 
atmosphere by updating a set of "fields" (arrays of floating 
point numbers) that store values of the physical variables 
(pressure, temperature, horizontal vector velocity, 
humidity) represented in the mathematical model. Updates 
occur by integrating a set of partia! differential equations. 
At each time step, the integration is performed in two 
spaces: 
I . Linear terms are computed at a three dimensional space 

denominated "spectral" space; 
2. Non-linear terms are computed at a three dimensional 

space denominated "gaussian" space; 
At each time step ali fields have to be transformed from 

one space to the other and back to the original space. 
Computation starts and ends at spectral space. 

Gaussian space has components latitude, longitude and 
verticallayers. Spectral space components are Fourier wave 
numbers, associated Legendre Functions and vertical 
layers. Consequently, at each time step, the fields at each 
vertical colurnn of the atmosphere are represented in 
latitude - longitude coordinates and in wave number -
Legendre Function coordinates. 

In gaussian space, computation at each latitude is 
independent of ali other latitudes. In spectral space, lhe 
computation at each vertical colurnn is independent of ali 
other vertical colurnns. The transformations from gaussian 
to spectral and back to gaussian are independent in lhe 
verticallayers. By dispatching independent computations to 
processors, it is conceptually easy to transform the 
sequential computation into a parallel one. 
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Ill. CHARACTERIZING THE PROGRAM 

What prevents the easy parallelization described above 
is the way the sequential program is built. It was designed 
to mmmuze memory usage, with no consideration to 
parallelization. That was achieved by the use of two 
techniques: . 
1. A fie ld dimension is dropped whenever computattons 

in that dimension are independent and resulls can be 
stored at another representation; 

2. Scratch variables use a single memory area, whenever 
possible. 

The first technique reduces memory requirements by 
eliminating one dimension from large arrays, while the 
second technique speeds up program execution and reduces 
scratch arcas. The first technique prevents immediate 
program parallelization, since independent computat!ons 
update the same memory area. The second techmque 
greatly complicates program modification, a requirement 
for parallelization. Consequently, lhe program has to be 
heavily adapted prior to parallelization. 

Besides, the sequcntial program is a moving target, 
since it is continuously updated by meteorological research 
results. 

The sequential program consists of 31256 !ines of very 
old style Fortran 77 (e.g., arithmetic ifs) distributed over 
161 procedures, wi th 51 common blocks, each typicall Y 20 
arrays wide. 

Summarizing, the conceptually easy parallelization is a 
programmer's challenge, since the sequential program. is a 
moving targetthat was not designed for such an enterpnse. 

IV. PARALLELIZATION STRATEGY 

A performance evaluation tool (NEC's Analyzer) [NEC 
96] was used for time protiling lhe sequential program. 
Results are lhat 90.4% of the execution time is spent in just 
two loops. Both loops sweep latitudes, at a fixed time step, 
conveyi ng lhe following computation: 
1. Obtain field values at current latitude and time step, 

from their spectral space representation; 
2. Compute lhe non-linear contribution (or physical 

processes) for this particular latitude; 
3. Convert this contribution into spectral space, partially 

updating next time step field values. 
Since each latitude computation is independent of a li 

other latitudes, the natural parallelization is to execute, in 
parallel, loop iterations. The single criticai issue in lhis 
approach is next time step field updating in spectral space, 
since two processes cannot update, simultaneously, the 
same field. The lheoretical speed-up of this approach, 
estimated by Amdhal 's Law, was considered acceptable for 
a first version and is described on table 1: 

TABLEI 
Estimated SpeedUps 

Processors I Speed-up 

2 I 1.82 

Two parallel models were considered f~r 
implementation: lhe parallel programm.ing library approach 
(MPIIPVM style) and the compiler directivcs approach 
(OPENMP style). Due to the small number of processors, 
the shared memory programming model of the NEC SX4 
and the software complexity of the sequential code, the 
compiler directives approach was selected 

Fortran 77 compilcr directives for program 
parallelization on lhe NEC SX4 use the microtas~ concept 
[NEC 97] . A set of microtasks (POSIX pthreads) ts created 
at program initialization, and remains alive during program 
execution. Work quantum is a single loop iteration. These 
iterations are dynamically dispatched to the tasks. Ali tasks 
synchronize at loop initialization and termination. Directive 
syntax for a parallelloop is: 
*pdir pardo 

do lat =I, latMax 

end do 
It is the programmer's responsibility to guarantee the 

independence of loop iterations. The compiler does not 
check for simultaneous updating of a single memory 
location by multiple microtasks (races). There are directives 
to avoid simultaneous updates, based upon the criticai 
section concept. 

The difficulty is that both loops encompass about 60% 
of ali program !ines, ali commons included. 

V . PARALLELIZATION REALlZATION 

Since iterations of the target loops are conceptually 
independent (pairs of iterations operate over distinct 
latitudes) the single obstacle is the need to avoid races for 
mcmory positions. That rcquires inspection, and possibly 
modification, of large portions of the code. 

A. Memory References 

An in-deplh exam.ination of common block arrays 
referenced in lhe parallel loop, based upon compiler 
produced cross-reference listings, classified each common 
block array in one of four cases, according to the access 
pattern within lhe loop: 
1. Input data (arrays are used but not modified inside the 

loop); 
2. Input/Output data (arrays are used prior to their 

modification and results are used outside the loop); 
3. Output data (arrays are only modified within lhe loop 

and used outside lhe loop); 
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4. Scratch areas (remaining cases); 
No modification is required for arrays of the first case. 
The second case has to be carefully treated. Fortunately, 

only the update of the spectral representations of the fields 
falls in this case, since the gaussian field computed at a 
given latitude contributes to ali wave numbers and 
Legendre Functions components of the spectral 
representation of the same field. Modifications required by 
this case are described at section VI-A. 

Arrays at the third case are memory areas that do not 
overlap across loop iterations. They are multi dimensional 
arrays with the loop index as their last component. 
Consequently, nothing has to be done. 

The fourth case represents memory areas that have to be 
replicated over concurrently executing loop iterations. 

NEC provides a mechanism to deal with common areas 
on multi thread executions: common blocks can be labcled 
"global" (the same memory area is visible for ali threads) or 
"local" (each thread creates its own copy of the common 
area). The syntax is to prefix the common statement with 
"local" or "global". Observe that these labels apply to a full 
common block, and not to a particular array in one common 
block. As one could expect, some original common blocks 
had arrays of the two kinds. These had to be split in two 
common blocks, one labeled 'global" and the other "local". 

B. Programming Practices 

The coding practice that required attention was data 
initialization inside the parallel loop. These were 
constructions of the form 

if (first) tllen 
that occur in three distinct cases, according to the use of the 
construct: 
I . Used to initialize values that were latitude independent 

but time step dependent; 
2. Used to initialize values that were latitude dependent 

but time step independent; 
3. Used for specific latitudes (first and last, for example), 

of ali time steps. 
Constructions of the first case were modified so that 

each processar initializes its local copy of the data while 
processing its local first latitude at each time step. The 
second case was kept as in the sequential program, since 
each processar initializes its own copy o f the data. The third 
case coding was modified to make the dependency on 
specifi c latitude values explicit. 

C. Program Modijica·rion Cycle 

The usual program development cycle (modify, 
compile, execute, verify results) was heavily mechanized. 
A tool to label and partition common blocks (into local or 
global) was developed, using UNIX utility awk, and heavily 
used. The tool allows rapid program modification, avoiding 
costly editing mistakes. It takes as input a list of common 

blocks, their labels, and a list of procedures where they 
should be labeled "local". Global is the default label for a 
common block. 

Execution correctness was verified by a "checksum" 
technique. A sum of ali elements of each output array was 
computed. Computed values were checked against 
corresponding values obtained during the sequential 
execution. 

The utility of these two tools should not be 
underestimated. Even with such tools, it took eight man­
months to produce an acceptable parallel version. It is also 
important to realize that GCM is continuously updated by 
meteorological research results. Consequently, 
modifications performed on early versions had to be 
executed again, on newer version of GCM. 

VI. RESULTS 

A. Correctness 

The parallel GCM produces correct results. The 
validation process includes comparing the forecasted fields 
generated by the parallel and the sequential GCM, with the 
same input data set. Visually, both fields are identical. 
Consequently, the parallel GCM was accepted for 
meteorological use. But, computationally, results differ on 
the eight significant digit (out of 14). 

The fact that the results of the sequential version differ 
from those of the parallel version may indicate an error in 
the parallelization process. But oddly, the parallel results 
are the same, bit by bit, with any number of processes. 
Even with a single process. 

We briefly discuss the single reason for this odd 
behavior - the parallelization of the gaussian to spectral 
transformation. Details are omitted to improve presentation 
clarity. 

The spectral representation of a field at a given vertical 
layer (denoted by Specrral(spec)) is a summation of terms 
derived from the gaussian representation (denoted by 
Component1(spec) and Componenr2(spec)). These two 
terms change with latitude, that is, a second dimension (lar) 
was dropped to reduce memory usage. The summation is 
performed over the latitudes. A code fragment typical of 
this computation is 

do lat = 1, latMax 

do spec = 1, specMax 
Spectral( spec )=Spect r ai( s pec )+ 

Component1(spec) + Component2(spec) 
enddo 

enddo 
where both Component arrays are computed in the lar loop, 
prior to the spec loop. 

The outermost loop (lar) was parallelized. The values of 
Component are the same, bit by bit, for ali latitudes, in the 
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sequential or parallel executions, with any number of 
processors. A criticai section on the update of Spectral is 
required to guarantee program correctness. 

But, it does not guarantee the same results due to round 
off in the order of summations. Since the latitude loop is 
split over processors and the scheduling of iterations to 
processors is dynamic, there is no guarantee that two 
executions will update Spectral in the same latitude order. 
Even with a fixed number of processors. 

Two other solutions were tested. Both require restoring 
the second dimension (lat) of the Component arrays, so that 
values of these arrays computed at one iteration of the lar 
loop were saved for !ater use. The idea is to split the spec 
summation, partially inside the parallel loop, partially 
outside the parallel loop. This summation could be 
performed in one of two ways: 
I. By partia/ sums, that is, each processar sums the 

components over its own iterations. Final sum of 
partia! sums is performed sequentially, outside the 
parallelloop. 

2. Sequentially, by moving the summation loop outside 
the parallel loop. 

The first solution does not guarantee reproducibility of 
results even with a fixed number of processors, due to 
dynamic scheduling of iterations. The second solution 
guarantees reproducibility with any number of processors, 
at the ex pense o f reducing parallelism. 

The second solution was implemented, using a single, 
dimensionally augmented Component array. Each processar 
adds the two Components in a single array, in parallel. 
After the execution of the parallel loop, the array is reduced 
by accumulating over latitudes into the spectral field. 

But that is not the sequential execution order. It 
accumulates Component I in to the spectral field before 
adding Component2. This tiny difference in execution order 
is the reason why ali parallel executions produce identical 
results, but they differ from sequential execulion results. 

B. Performance 

Table li exhibits measured speed ups, computed by the 
ralio of lhe wall clock time of the sequential execution of 
the original code by the wall clock time of the parallel 
execution. It also shows the Mflops rate of each execution . 

TABLE li 
Measured SpeedUls 

I Processors I Speed-up MF/ops 

I (seq) 1 678 
1 (par) 0.99 674 

2 1.79 1216 
3 2.48 1685 
4 3.09 2096 

Measured speed ups compare favorably with expected 
speed ups (see Table 1). And, as a performance reference, it 
is worth mentioning that each NEC SX4 processar has a 
nominal top speed of 2000 Mflops. Consequently, the top 
speed o f the machine is 8000 Mflops. 

VII. CONCLUSIONS ANO FUTURE WORK 

The feasibility of a massively parallel production 
weather forecast code was demonstrated around 1995. 
Speed-ups on the order of 900 over I 000 Cray T3D 
processors were obtained by that time (BAR 95]. These 
astonishing efficiency results were reproduced at many 
Weather Centers around the world [TRE 98), [EST 98). 
Current international research focus is on parallelizing lhe 
complete forecast cycle, including new variational data 
assimilation techniques [KAU 98). 

But parallelizing a production weather code is no easy 
task. The enterprise takes about five years of a considerable 
team of experts. It requires a complete restructuring of the 
code, including new data structures [BAR 95]. The major 
reason is that the original code was not designed for parallel 
execution. 

The results reported in this work demonstrate what is 
achievable by a modest, time constrained effort. They 
encourage us in pursuing higher efficiency. Future work 
includes new data structures for lhe gaussian to spectral and 
spectral to gaussian transformations, including a new 
formulation designed for higher efficiency, at thc cost of 
increasing memory usage. lt is a sample of the work to be 
performed in the following years: change design goals of 
lhe forecast program from low memory usage to high 
parallel efficiency. 
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