
SBAC-PAD'99 1 lth Symposium on Compute r Architecture and High Performance Computing- Natal- Brazil 141

Parallel Space-Time Adaptive Processing
On a Cluster of Personal Computers

Fernando Silva, Gary B. Lamont
Air Force Institute ofTechnology

Wright-Patterson AFB OH
{fsilva, gary.lamont@afit.af.rnil}

Abstract-
This work evaluates the capabilities and the performance

of the Air Force Institute of Technology's Pile-of-PCs for
parallel digital signal processing using space-time adaptive
processing (STAP) under the Linux OS. The MITRE
RT_STAP Benchmark version 1.1 is ported and executed on
it, as well as on a cluster of six Sun SPARC workstations
connected by a Myrinet network (the AFIT NOW}, and on a
IBM SP for comparison. Modifications to the RT_STAP
benchmark source code are performed to accommodate the
BLAS routines obtained from the US Department of Energy's
Accelerated Strategic Computing lnitiative, and the
FFTPACK from the Netlib repository, allowing improvements
in lhe sustained Gflops/sec rales. However, the Pile-of-PCs
also reveals limited scalability as a result of severe
communication overheads imposed by RT _ST AP cornerturn
operations. Analysis of experimental data indicates that the
PC Cluster outperforms AFIT NOW but needs
interconnection network improvements to be globally
competitive to multicomputers such as the IBM SP.

Keyword~ Cluster o f PCs, parallel signal processing.
STAP, real-time benchmarking, Linux.

I. INTRODUCTION

Space-time adaptive processing (ST AP) is a well
known stochastic signal processing technique in the area of
airborne surveillance radars. which is used to detect weak
target signal returns embedded in strong ground clutter.
jamming. and receiver noise. A significant feature of STAP
is that it can improve lhe performance of airborne
Electronically-Steered Array (ESA) antennas while
requiring little or no modification to the basic radar design
[WAR 94]. This technique takes advantage of both the
spatial and Doppler diversity of target signal returns.
clutter. and interference to extract the desired signal by
adaptively combining samples of multiple radar channels
and pulses to null · clutter returns and interference.
Processing data from multiple channels provides the radar
an opportunity to control the spatial response o f the system
while processing multiple pulses enables the processing to
separate signals based upon their Doppler frequencies.
However. ST AP consumes great amounts of computational
resources. since an extremely large amount of data needs to

be processed in real-time. This in turn requires a Iarge
computational throughput.

The experiences described in this paper represent the
first attempt to address the computational capabilities and
the cost/performance ratio provided by a cluster of personal
computers when applied to STAP. lt is also a step further in
the direction of employing cluster of PCs instead of
massively parallel processors or digital signal processors in
real-time environments. Although difficulties exist - such
as operating system overhead and implementation
efficiency - the fast development time. flexible nature of
software. and increased speed and affordability of general
purpose microprocessors make the use of these platforrns
desirable.

The rest of the paper is organized as follows: in Section
II. we present the features of the RT _ST AP benchmark, and
the computational platforms used in the research. Section
III details lhe process of porting the benchmark into the PC
Cluster. the nature of the modifications made to the
benchmark's source code. and the experimental framework.
Section IV reports our results and analysis, and Section V
presents our conclusions.

li. BACKGROUND

This Section is organized around two main parts. First.
we discuss the criticai aspects associated with the
RT _ST AP Benchmark. We finish the Section by describing
lhe computational platforms to be used for benchmarking.

A. The RT_STAP Benchmark

The STAP implementation chosen is the Real-Time
Space-Time Adaptive Processing Benchmark - RT_STAP
- created at MITRE Corporation in Bedford, MA. and
currently in version 1.1. It is a realistic compact application
benchmark based upon data collected by the Air Force
Research Laboratory's MultiChannel Radar Measurement
Program (MCARM) airborne system. The RT_STAP
version 1.1 is written in C. and provides sequential versions
of algorithms implementing Displaced Phased Center
Antenna (DPCA) processing. first-order post-Doppler. and
high-order post-Doppler factored STAP. as well as
concurrent versions of the last two algorithms mentioned.

142 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

Fig.l. RT_STAP data-parallel programming model.

using MPI as the interprocess communication mechanism.
The primary reason for the selection o f RT _ST AP is the
fact that it was originally developed to evaluate high
perforrnance computers (MPPs and Shared-Memory
Multiprocessors) for STAP [HWA 96) [MIT 99) [WAN 97).

The modules that build the benchmark are:
preprocessing, nonadaptive Doppler fl/tering, adaptive
processing, and the global communication steps
represented by the distributed matrix cornerturns (see
Figure 1). The global exchange I reorganization phase
(cornerturns) is accomplished through the use of messages,
employing the MPI-A/Jtoa/Jv collective operation.

The benchmark comprises three different ST AP
implementations, involving three leveis of complexity:
easy, medium, and hard. The easy benchmark corresponds
to the post-Doppler adaptive Displaced Phased Center
Antenna (DCPA) algorithm and requires a real-time
computational throughput of 0.60 Gflops/sec. This case
represents technology used in current radar systems. The
medium benchmark case corresponds to the first-order
Doppler-factored ST AP and requires a throughput o f 6.46
Gflops/sec. The hard benchmark case corresponds to an
implementation of the third-order Doppler-factored ST AP
and requires a throughput of 39.81 Gflops/sec. The RT
ST AP also includes the implementation of the data
preprocessing typically performed before the application of
nonadaptive filtering and subsequent adaptive processing.

For the first-order Doppler factored STAP and third
order Doppler factored ST AP parallel implementations are
available that support up to 64 processors and include
software interfaces implementing function name resolution
to allow the use of specialized linear algebra routines
designed for the Sun° , Mercury0

, and Skl computing
platform vendors. For the evaluation of the hard, medium.
and easy benchmark cases, 22, 16, and 2 of the 22 available
MCARM data collection channels were used, respectively.
For ali three cases, the CPI consisted of 64 contiguous
pulses. The high performance computer must input 0.49,
3.93, and 5.41 Mbytes of real data per CPI for the easy,
medium, and hard benchrnark cases, respectively.

For RT _ST AP both the period and latency are closely
associated with the CPI of the radar system. The period

corresponds to a single CPI, and according to the MCARM
specifications, it equals 32.25 milliseconds corresponding
to a CPI with 64 pulses. The latency case requirements
dictates that data input, processing and writing to data sink
must occur within 5 CPis. This corresponds to a latency of
32.25 x 5 = 161.25 milliseconds for the MCARM. The
operation rates are specified in billions of floating-point
operations per second (Gflop/s) and are computed by
dividing the floating point operation counts from the
benchmark specifications in [CAI 97) by the period. For
this scenario, the period is equivalent to the duration of the
CPI and is 32.25 milliseconds.

B. Computational P/atforms

In this subsection we objectively describe the
configuration of the computational platforms used in this
research [SIL 99): the PC Cluster, the AFIT NOW, and the
IBM SP. The AFIT cluster of PCs1 is a continuously
evolving dedicated shared-nothing parallel machine
consisting of one Dell 450 MHz Pentium 11 processor, six
Dell 400 MHz Pentium 11 processors, one Dell 200 MHz
Pentium processar, and four Gateway 333 MHz Pentium 11
processors connected via a 100 Mb/sec full duplex 24-port
switched Fast Ethernet - the average delay through the
switch is 11 microseconds. The switch has an aggregate
internai bandwidth of 6.3 Gbitlsec and an aggregate
network bandwidth of 800 Mbitlsec. Each processar can be
booted either running Windows NT 4.0 or Linux 2.0.33
operating systems. Parallel communication is handled
through MPICH version 1.1 for Linux applications. Three
of the four Gateways have 128 Mb 15 nsec SDRAM. and
each of the Dell processors has 128 MB of 1 O nsec
SDRAM. The fourth Gateway has 256 Mb 15 nsec
SDRAM. The Pentium 200 MHz has 32 Mb of main
memory.

The AFIT NOW consists of five Sun Ultra Sparc0

workstations model 170 (170 MHz processor) and one of
model 200 (200 MHz processor). connected via the high
speed Myrinet0 switch. The processors are four-way
superscalar of version 9, with two integer ALU units and

t Also named AFIT Bimodal Cluster (ABC) in this paper.

SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 143

two pipelined FP ALUs. There is a 16 Kbyte direct-mapped
data cache and a 16 Kbyte 2-way set associative instruction
cache, both on-chip. The level-2 cache has 512 Kbytes.
Each workstation has 128 Mbytes ofRAM and two 1Gbyte
local hard disk drive. The Myrinet network includes an 8-
by-8 crossbar switch. and each link provides 1.28 Gbits/sec
in each direction. The protocol used in the messaging layer
is TCPIIP. The MPI implementation used for
communication is MPICH 1.0.1.

The IBM SP system in the Aeronautical Systems Center
Major Shared Resources Center (ASC MSRC). at Wright
Patterson AFB. is a scalable distributed memory
multicomputer based on the IBM RS/6000 Power2 SC 4-
issue superscalar processor operating at 135 MHz, and
capable of deliver 540 Mflops peak. From its 256
processors, 233 are available for computation. each one
with 1 Gbyte of main memory. The NIC includes a Power
PC 601 processor that performs DMA. The interconnection
network is a multistage Omega network, with theoretical
bandwidth of 40 MB/sec per link in each direction. The
operating system is the AIX 4.1.

III. METHODOLOGY

Investigating the use of the PC Cluster for STAP
involves two basic steps: port the RT _ST AP benchmark
into the cluster. and check for effectiveness and
performance results. This last step is explored further, by
modifying the source code of the original implementation
in order to allow it to obtain improved performance from
the platform to which it was ported. while maintaining the
portability. Additionally. the results obtained from the
original implementation o f RT _ST AP on the AFIT NOW
and IBM SP provide additional insight on the
characteristics of the benchmark and on the capabilities and
scalability of the Pile-of-PCs. The software building
process is directed to lhe use of the single-precision
standard ANSI C implementation in order to reflect lhe
default validation criteria of the benchmark, and to cope
with the fact that the PC Cluster does not have a set of
customized library routines to perform linear algebra and
signal process computations at this stage of the process.
The RT _STAP implementation supports self-validation as
one of the option flags on the command line for execution,
and this feature is used throughout to test for correctness of
results.

C. RT_STAP Source Code Modifications

The movement of data between memory and registers
can be as costly as arithmetic operations on the data. This
cost provides considerable motivation to restructure the
existing standard C implementation in order to benefit from
the surface-to-volume effect. Close examination of the co de
reveals the existence of numerous vector-scalar, vector
vector. and matrix-vector routines; also, the fast Fourier

transform (FFT) kernel is frequently used. Therefore, we
provide the PC Cluster with a Basic Linear Algebra
Subroutines (BLAS) Library and a set of customized FFT
routines that could explore the capabilities of the Pentium li
processor, and modify RT _ST AP to rnake use of it, where
applicable. We download and install a BLAS
implementation from the Sandia National Laboratories
[SAN 99). in Albuquerque, New Mexico. This Fortran
implementation. in its version l.lL and called ASCI Red
Pentium Pro BLAS. is one of the libraries developed for the
Intel ASCI Option Red Supercomputer. and is targeted to
Unix-like environments. We also downloaded the necessary
routines from a publicly available FFT package from the
Netlib repository [NET 99] named FFTPACK. It is a
widely used implementation based upon a radix-2 version
of the algorithm, but not as efficient as the mixed-radix
version [LAM 97].

D. Experimental Framework

For real-time signal processing applications, the goal of
parallel processing is also to meet specified latency
requirements. Therefore. the measure of the system
scalability must take this factor into consideration by
adopting a time constrained scaling approach that can
alleviate the sequential bottleneck and improve speedup by
scaling the problem size with the increase in machine size.
The timing specifications for the RT _ST AP benchmark
emphasize a similar approach, by determining the smallest
machine size that is required to meet a prescribed real-time
constraint by using (scaling) different problem sizes,
algorithm complexities. and latency constraints. Also, it is
important to determine the overhead contributed by
communication and 110 operations as a function of machine
size.

IV. RESULTS & ANALYSIS: ABC

A naming convention to be adopted from now on is to
call the first-order post-Doppler STAP simply by FOPD.
and the high-order post-Doppler STAP as HOPD. We start
by reporting the execution times obtained for the sequential
versions of the DPCA. FOPD, and HOPD implementations
on Table I. According to the execution times from the
original (orig.) C implementations. these results represent
improvements in sequential performance up to 16% for the
modified versions (mod.).

In regard to the parallel benchmark programs, we first
discuss the FOPD. The corresponding performance
according to the benchmark requirements is listed on Table
li. obtained for FOPD running on 7 processors - 06
Pentium 400 MHz and 1 Pentium 450 MHz. We used the
faster processor only when running with seven machines,
and we believe that the difference in pérformance is not
significant to discard the assumption of a homogeneous
environment. The percentages sustained show that lhe FFT

144 SBAC-PAD '99 li th Symposium on Compute r Architecture and High Performance Computing -Natal- Brazil

implementation was capable of meeting the requirements
for Doppler processing.

A Gantt chart was built to describe how the execution
times are spent among the different stages of the
implementation, and the length of each bar represents the
total elapsed time in seconds for each version and number
of processors, as seen in Figure 3t. We can see that the
program scales well up to 4 processors. when execution
times start to increase because the latency of inter-process
communication outperforms the reduction in computation
times, affecting the program scalability.

The high-order post-Doppler corresponds to the hardest
case between the benchmarks. It is a generalization of the
algorithmic concept applied to FOPD, being more
computationally intensive. A better computation I
communication ratio for HOPD also allowed the Pile-of
PCs to show better scalability. This time. the program
scaled up to 6 processors. mainly because higher
computation rates tend to provide better scalability in
network computers with high latency in communication
like the PC Cluster.

In order to observe how the elapsed times are
partitioned among the different stages of HOPD. as well as
time spent in communication, we also built a Gantt chart
for this ST AP implementation. The graph can be seen in
Figure 2. From the benchmark specifications, we see on
Table III that modified HOPD was capable of meeting the
real-time requirements (% sustained) only for the weights
application stage. although it fell short for Doppler
processing. A considerably larger number of processors is
needed to meet the flops/sec rate for the weight
computation stage. and this fact demands a machine with
different and improved hard./soft. communication structure
in order to allow the adding of more processors without
compromising the gains in computation times. Also, a high
levei of uniprocessor performance executing QR
decomposition is a decisive factor.

Considering the theoretical peak Mflops rate for the
Pentium 11 400 MHz is 400 Mflops (meaning an operation
completed at every clock cycle). the maximum utilization
rales achieved for FOPD and HOPD were 28% and 32% of
the theoretical maximum. respectively. Although the
interpretation of this metric depends a lot on the machine
and the application, it is a good indicator of software
performance tuning.

E. Other Platforms: AFIT NOW and IBM SP.

The main purpose of these experiments was to observe
the effect that different interprocess communication

1 The time that is accounted as miscellaneous is that relative to
memory allocation/free time. generation of coefficients, and time
spent to check the validity o f input parameters. The item disk UO
encampasses time spent in reading the parameters file. the input
data cube, the filter coefficients, and steering vectors.

!atendes and processar capabilities could have on both
application and machine scalability. Beca use ST AP is a
much more computational intensive application, the
execution times obtained from these two platforrns were
greater than those obtained by using the Pile-of-PCs for the
same number of processors (the workstations use 170 MHz
Sparc processors, and the IBM SP uses 135 MHz
processors) . although the scalability results were different,
and generally better. We start with the AFIT NOW.
Execution times from original sequential STAP programs
run on average 2.8 times faster on the PC Cluster. Table IV
shows descriptive statistics for parallel RT_STAP on the
NOW. Differently from The PC Cluster, the FOPD
program had its execution times reduced when more than 4
processors were used (see Figure 4). The reasons for these
differences reside in better communication scalability and
lower overhead provided by the pair Myrinet-TCPIIP.
Although here the protocol is again a bottleneck that does
not allow realization of better communication rales, we
were able to get good results. specially for more than 3
processors. This occurred because the times spent in
cornerturn operations and source/sink communication
experienced improvements from 4 to 6 processors, as
described in Figures 5 and 6. Specifically for more than 4
processors, source/sink communication takes less time on
lhe NOW.

The other platform used for comparison was the IBM
SP. The numbers show that lhe Pile-of-PCs is on average
2.4 times faster than IBM SP when running the original
sequential implementations. On the other hand, the IBM SP
demonstrated much more scalability in its interconnection
network. We executed the parallel implementations of
FOPD and HOPD using up to 64 processors (the limit
imposed by the implementation) . Figure 7 shows the charts
for execution times obtained on the IBM SP. The same data
for the PC Cluster is shown for comparison. The FOPD
implementation running on the IBM SP could not meet the
performance obtained by the PC Cluster running with four
processors, and the reason for that was I/0. The IBM SP
spent more time in reading the input datacube. the
parameters file, the filter coefficients, and the steering
vectors. The sum of the time spent on these 110 tasks were
on average 8.5 times higher than on the Pile (this average
considers HOPD I/0 times as well). and the effect of this
higher latency was worse on FOPD because 110 ended up
encompassing a larger part of its overall execution time. as
the number of processors increased.

In theoretical parallel computing, a common belief is
that communicatiol) overhead increases with increasing
machine sizes. but that was not totally true for FOPD and
HOPD. As the scatterplot on Figure 8 shows. the average
cornerturn times actually decrease as the number of
processors increase; this is attributed to the decreasing
message size. Other observation that can be made is that the

SBAC-PAD'99 1 lth Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 145

performance of collective operations on the Cluster of PCs
degrades fastly with the increasing number of processors
involved due to network contention. When source/sink
communication is considered, the theory completely
reflects practice: the more processors are added, higher is
the time needed to enable communication between ali of
them and the root processor. However, the effects of this
endpoint contention on elapsed times is much less intensive
on the IBM SP when compared to Pile-of-PCs, as sketched
on the scatterplot in Figure 9.

The results obtained for 64 processors, according to the
real-time requirements of the benchmark, are described on
Table V. From that Table, the maximum sustained rate was
6 Gflops/sec during the weight computation stage of
HOPD. Dividing this value evenly by the 64 processors
results in 94.2 Mflops performed by each processor, which
translates in 17.4% utilization for the POWER2 SC
processor. The result obtained for the weight computation
phase on HOPD (18%) shows that we are still far from
meeting the throughput requirements in terms of QR
decomposition operations, and that the machine can still
scale up to the hundreds, relying on a sufficiently large
problem size.

V. CONCLUS10NS

A simple costlperformance analysis between the Pile
of-PCs and the AFIT NOW clearly indicates the first as the
winner. We can derive a value around $30/Mflop/sec for
the PC Cluster running RT _ST AP: a maximum sustained
rale of 902 Mflop/sec in the weight computation phase
dividing $27,700 - the total cost for hardware and software.
The same evaluation done for the AFIT NOW produces a
much higher ratio of approximately $650/Mflop/sec.

The Pile-of-PCs and the Linux OS provided a stable and
flexible environment for development and testing.
However, the MPICH implementation running upon the
TCPIIP protocol could not utilize the full bandwidth that
can be delivered by the Fast Ethernet interconnection.
ldentical experiments done on the AFIT NOW showed that
the TCP/IP was a bottleneck in this process. The
interconnection network imposed a severe negative impact
on the scalability of the Pile, and this process seemed to be
accelerated by the fast speed of the Pentium CPU as the
machine scaled up, specially for relatively less
computationally intensive applications like first-order post
Doppler STAP.

Collective communication and reduction operations
were significantly affected, and showed rapid degradation
as the machine size increased. Comparisons made using the
results from the IBM SP showed that the reduction in
message size did not bring benefits for the cornerturn
operations on the Cluster of PCs. That indicates the current
network latency need improvements to allow the cluster to
benefit from the reduced size messages as the system scales

up. We also experienced some levei of network contention
during collective communication operations on the Pile.
Endpoint contention is another limitation present on the
PCs' interconnection network. In this case. a change on the
topology (such as to a fat tree) may provide relief to this
problem by allowing an efficient implementation of
software combining trees.

The positive results obtained by using the ASCI Red
Pentium Pro BLAS and the FFTPACK packages are
examples of effective software technology tracking that can
enhance program performance without sacrificing
portability. As the use of COTS hardware/software
becomes mainstream, demonstrating easy-to-develop
portable software for parallel computers is more important
than creating complex optimized particular solutions.

ACKNOWLEDGMENTS

We gratefully acknowledge Dr. Richard Linderman and
Mr. Zen Pryk, from AFRL Rome Laboratories, for their
general support. and for providing the RT _ST AP
Benchmark and associated input data set. Capt. Fernando
Silva was sponsored by the Brazilian Command of
Aeronautics, under the ITO no. BRTBRDF0125.

REFERENCES

[CAI 97] CAIN, K. et ai. RT_STAP: Real-Time Space-Time
Adaptive Processing Benchmark. Technica/ Report
MTR 96B0000021, MITRE Corporation. Bedford.
Mass .. Feb. 1997.

[HWA 96) HWANG, K. et. ai. Benchmark Evaluation ofthe IBM
SP2 for Parallel Signal Processing. IEEE Transactions
on Parai/e/ and Distributed Systems. vol. 7, no. 5. pp.
522-536, 1996.

[LAM 97) LAMONT, Gary. B.: GALLAGHER. David, M.
Scalable Distributed Multi-Dimensional FFT
Algorithm Design, Implementation. and Analysis.
Interim Report 2. Air Force Institute of Technology.
Summer/Fall1997.

[MIT 99] The MITRE Corp. Benchmark Results, available at
http:llwww.mitre.orglresearch!JJpc, 1999.

[NET 99) NETLIB Repository at UTK. available at
http://www.netlib.org, 1999.

[SAN 99) SANDIA National Laboratories, available at
http://www.sandia.gov, 1999.

[SIL 99) SILVA, Fernando. Parallel Digital Signal Processing
on a Network of Personal Computers - Case Study:
Space-Time Adaptive Processing. MSCS Thesis.
AF/T/GCSIENG/99]-01, Graduate School of
Engineering, Air Force Institute of Technology,
Wright-Patterson AFB OH,]une 1999.

[WAN 97] WANG, C.]. et. ai. STAP Benchmark Evaluation of
the T3D, SP2, and Paragon. Proceedings of the 1rf'
lntemational Conference on Paralle/ and Distributed
Systems, New Orleans, Oct. 1997.

[WAR 94] WARD,]. Space-Time Adaptive Processing for
Airborne Radar. Technical Report 1015, MIT Lincoln
Laboratory, DTIC n. AD-293032, 1994.

146 SBAC-PAD '99 li r h Symposium on Compute r Archirecture and High Performance Compuring -Natal- Brazil

TABLEI

RT_STAP SEQUENTIALPERFORMANCE: ABC

Prog. Avg. exec. time Std. Dev. 95% Cl (+/-)

DPCA 0.3530 0 .0017 0.0006
FOPD 2.4610 0 .0007 0 .0003
HOPD 10.7720 0 .0026 0.0009

TABLEII

FOPD PARALLEL PERFORMANCE: ABC (7 PROCESSORS)

Flops Exec. Time
Benchmark

first-order post-Doppler Requirement % sustained Count (sec) (Gflo(!s/sec)
Video to 1/Q conversion 57.016.320 0 .157 1.77 20.52
Array calibration and Pulse com~. 67,633.152 0 .086 2.10 37.4!>
Do~~ler ~rocessing 15,728,640 0.030 0.49 100.00
Weights com~utation 63,700,992 0.062 1.98 51.89
Wei9hts aeelication 3,932,160 0.005 0.12 100.00

TABLE III

HQPD PARALLEL PERFORMANCE: ABC (7 PROCESSORS)

Exec. Time Benchmark
high-order post-Doppler Flops Count (sec) Requirement % sustained

(Gflo~s/sec)

Video to 1/Q conversion 78,397,440 0.208 2.43 15.51
Array calibration and Pulse com~. 92.995,584 0.115 2.88 28.08
Do~~ler ~rocessing 21,626,880 0.040 0.67 80.70
Weights com~utation 1,074,991 ,104 1.192 33.33 2.71
Weights aeelication 16,220,160 0 .022 0 .30 100.00

--·- ·-~ --
1pr« tmd

lproc tJf'9

~P'« rmd L
'procoog

ipr« n'Od lc
s ,.ocMg

4ptocmod

4P'DC Ofl9

Jpt«mod ·J""'" -.., ..
JI'OCOTHJ

lproclf'Od

lpurcng -,.
H u u D./ I.J '·' " 11 l./

Fig. 2. Partitioning ofthe elapsed times for HOPD on ABC. Fig.3. Partitioning ofthe elapsed times for FOPD on ABC.

SBA C-PAD '99 I I th Symposium on Compute r Architecture and High Performance Computing - Natal - Erazil 147

1--FoPo-Now - a - HoPo-Now --FoPo-Asc - ><- HoPo-Asc 1

,, I • • • • • • • • • • •

~~- · ·
. "-.:__:

0~------~--------~--------~------~
1

Numb~r olproeuJots

Fig.4. Comparative execution times: NOW vs. ABC.

, __ FOPD·NDW -G- FOPD·ABC --NOPD·NOW --HOPD-ABC I 1--FOPO·NOW -e- FOPO-ABC --HOPO-NOW --H~~

' 9 0.5

O.<
t
~
~ ". 3

"
~ .. o.z
li'
"'

0.1

0~------~------------------~------~
3 5 6

Number ot processors Number of processots

spent in cornerturn operations: NOW vs. ABC. Fig. 6. Time spent in sourcelsink communications: NOW vs. ABC.

TABLEIV

0ESCRIPTIVE STATISTICS FOR PARALLEL RT _ST AP ON THE NQW

Program number of E!rocessors 2 3 4 5 6
FOPD avg. execution time 4.672 4.216 3.556 3.240 3.217

Standard devdion 0.123 0.152 0.093 0.079 0.094
95% confidence interval {+/-} 0.139 0.172 0.105 0.090 0.107

HOPD avg. execution time 18.184 15.005 11.401 9.677 8.942
standard deviation 0.291 0.112 0.220 0.147 0.126

95% confidence interval ~+/-~ 0.329 0.127 0.249 0.166 0.142

148 SBA C-PAD '99 li th Symposium on Computer Architecture and High Performance Computing - Natal- Brazil

c

- ·-10P018M SP -o- HOPOIBAI SP --o- rOPOABC ~HOPOABC

,
lO

0~~------~----------------~
1 16 JZ 6 4

Numb« OI ptOC~SSOfJ

Fig. 7. Comparative execution times: IBM SP vs. ABC.

O IOPOMM JP

n fOPD AIC

6 HOPDeM SP

O HOPD~C

1-.utfOI'D AICI

,,..,IHOI'OAIJCI

I_, IHOI'D ,., Jl'l

-1-M/fOPO~AI SI'J

..

.,

o
m

3
O,

i!)

ó

O fOI'O.M $1'

O fOI'DAI C

~ HOPD I/UISI'

O HOfJD,UC

, _ , (fOf'O AIJCI

,_,IHOI'O.fiSM

- ,_.,IIOI'OtaMJPl

I
-i

,, - --1
/f;fiJ :-_r: == :0 __--: - o - 1

o ~ • ~ r• u 1• n Jl J• •o ~ ~ •• Jl

Fig. 8. Time spent in cornertum operations: IBM SP vs. ABC. Fig. 9. Time spent in source/sink communications:
IBM SP vs. ABC.

TABLEV

SUSTAINED PERFORMANCE FOR FOPD ANO HOPD ON THE IBM SP

first-order post-Doppler Flops Count
Exec. Time Bench. Req.

% sustained (se c) (GfloE!s/sec)
Video to 1/Q conversion 57,016,320 0.034 1.77 94.72
Array calibration and Pulse com~. 67,633,152 0.020 2.10 100.00
Do~~ler ~rocessing 15,728,640 0.007 0.49 100.00
Weights com~utation 63,700,992 0.011 1.98 100.00
Wei9hts aeelication 3,932,160 0.001 0 .12 100.00

high-order post-Doppler
Video to 1/Q conversion 78,397.440 0.059 2.43 54.92
Array calibration and Pulse com~. 92,995,584 0.037 2.88 86.92
Do~~ler ~rocessing 21,626,880 0.011 0.67 100.00
Weights com~utation 1,074,991,104 0 .178 33.33 18.09
Wei9hts aeelication 16,220,160 0.004 0.30 100.00

