
SBAC-PAD'99 llth Symposium on Computer Architecture and High Perfof1!U2nce Computing- Natal- Brazil 93

Parallelizing CPTEC' s General Circulation Model
Jonas N. Tamaoki1

, José Paulo Bonatti2 , Jairo Panetta2
, Simone Tomita2

1 NEC do Brasil
Rod. Presidente Dutra km 40, Cachoeira Paulista, SP, Brazil

{ tamaoki @cptec.inpe.br}
2 lNPFJCPTEC

Rod. Presidente Dutra km 40, Cachoeira Paulista, SP, Brazil
{bonatti, panetta, tomita@cptec.inpe.br}

Abstract-
We describe the first parallel version or CPTEC's General

Circulation Model, targeting a 4 processor, shared memory
NEC SX4. This paper emphasizes techniques to parallelize
vintage production code, keeping results reproducible.
Measured speed-ups compare favorably with Amdahl 's Law
predicted values.

Keywords- Weather Forecast, Parallel Applications.

I. BACKGROUND AND MOTJVATION

The General Circulation Model (GCM) is lhe program
that generates the daily global weather and the seasonal
climate forecasts of the Brazilian Center for Weather
Prediction and Climate Studies (CPTEC) of the National
Institute of Space Research (INPE).

CPTEC's GCM has its roots on COLA's (Center for
Ocean Land and Atmosphere Studies) GCM. A late 1980's
cooperation agreement granted CPTEC access to the source
code and the technology for its usage and modification. The
code was ported to a single processor NEC SX3 by early
1990. It took around four. years to build lhe software
infrastructure (data acquisition, pre-processing, post­
processing, product generation and delivery) to run GCM
on production mode, as well as to transform GCM into a
production program (including lhe insertion of triangular
lruncation). To estimate lhis effort, il suffices lo slale lhat
lhe infrastructure and lhe GCM have around the same
number of source code tines (3 1000 each).

Since November 1994 lhe model and the infrastructure
have been successfully used for daily production runs at
CPTEC. Around July 1998, CPTEC updated its computer
facility to a 4 processor NEC SX4, sparking a model
modernization project that requires lhe parallelization of
GCM.

The model moderf]ization project will produce a new
version of GCM, wilh deep modifications on its
mathematical aspects (e.g., from an Eulerian model to a
Semi-Lagrangean model), software technology aspects
(from pure procedural to semi-object oriented) and
computational model aspects (from sequentialto clusters of
shared memory parallel machines). The first product of this
enterprise is a shared memory parallel version of GCM,

maintammg the original mathematical and software
technology characteristics.

This paper describes techniques used to generate lhis
first product and some ofthe parallelizing issues involved.

11. CHARACTERIZING THE COMPUTATION

A meteorological description of GCM can be found at
[BON 96] and at [KIN 97]. Our description is limited to lhe
computational aspects required for the understanding of the
parallelization procedure.

The forecast program advances lhrough discrete forecast
time. At each time step it computes lhe state of the
atmosphere by updating a set of "fields" (arrays of floating
point numbers) that store values of the physical variables
(pressure, temperature, horizontal vector velocity,
humidity) represented in the mathematical model. Updates
occur by integrating a set of partia! differential equations.
At each time step, the integration is performed in two
spaces:
I . Linear terms are computed at a three dimensional space

denominated "spectral" space;
2. Non-linear terms are computed at a three dimensional

space denominated "gaussian" space;
At each time step ali fields have to be transformed from

one space to the other and back to the original space.
Computation starts and ends at spectral space.

Gaussian space has components latitude, longitude and
verticallayers. Spectral space components are Fourier wave
numbers, associated Legendre Functions and vertical
layers. Consequently, at each time step, the fields at each
vertical colurnn of the atmosphere are represented in
latitude - longitude coordinates and in wave number -
Legendre Function coordinates.

In gaussian space, computation at each latitude is
independent of ali other latitudes. In spectral space, lhe
computation at each vertical colurnn is independent of ali
other vertical colurnns. The transformations from gaussian
to spectral and back to gaussian are independent in lhe
verticallayers. By dispatching independent computations to
processors, it is conceptually easy to transform the
sequential computation into a parallel one.

94 SBAC-PAD '99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

Ill. CHARACTERIZING THE PROGRAM

What prevents the easy parallelization described above
is the way the sequential program is built. It was designed
to mmmuze memory usage, with no consideration to
parallelization. That was achieved by the use of two
techniques: .
1. A fie ld dimension is dropped whenever computattons

in that dimension are independent and resulls can be
stored at another representation;

2. Scratch variables use a single memory area, whenever
possible.

The first technique reduces memory requirements by
eliminating one dimension from large arrays, while the
second technique speeds up program execution and reduces
scratch arcas. The first technique prevents immediate
program parallelization, since independent computat!ons
update the same memory area. The second techmque
greatly complicates program modification, a requirement
for parallelization. Consequently, lhe program has to be
heavily adapted prior to parallelization.

Besides, the sequcntial program is a moving target,
since it is continuously updated by meteorological research
results.

The sequential program consists of 31256 !ines of very
old style Fortran 77 (e.g., arithmetic ifs) distributed over
161 procedures, wi th 51 common blocks, each typicall Y 20
arrays wide.

Summarizing, the conceptually easy parallelization is a
programmer's challenge, since the sequential program. is a
moving targetthat was not designed for such an enterpnse.

IV. PARALLELIZATION STRATEGY

A performance evaluation tool (NEC's Analyzer) [NEC
96] was used for time protiling lhe sequential program.
Results are lhat 90.4% of the execution time is spent in just
two loops. Both loops sweep latitudes, at a fixed time step,
conveyi ng lhe following computation:
1. Obtain field values at current latitude and time step,

from their spectral space representation;
2. Compute lhe non-linear contribution (or physical

processes) for this particular latitude;
3. Convert this contribution into spectral space, partially

updating next time step field values.
Since each latitude computation is independent of a li

other latitudes, the natural parallelization is to execute, in
parallel, loop iterations. The single criticai issue in lhis
approach is next time step field updating in spectral space,
since two processes cannot update, simultaneously, the
same field. The lheoretical speed-up of this approach,
estimated by Amdhal 's Law, was considered acceptable for
a first version and is described on table 1:

TABLEI
Estimated SpeedUps

Processors I Speed-up

2 I 1.82

Two parallel models were considered f~r
implementation: lhe parallel programm.ing library approach
(MPIIPVM style) and the compiler directivcs approach
(OPENMP style). Due to the small number of processors,
the shared memory programming model of the NEC SX4
and the software complexity of the sequential code, the
compiler directives approach was selected

Fortran 77 compilcr directives for program
parallelization on lhe NEC SX4 use the microtas~ concept
[NEC 97] . A set of microtasks (POSIX pthreads) ts created
at program initialization, and remains alive during program
execution. Work quantum is a single loop iteration. These
iterations are dynamically dispatched to the tasks. Ali tasks
synchronize at loop initialization and termination. Directive
syntax for a parallelloop is:
*pdir pardo

do lat =I, latMax

end do
It is the programmer's responsibility to guarantee the

independence of loop iterations. The compiler does not
check for simultaneous updating of a single memory
location by multiple microtasks (races). There are directives
to avoid simultaneous updates, based upon the criticai
section concept.

The difficulty is that both loops encompass about 60%
of ali program !ines, ali commons included.

V . PARALLELIZATION REALlZATION

Since iterations of the target loops are conceptually
independent (pairs of iterations operate over distinct
latitudes) the single obstacle is the need to avoid races for
mcmory positions. That rcquires inspection, and possibly
modification, of large portions of the code.

A. Memory References

An in-deplh exam.ination of common block arrays
referenced in lhe parallel loop, based upon compiler
produced cross-reference listings, classified each common
block array in one of four cases, according to the access
pattern within lhe loop:
1. Input data (arrays are used but not modified inside the

loop);
2. Input/Output data (arrays are used prior to their

modification and results are used outside the loop);
3. Output data (arrays are only modified within lhe loop

and used outside lhe loop);

SBAC-PAD'99 1 lth Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 95

4. Scratch areas (remaining cases);
No modification is required for arrays of the first case.
The second case has to be carefully treated. Fortunately,

only the update of the spectral representations of the fields
falls in this case, since the gaussian field computed at a
given latitude contributes to ali wave numbers and
Legendre Functions components of the spectral
representation of the same field. Modifications required by
this case are described at section VI-A.

Arrays at the third case are memory areas that do not
overlap across loop iterations. They are multi dimensional
arrays with the loop index as their last component.
Consequently, nothing has to be done.

The fourth case represents memory areas that have to be
replicated over concurrently executing loop iterations.

NEC provides a mechanism to deal with common areas
on multi thread executions: common blocks can be labcled
"global" (the same memory area is visible for ali threads) or
"local" (each thread creates its own copy of the common
area). The syntax is to prefix the common statement with
"local" or "global". Observe that these labels apply to a full
common block, and not to a particular array in one common
block. As one could expect, some original common blocks
had arrays of the two kinds. These had to be split in two
common blocks, one labeled 'global" and the other "local".

B. Programming Practices

The coding practice that required attention was data
initialization inside the parallel loop. These were
constructions of the form

if (first) tllen
that occur in three distinct cases, according to the use of the
construct:
I . Used to initialize values that were latitude independent

but time step dependent;
2. Used to initialize values that were latitude dependent

but time step independent;
3. Used for specific latitudes (first and last, for example),

of ali time steps.
Constructions of the first case were modified so that

each processar initializes its local copy of the data while
processing its local first latitude at each time step. The
second case was kept as in the sequential program, since
each processar initializes its own copy o f the data. The third
case coding was modified to make the dependency on
specifi c latitude values explicit.

C. Program Modijica·rion Cycle

The usual program development cycle (modify,
compile, execute, verify results) was heavily mechanized.
A tool to label and partition common blocks (into local or
global) was developed, using UNIX utility awk, and heavily
used. The tool allows rapid program modification, avoiding
costly editing mistakes. It takes as input a list of common

blocks, their labels, and a list of procedures where they
should be labeled "local". Global is the default label for a
common block.

Execution correctness was verified by a "checksum"
technique. A sum of ali elements of each output array was
computed. Computed values were checked against
corresponding values obtained during the sequential
execution.

The utility of these two tools should not be
underestimated. Even with such tools, it took eight man­
months to produce an acceptable parallel version. It is also
important to realize that GCM is continuously updated by
meteorological research results. Consequently,
modifications performed on early versions had to be
executed again, on newer version of GCM.

VI. RESULTS

A. Correctness

The parallel GCM produces correct results. The
validation process includes comparing the forecasted fields
generated by the parallel and the sequential GCM, with the
same input data set. Visually, both fields are identical.
Consequently, the parallel GCM was accepted for
meteorological use. But, computationally, results differ on
the eight significant digit (out of 14).

The fact that the results of the sequential version differ
from those of the parallel version may indicate an error in
the parallelization process. But oddly, the parallel results
are the same, bit by bit, with any number of processes.
Even with a single process.

We briefly discuss the single reason for this odd
behavior - the parallelization of the gaussian to spectral
transformation. Details are omitted to improve presentation
clarity.

The spectral representation of a field at a given vertical
layer (denoted by Specrral(spec)) is a summation of terms
derived from the gaussian representation (denoted by
Component1(spec) and Componenr2(spec)). These two
terms change with latitude, that is, a second dimension (lar)
was dropped to reduce memory usage. The summation is
performed over the latitudes. A code fragment typical of
this computation is

do lat = 1, latMax

do spec = 1, specMax
Spectral(spec)=Spect r ai(s pec)+

Component1(spec) + Component2(spec)
enddo

enddo
where both Component arrays are computed in the lar loop,
prior to the spec loop.

The outermost loop (lar) was parallelized. The values of
Component are the same, bit by bit, for ali latitudes, in the

96 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

sequential or parallel executions, with any number of
processors. A criticai section on the update of Spectral is
required to guarantee program correctness.

But, it does not guarantee the same results due to round
off in the order of summations. Since the latitude loop is
split over processors and the scheduling of iterations to
processors is dynamic, there is no guarantee that two
executions will update Spectral in the same latitude order.
Even with a fixed number of processors.

Two other solutions were tested. Both require restoring
the second dimension (lat) of the Component arrays, so that
values of these arrays computed at one iteration of the lar
loop were saved for !ater use. The idea is to split the spec
summation, partially inside the parallel loop, partially
outside the parallel loop. This summation could be
performed in one of two ways:
I. By partia/ sums, that is, each processar sums the

components over its own iterations. Final sum of
partia! sums is performed sequentially, outside the
parallelloop.

2. Sequentially, by moving the summation loop outside
the parallel loop.

The first solution does not guarantee reproducibility of
results even with a fixed number of processors, due to
dynamic scheduling of iterations. The second solution
guarantees reproducibility with any number of processors,
at the ex pense o f reducing parallelism.

The second solution was implemented, using a single,
dimensionally augmented Component array. Each processar
adds the two Components in a single array, in parallel.
After the execution of the parallel loop, the array is reduced
by accumulating over latitudes into the spectral field.

But that is not the sequential execution order. It
accumulates Component I in to the spectral field before
adding Component2. This tiny difference in execution order
is the reason why ali parallel executions produce identical
results, but they differ from sequential execulion results.

B. Performance

Table li exhibits measured speed ups, computed by the
ralio of lhe wall clock time of the sequential execution of
the original code by the wall clock time of the parallel
execution. It also shows the Mflops rate of each execution .

TABLE li
Measured SpeedUls

I Processors I Speed-up MF/ops

I (seq) 1 678
1 (par) 0.99 674

2 1.79 1216
3 2.48 1685
4 3.09 2096

Measured speed ups compare favorably with expected
speed ups (see Table 1). And, as a performance reference, it
is worth mentioning that each NEC SX4 processar has a
nominal top speed of 2000 Mflops. Consequently, the top
speed o f the machine is 8000 Mflops.

VII. CONCLUSIONS ANO FUTURE WORK

The feasibility of a massively parallel production
weather forecast code was demonstrated around 1995.
Speed-ups on the order of 900 over I 000 Cray T3D
processors were obtained by that time (BAR 95]. These
astonishing efficiency results were reproduced at many
Weather Centers around the world [TRE 98), [EST 98).
Current international research focus is on parallelizing lhe
complete forecast cycle, including new variational data
assimilation techniques [KAU 98).

But parallelizing a production weather code is no easy
task. The enterprise takes about five years of a considerable
team of experts. It requires a complete restructuring of the
code, including new data structures [BAR 95]. The major
reason is that the original code was not designed for parallel
execution.

The results reported in this work demonstrate what is
achievable by a modest, time constrained effort. They
encourage us in pursuing higher efficiency. Future work
includes new data structures for lhe gaussian to spectral and
spectral to gaussian transformations, including a new
formulation designed for higher efficiency, at thc cost of
increasing memory usage. lt is a sample of the work to be
performed in the following years: change design goals of
lhe forecast program from low memory usage to high
parallel efficiency.

ACKNOWLEDGMENTS

We gratefully thank Benicio P. de Carvalho Filho for
the encouragement to write this work, as well as Celso L.
Mendes for comments and suggestions on early versions of
this paper. We also thank Atsuko Ohyama, Tadashi Murase
and Nanaumi Nagamine from NEC SMD for their precious
technical support.

REFERENCES

[BAR 95) Barros, S. R. M. et ai. The IFS model: A parallel
production weather code. Paral/el Computing , V.21,
1621-1 638, 1995.

[BON 96] Bonaui, J. P. Modelo de Circulação Geral Atmosférica
do CPTEC. Climanalise, Edição Especial de /0 anos,
Oct 1996. A1so available at
http://www.cptec.inoe.hr/products/c/imanalise/cliespl
Oa/bonatti.html.

[EST 98) Estrade, J. F. et ai. Operational Parallel Processing at
Meteo-France. Eighth ECMWF Workshop in the use
of paralle1 processors in meteorology - Towards

SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

TeraComputing, Reading, England, Nov 1998. To be
published.

[KAU 98] Kauranne, T. Parallel minimization for 40 Yariational
Data Assimilation, Karlman filtering and generating
initial penurbations to Ensemble Forecasting. Eighth
ECMWF Workshop in the use of para! lei processors in
meteorology - Towards TeraComputing, Reading,
England, Nov 1998. To be published.

[K!N 97] Kinter, J. L. et ai. The COLA Atmospheric Biosphere
General Circulation Model. Technical Report #51,
Center for Land and Atmosphere Studies, Maryland,
USA, Oct 1997.

[NEC 96] NEC. Analyzer-P/SX Reference Manual. Pan Number
GIAF15E4. NECCorporation, 1996.

[NEC 97] NEC. Fonran 77/SX Multitasking User's Guide. Part
Number G I AF12E5. NEC Corporation, 1997.

[TRE 98] Trémolet, Y. and Sela, J. The parallel version of the
NCEP global model. Eighth ECMWF Workshop in
the use of parallel processors in meteorology -
Towards TeraComputing. Reading, England, Nov
1998. To be published.

97

