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Abstract-
The present work deals with the parallelization of the microcanon­

ical optimization metaheuristic (JJO), and implements a parallel algo­
rithm for the task scheduling problem on heterogencous processors un­
dcr precedence constraints without communication dclays. The Jl0 al­
gorithm consists of two iterative procedures - the initialization and lhe 
sampling phases, which are alternately applied. Our parallel imple­
mentations are based on a scheme where p processes execute altemate 
parallel versions of lhe initialization and sampling phases, coupled at a 
synchronization point. They have becn implemented on a network of 
workstations using lhe MPI communication library, and an evaluation 
of lhe quality of lhe solulions generaled has been perfonned for dif­
ferent sets of lhe algorithm paramelers. The solulion qualily has been 
measured by the makespan reduction achieved in comparison with the 
best greedy algorithm, and with tabu search, for lhe same problem in­
stances [7, 10]. The condítions under which lhe new algorithm is able to 
show a superior performance are then highlighted by our preliminary 
results. 

Ke)words- Metaheuristic parallelization, microcanonical optimiza­
tíon, task scheduling, nctwork o f workstations 

I. INTRODUCTION 

For NP-hard combinatorial problems, exact search al­
gorithms degeneratc into complete enumeration, with expo­
nential increase in CPU time, when problem size increases. 
Therefore, in practice, heuristic search algorithms are neces­
sary for finding sub-optimal solutions to these problems [5]. 
Obtaining good solutions with a guided iterative local search 
method, such as simulated annealing, is often hampered by 
long computational times, due to· the great number and/or 
the computationally intensive character of the required it­
crations. Therefore, efficient parallel implementations of 
the search algorithm éan significantly increase the size of 
the problems that can be tackled in plausible processing 
times [I]. 

The microcanonical optimization heuristic (referred, 
heretofore, as p.O) was proposed by Torreão and Roe [ 14] 

·rhe author has becn partially supported by: Project SIAMIDCCIUFMG 
(grant MCT/FINEP/PRONEX 76.97.1016.00), Project FINEP - Re­
cope/SAGE and CNPq Rcscarch Scholarship 

for image processing applications, and !ater refined and em­
ployed in the solution of the traveling salesman problem, 
yielding significant results [ 4]. The basic algorithm consists 
of two iterative procedures - initialization and sampling -, 
which are alternately applied. The initialization procedure 
implements an iterative improvement search, in order to ap­
proach a local minimum solution, while the sampling pro­
cedure tries to free itsclf from that local minimum, but at 
the same time keeping close to it, in terms of cost. The 
p.O heuristic shows good adaptability towards paralleliza­
tion, dueto its alternating two-phase structure and to the ran­
dcimness of its move selection procedure, this latter aspect 
also being responsible for its controlled diversification char­
acteristic. 

Task scheduling is a challenging problem and is known 
to be NP-hard. It deals with the choice of the partia! or­
der under which a certain number of tasks should be per­
formed, and with the assignment of such tasks to processors 
in a parallel/distributed environment. The intractability of 
this problem has led to the proposal of a large number of 
heuristics. Porto and Menascé [7], for instance, proposed 
greedy algorithms for processar assignment of parallel ap­
plications modeled by task precedence graphs in heteroge­
neous multiprocessar architectures without communication 
delays. Porto and Ribeiro [ 1 O, 9] subsequently applied the 
tabu search metaheuristic to the same problem using sequen­
tial and parallel implementations, which generated identical 
best final solutions. 

After proposing and describing general parallelization 
strategies for p.O metaheuristic, we report on the results of 
a preliminary study of these strategies applied to the task 
schcduling problem. We have decided on two implemen­
tations, among some considered alternatives, where p pro­
cesses execute alternate versions of the initialization and 
sampling phases, coupled at a synchronization point. We 
have shown that the parallel p.O heuristics, starting from a 
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random initial solution, achieves the same quality results as 
the earlier implementation [ 1 O] o f tabu search starting from 
the deterrninistic solution provided by the DES+MFT algo­
rithm. 

The next section describes the microcanonical optimiza­
tion heuristic and discusses its parallelization potential. Sec­
tion III presents the scheduling model used in the context 
of this work. In Section IV we describe the parallel algo­
rithm based on the J.LO heuristic for the scheduling problem. 
Section V reports our preliminary findings concerning the 
quality o f the solutions obtained with our parallel algorithm, 
for different parameter sets of the J.LO heuristic. Section VI 
closes this paper with final remarks and dircctions for future 
work. 

Il. THE MICROCANONICAL ÜPTIMIZATION (J.L0) 
APPROACH 

To describe the J.LO heuristic, we first consider a general 
combinatorial optimization problem, P0 , forrnulated as 

minimize c(s) 
subject to s E S, 

where S is a discrete set o f feasible solutions, and c( s) is said 
to be the cost of a solution s. 

A local search approach for solving problem Po starts from 
an initial solution s 0 E S and, at each iteration, generates a 
set of new solutions in the neighborhood, N(s), of the cur­
rent solution, s, through the application of slight perturba­
tions, called moves. A moveis an atomic change which trans­
forrns the current solution s into one of its neighbors, say s 
(s ffi move = s). Themovevalue = c(s)-c(s) isthe differ­
ence between the value of the cost function after the move, 
c(s), and its value before the move, c(s ). Ata given iteration, 
the search procedure evaluates the movevalues correspond­
ing to the set of new solutions, and selects one of them as 
the new current solution, according to a rule which tries to 
guarantee that, after a plausible number of such iterations, 
the function c(s) will be minimized. 

There have been proposed a great number of local search 
optimization heuristics along these !ines, differing basically 
on the nature o f the move selection rui e employed. J.LO is one 
such general-purpose heuristic (metaheuristic) which, sim­
ilarly to the well-known simulated annealing algorithm, is 
based on principies of statistical mechanics. 

J.LO consists of two iterative procedures - the initializa­
tion and the sampling .phases [4, 13, 14]- which are alter­
nately applied. The initialization phase searches randomly 
through the solution space for a lower-cost solution. It may 
be seen as a "hill-descending" procedure, since, at each iter­
ation, a move is randomly proposed which is accepted only 
if it imposes a cost decrease on the current solution, i.e., if 
movevalue < O. The goal here is to quickly approach a 
local-minimum solution. Optionally, an aggressive imple-

mentation of this phase can be chosen, meaning that the al­
gorithm, at each iteration, will pick the best candidate in a 
subset of possible moves. During the initialization, a list of 
the moves rejected (with a size given by sizelist) for lead­
ing to higher-cost solutions (movevalue ~ 0) is compiled, 
to be used in the subsequent sampling phase. The initial­
ization ends when a certain number of consecutive moves, 
maxmoveinit. have been rejected, meaning that the algo­
rithm is close to a local minimum. 

In the sampling phase, J.LO aims at freeing itself from the 
local minimum reached in the initialization, at the same time 
trying not to stray too much, in terms of cost, from that so­
lution. Considering a 30 space as a metaphor of the search 
space, one may envision the J.LO heuristic as trying to get 
"around the hill", instead o f "hill climbing", in order to break 
free from the local minimum. This is achieved by implement­
ing the so-called Creutz algorithm of statistical physics [3). 
where an extra degree o f freedom- called the demon- gener­
ates controlled disturbances (moves) on the current solution. 
At each sampling iteration, the randomly proposed move will 
only be accepted i f the demon can supply or receive the cost 
variation (movevalue) implied by that move. The demon 
thus restricts the maximum cost variation which is allowed 
if a move is to be effected. It is defined by two parameters: 
its capacity, dmax• and its initial load (cost), di. The sam­
pling phase generates a sequence of solutions of fixed cost, 
except for small fluctuations which are modeled by the de­
mon. Calling c( si) the cost of the solution s; obtained in the 
initialization, and d and c( s ), respectively, the costs o f the 
demon and of the solution s at a given instant in the sam­
pling, we will have c(s) + d = c(s;) + d; = constant. Thus, 
the sampling phase generates solutions in the cost interval 
(c( si) - dmax + di , c(s;) +di], with di, dmax < < c(s;). 

Therefore, d; and dmaz are the main parameters of the 
sampling phase. They are determined thus: the list of re­
jected moves compiled in the initialization is sorted in grow­
ing order of the cost jumps, and two of its lower entries are 
chosen as the values of demon capacity and initial load. The 
idea is that such values will be representative of the hills 
found in the landscape of the solution space, in the region 
being searched, thus being adequate for defining the magni­
tude o f the perturbations required for the evolution o f the cur­
rent solution in the sampling phase. This phase stops when a 
given number o f iterations, maxiter samp has been reached, 
after which a new initialization procedure is run. The algo­
rithm thus proceeds, alternating the two phases, until a stop­
ping condition (such as a certain number o f iterations without 
global improvement, maxiteralg) is obtained. 

A. Parallelizing the J.LO Metaheuristic 

Efficient parallel implementations of search algorithms 
can significantly increase the size of the problems that can 
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be solved. Work on parallel heuristic search algorithms is 
relatively recent [5] with some papers on parallelizing meta­
heuristics such as tabu search [9, 12]. 

In the case of the J.LO heuristic, one may envi­
sion different possibilities for parallel implementations 
bascd on two distinct parallelization approaches, namely: 
Neighborhood-Partitioning (NP) and Multi-Threading (MT). 
Neighborhood-Partitioning represents the class of strategies 
where p processes start the search from an unique singlc so­
lution, a neighborhood partition (a subset o f the neighbor so­
lutions) is given to each proccss atthe beginning of each iter­
ation and each process performs the local search strictly over 
this previously determined partition, during this iteration . 
Variations of such approach, for example, are based on (i) 
the partitioning scheme which defines the subset o f neighbor 
solutions on which each process will work and (i i) the heuris­
tic paramcter seuings employed by each process. Taking in to 
accountthis lauer fcature, similarly as for tabu search in [2], 
one may define two different trends: Single-Parameter­
Setting (SPS) and Mulriple-Parameter-Setting (MPS). In a 
single parameter seuing, ali processes use the same parame­
ter values, while, in the multiple parameter seuing, processes 
havc diffcrent values for the heuristic parameters. 

The Multi-Threading strategy, on the contrary, is initiated 
from different starting solutions, one for each of the p parai­
lei processes, a t the most. Each process performs the iterative 
search ovcr the entire neighborhood of its own starting solu­
tion point. Again, in this case, it is possible to establish vari­
ations based on the heuristic parameter seuings determined 
for each process, namely: the SPS and MPS approaches pre­
viously mentioned. 

The parallel J.LO algorithm will be composed of parallel 
initialization and parallel sampling phases. Between each 
pair of alternating phases, one may implement what we call 
interphase stages, during which certain interproccss commu­
nication pauerns may take placc beforc the next phase bc­
gins. The intensity o f the communication depends directly on 
thc parallel strategies being implcmented for cach phase. The 
interphase stagcs, in some cases, play the role of synchro­
nization points, but on the other hand, may also not impose 
any waiting barrier for the parallel processes. In this sense, 
when building a parallelization strategy for the J.LO heuris­
tic, one must specify: (i) a parallel strategy for the initiliza­
tion phase, (i i) a parallel strategy for the sampling phase, and 
(iii) the interprocess communication pauern at the interphase 
stages. Figures I and 2 describe the J.LO initialization and 
sampling phases, respectively. This description is generic 
enough to encompass any parallcl J.LO algorithm. 

III. THE T ASK SC HEDULING PROBLEM 

Parallel applications with regular and well-known behav­
ior, where task execution time estimates are fairly re liable, 

procedure Initialization_Phase ( s, N P ( s)) 
begin 

Let N P (s) be thc neighborhood partition to be worked on during the 
initialization phase; 

Empty list-of-rejected-moves ; 
Let maxmoves;nit be the maximum number of consecutive rejccted 

moves; 
Lct s be thc starting solution of thc initilization phasc: 
num_moves ~ O; 
while (num_m oves < maxmovesinitl do 
begin 

Choosc a fcasible move randomly, such that s e move = s' and 
s' E NP(s); 

end 

movevalue ~ c(s' )- c(s) 
if (movevalue :::;: 0) then 
begin 

Put move in the list-of-rejected-moves: 
num_moves ~ num_moves + 1: 

endif 
else 
begin 

num_moves ~ O 
s ~ s' 

cnd elsc 
end while 

Fig. I . Proccdure of the initialization phase 

are suitcd for static task scheduling, which is the case of a 
great majority of scientific applications. For these applica­
tions, the static scheduling algorithm is executed once, be­
fore the execution of the parallel program, which is then run 
severa! times according to the previously obtained schedulc. 
Consequently, even if the scheduling algorithm is a costly 
procedure, this cost will be amortized throughout the numer­
ous executions of the parallel application, since the obtained 
schedule is repeatedly applied. 

Processar heterogeneity, here represented by processors 
with different processing speeds, has already demonstrated 
the potentiality in reducing the performance degradation re­
sulting from the execution of the inherent serial fractions o f 
the parallel application on a homogeneous processar set [6]. 
Task scheduling on this heterogeneous environment is even 
more complex than on a homogeneous one [7], since the as­
signment o f a certain task to different processors may signif­
icantly affect the execution times. 

For the sake of simplicity, the task scheduling (or proces­
sar assignment) problem considered in this work does not 
explicitly represent intertask communication costs, Thus, in 
our scheduling model, a parallel application II with a set of 
n tasks T = { t 1 , · · · , tn} and a heterogeneous multipro­
cessar system composed by a set of m interconnected pro­
cessors P = {Pt , · · · , Pm} can be represented by a task 
precedence graph G(II) and an n x m matrix f..L, where 
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procedure Sampling. Phase ( s, N P( s)) 
begin 

end 

Let N P(s) be the neighborhood panition; 
Select dmar and d; from thc list-of-rejected-moves; 
Lct maxiter $amp bc thc maximum number o f iterations; 
Let s be thc staning solution of the sampling phase: 
num.iter +- O; 
d f- d; 
while (num.iter < maxiter, 0 mp) do 
begin 

Choose a feasible move randomly, 
such that se m ove= s' and s' E N P(s): 
m ovevalue +- c(s' ) - c(s) 
if (movevalue ::; 0) then 
bcgin 

if(d- movevalue :=; dmarl thcn 
begin 

s +- s' : 
d +- d - movevalue; 

end if 
end if 
else { movevalue > O } 
begin 

if (d - movevalue ~ 0) then 
begin 

s +- s' : 
d +- d - m ovevalue: 

end if 
end else 
num.iter +- num.iter + 1: 

cnd while 

Fig. 2. Proccdure o f thc sampling phase 

/1-ki = p.(tk.Pi ) is the estimated execution time of a task 
tk E T at processar Pi E P. Each processar can run 
one task at a time, ali tasks can be executed by any proces­
sar, and processors are said to be uniform in the sense that 
~ = ~· Vtk. tt E T , Vp; ,pj E P . In a framcwork with 
a single heterogeneous processar, the heterogeneity may be 
expressed by a unique parameter called processo r power ra­
tio, P P R ; which is the ratio between the processing speed of 
the fastest processar, and that o f the remaining ones (those in 
the subset o f homogeneous processors). 

Given a solution s for the scheduling problem, a proces­
sar assignment (task scheduling) function is designed as the 
mapping As : T ~ P. A task tk is said to be assigned to 
processar Pi E P in solution s if A s(tk) = Pi · The task 
scheduling problem cail then be formulated as the search for 
an optimal assignment of the set of tasks onto that of the 
processors, in terms of the makespan of the parallel applica­
tion, i.e. the completion time o f the last task being executed, 
which is the cost o f the solution s , c( s) . At the end o f the 
scheduling process, each processar ends up with an ordered 
list of tasks that will run on it as soon as they become ex­
ecutable. The neighborhood N(s) of the current solution s 

is the set of ali solutions differing from it by only a single 
assignment. If sE N(s) , then there is only one task t ; E T 
for which As(t;) # A 1(t;). Each move may be character­
ized by a simple representation given by (As(t;), t; , pt), as 
long as the position that task t; will occupy in the task list of 
procesor Pt is uniquelly defined. 

The computation of the makespan of a parallel applica­
tion [ 10] presents O(n2 ) time complexity, which determines 
a high computational cost for the entire neighborhood evalu­
ation. 

IV. THE PARALLEL p.O ALGORITHM 

Following the parallelization trends discussed before, we 
have developed two distinct parallel implementations for the 
task scheduling problem with the p.O heuristic, both based on 
a master-slave scheme where p processes execute alternate 
parallel versions of the initialization and sampling phases, 
coupled at an interphase stage which works as a synchro­
nization point coordinated by the master process. The name 
given to both algorithms is based on the ordered acronyms o f 
the parallel strategies used during the initialization and sam­
pling phases respectively. 

MT/NP parallel version In the first implementation, the 
parallelization strategy of the initialization phase is 
based on an MT-SPS approach, while the strategy used 
for the sampling phase is based on an NP-SPS approach. 
The first interphase stage, between initialization and 
sampling, determines a synchronization point, where 
the master gathers results from ali the processes and de­
termines the starting solution o f the following sampling 
phase. The second interphase stage, between the sam­
pling and initialization phases, has no communication 
between processes.Thus, the processes continue from 
the sampling to the following initialization phase with­
out any delay. 
During initialization, each process executes the ran­
dom "hill-descending" search procedure previously de­
scribed, over the entire solution space. At the synchro­
nization point, one of the processes, called the master 
process, receives the results of the initialization phase 
from ali processes and selects the best solution. If the 
master concludes that the search should proceed (stop­
ping conditions have not been attained), it broadcasts 
the selected solution to ali processes. Thus, every pro­
cess will startthe sampling phase from the same solu­
tion. However, differently from the initialization phase, 
the solution space is now divided into p disjoint and 
equally sized regions, and each process is made respon­
sible for the search over one particular region during 
the sampling phase. A region of the solution space is 
defined by a given subset of the tasks (subject to the 
scheduling) which are allowed to move (from one pro-



SBAC-PAD'99 11th Symposium on Computer Architecture and High Perfonnance Computing- Natal- Bral.il 153 

cessor to another) during the heuristic search. In order 
to assign similar workloads to each process, the subset 
of tasks is randomly selected by the master in the be­
ginning of each sampling phase. There is no synchro­
nization between the sampling phase and the following 
initialization phase, meaning that each process starts a 
new initialization phase from the solution reached dur­
ing its previous sampling phase. 

MT/MT parallel version This second implementation dis­
tinguishes itself from the previous one due exclusively 
to the parallelization approach employed during the 
sampling phase. In this case, the processes still start 
from the same best solution found during the initial­
ization phase, but the neighborhood is not partitioned 
among them. Each process is free to perform any feasi­
ble trial move in the sampling phase, without the restric­
tions imposed in the MT/NP parallel version. Initializa­
tion phase and interphase stages remain unchanged. 

Figures 4 and 3 describe the master and slave algorithms 
which implement the MT/NP parallel strategy described 
above. The master and slave algorithms for the MT/MT par­
aliei strategy are not separately presented because: (i) the 
majority of our computational tests were done considering 
the MT/NP version, and (ii) these algorithms are very sim­
ilar to the ones described in Figures 4 and 3, differing only 
by the interphase stage, where for MT/MT strategy, the mas­
ter does not divide the neighborhood into partitions before 
entering the sampling phase as explained above. 

J.LO slave(p)-algorithm { slave proccss version } 
begin 

end 

Let p be the slave process identification; 
Obtain so E S randomly; 
sp ~ so: 
continue ~ T RUE; 
while (continue = T RUE) do 
begin 

lnicialization.Phase (s); 
Send to master (Sp.list-of-rejected-moves(p)); 
Receive from master message: (continue); 
if(continue = T RUE) then 
begin 

Receive from master (Np(s),sp) 
Sampling.Phase (sp.Np(s)); 

end if 

Fig. 3. Slave version of the paralleiJJ.O algorithm 

V. PRELIMINARY NUMERICAL RESULTS 

Different parameters are needed to fully specify the par­
aliei p.O algorithm, and they were studied side-by-side, in 
order to determine the conditions under which the algorithm 

J.LO master-algorithm { master process version } 
begin 

end 

Let m be the master process identification; 
Obtain so E S randomly; 
Set maxiteratg to the max. num. ofiter. ofthe algorithm, 
without improvement on the best global solution, s·; 
num.iteratg ~O; 
s· ~ so; 
s ~ so; 
while (num.iteratg < maxitera/g) do 
begin 

lnicialization.Phase (s ,N(s )); 
{ N ( s) is the entire neighborhood} 
for each slave process p do 
{ communication between si aves and the master process} 
begin 

Receive from p (sp.list-ofrejected-moves(p)); 
if (c(sp) < c(s)) then 

end for 
if(c(s) < c(s . )) then 
begin 

s· ~ s; 
num.iter alg ~ 0; 

endif 
e !se 

num.i teralg ~ num.iteratg + 1; 
if(num. iteratg ~ maxiter0 , 9 ) then 

Send to ali slaves message: (continue = F ALS E); 
e !se 
begin 

Send to ali processes message: (continue = T RUE); 
Determine N Pp(s) for each process p (and master m); 
for each slave process p do 

Send to slavc process p: (N Pp(s),s) 
Sampling.Phase (s,N Pm (s)); 

end else 
end while 

Fig. 4. Master version of the para! lei JJ.O algorithm 

provides the best results. As the programs were executed 
on a non-dedicated network o f workstations (No W) with 
great variations of processor workload, response time was 
not considered an appropriate metric for evaluating algorithm 
performance, and thus are not reported here The parame­
ters under study are those already mentioned in Section II, 
namely: (i) maxiteralg is the maximum number of itera­
tions of the parallel p.O algorithm without improvement on 
the best found solution, s•; (ii) maxmoveinit is the maxi­
mum number of consecutive rejected moves during the ini­
tialization phase; (iii) maxiter samp is the maximum number 
of iterations during the sampling phase; (iv) sizelist is the 
size of the list of rejected moves during initialization phase; 
and (v) posd~mo is the position on the list of rejected moves 
which provides the value of the demon capacity, dmax• dur­
ing the sampling phase (we have assumed, in our implemen-
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tations, that di = dma:z: ). 

The evaluation of solution quality is based on the reJa­

tive COSI reduction, COmputed as: 'R = c(so}(~tis" } where s0 

is the solution obtained by the greedy algorithm DES+MFT 
(Detem1inistic Execution Simulation with Minimum Finish 
Ttme) [7] and s· is the best solution found by the J-LO al­
gorithm. The DES+MFT algorithm was selected because it 
produces deterministic final solutions, has previously shown 
the best results published in recent literature, and has also 
been used in [I O] to evaluate the quality o f the results yielded 
by the tabu search algorithm (sequential and parallel) for thc 
same scheduling problem. The DES+MFT algorithm itera­
tively schedules tasks following their partia) ordering (de­
scribed by the task precedence graph), according to thc sim­
ulatcd cxecution of the parallel application (DES), which is 
based on the estimated task execution times. Scheduling de­
cisions, at each iteration, are made according to the minimum 
finishing time (MFT) strictly for the tasks which are consid­
ered to be schedulable, i.e. tho se whose predecessors havc 
already been executed during this simulation. The reader is 
referred to [7) for a detailed description of the DES+MFT al­
gorithm. 

A. Experimentation Framework 

We have focused our preliminary numerical experimenta­
tion on two problcm instances. Both use the task graph struc­
ture o f the Mean V alue Analysis (MVA) [I I] solution pack­
agc for product form queuing networks, which is a diamond­
shape graph and prescnts wavefront precedence relations. 
The choice of this unique type of task precedence graph 
is based on thc results reported in [8], which demonstratcd 
and explained that for diamond-shaped graphs, tabu search 
was able to achieve significantly superior values of relative 
cost reduction ('R) than with other graphs with fewer prece­
dence constraints (fewer task dependencies in execution or­
der). Problem instances may be distinguished by regular or 
irregular estimated task execution times, thus: (i) MV Areg 
is the MVA task precedence graph with n = 100 tasks, task 
execution times equal I , except for the tasks o ver the cen­
tral vertical axis [ 10). which assume task execution times 
equal 2, number of processors to be assigned m = 5, and 
P P R = 5; and (ii) MV Arand is the MVA task precedence 
graph with n = 100 tasks, task execution time are values 
between [1.9, 2.1] for the tasks on the central vertical axis 
of the graph, and between [0.9, 1.1] for the rest of the tasks, 
number of processors to be assigned m = 4, and P P R = 4. 
The values for m and P P R were selected based on the work 
presented in [8) which has shown best results for the parallel 
tabu search algorithm. The irregularity oftask execution time 
is considered here as a mean to study a less symmetric parai­
lei application, which presumably produces a more complex 
solution space. The parallel J-LO algorithm was implemented 

using C+MPI on 4 processors of a network of workstations. 
We have also tested results of a sequential version, by ex­
ecuting the parallel algorithm on a single processar. In the 
following, we report our main conclusions based on a series 
o f experiments, and present a sample o f the obtained numer­
ical results. 

B. Preliminary Solurion Qualiry Evaluarion 

We have restricted ourselves to showing only the best re­
sults which are significant and Iead to conclusions about the 
behavior of the parallel J-LO algorithm. The results presented 
in Tables I through IV were obtained using the MT/NP strat­
egy (parallel and sequential executions), while Table V com­
pares the results obtained with both MT/NP and MT/MT par­
aliei algorithms. 

Table I shows the solution quality results, measured 
by the relative cost reduction, n, for different values 
o f maxiter samp• maxmove init and posdemo parameters. 
The best result (reduction of 25.4%) obtained using tabu 
search [I 0) (which was primarily evaluated considering 
exclusively regular MVA task precedence graphs) is also 
achieved using the parallel J-LO algorithm. It it worth notic­
ing that in the case oftabu search, the algorithm has its initial 
solution given by the greedy algorithm DES+MFT, which is 
also used as comparison for both tabu search and J-LO. How­
ever, J-LO starts from different random initial solutions, which 
yield different final results. These tables also demonstrate 
that the values of relative cost reduction decrease with in­
creasing values o f maxiter samp and maxmoveinit. In gen­
eral, the best value for posdemo equals I O, but in some cases 
greater values lead to higher rclative cost reductions. 

TABLEI 
MT/NP ALGORITHM FOR MV Areg · 

maxiter4 19 =50: maxmoveinit = 100: 

sizeli•t = 250: posdemo = 10. 

maxiter s4 mp I 50 I 250 I 500 
'R(%) 1 21.83 1 23.24 1 23.94 

maxiteralg =50: maxiter•amp = 250: 

sizeli•t = 250: posdemo = 10. 

maxmoveinit I 50 I 100 l 500 
'R(%) 1 20.42 1 23.24 1 25.35 

maxiteralg =50; maxmoveinit = 100: 

maxiter•amp = 250; sizeli•t = 250. 

posdemo I 3 I 10 I 50 
'R(%) 1 22.53 l 23.24 1 22.53 

Similar conclusions also arise by observing the results ob­
tained using the MV Arand problem instance, as shown in 
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Table li. However, in this case, relative cost reductions are 
higher and differences are more subtle for distinct parameter 
settings. 

TABLE 11 
MT/NP ALGORITHM FOR MV Arand· 

maxiteralg =50: maxmoveinit = 100: 

sizeti•t =50: posdemo = 10. 

maxiter samp I 50 I 250 I 500 
R(%) I 37.39 1 37.07 1 37.17 

maxiteratg = 50; maxiter,amp = 250; 

sizetiJ t = 250: posdemo = 10. 

maxmoveinit I 50 I 100 I 500 
R(%) 1 36.8 1 1 37.o7 1 37.95 

maxiteratg =50: maxiter,amp = 250: 

maxmove;nit = 100: sizeti•t = 250. 

posdemo I !O I 50 I 100 
R(%) 1 37.07 1 37. 13 1 37.04 

In Tablc III, we observe the results obtained for the 
lv/V Areg problem instance when running the algorithm se­
quentially (with a sing1e processar). The results are inferior 
for ali parameter values. These results are not comparable to 
those obtained with tabu search, showing the improvement 
achieved wi th our parallel implementation. It is worth not­
ing that, for the sequential version, differences in the relative 
cost reduction obtained with the various parameter sets are 
even more significant. 

TABLE 111 
SEQUENTIAL MT/NP ALGORITiiM FOR MV Areg · 

maxiteralg =50: maxmoveinit = 100: 

sizetiJt = 250; p0Sdemo = 10. 

maxiter samp I 50 1 250 1 500 
R(%) 1 -7.7 1 5.6 1 12.0 

maxiter,amp = 250: maxmoveinit = 100: 

sizeti•t = 250; posdemo = 10. 

maxiteralg I 25 I 50 1 100 
R(%) 1 19.0 1 5.6 1 19.0 

maxiteratg =50; maxiter,amp = 250; 

SÍZCti•t = 250; posdemo = 10. 

maxmoveinit I 5o 1 100 1 500 
R(%) I 4.9 1 5.6 1 2t.8 

We have also tested this sequential execution when the ini­
tial solution is given by the DES+MFT greedy algorithm, as in 

the tabu search implementation of [ 10]. Table IV shows the 
results for different values of maxitersamp· As expected, 
the relative cost reduction is significantly better than what 
was obtained in the sequential execution with random initial 
solutions, but are still inferior to those obtained in the parallel 
executions. 

TABLE IV 
SEQUENTIAL MT/NP ALGORITHM WITH DES+MFT ANO MV Areg· 

maxiteralg =50: maxmoveinit = 100: 

sizeti•t = 250: posdemo = 10. 

maxiter samp I 50 1 250 1 4oo 1 1ooo 
R(%) 1 I8.3J 14.8 1 2t.8 1 19.0 1 

Finally, in Table V we compare both parallel strategies 
running with one master and four slaves. The MT/NP parai­
lei version achieves better results, which leads us to the con­
clusion thatthe imposed randomness on the posdcmo values, 
during the sampling phase, does not determine better solu­
tion quality. 

TABLEV 
MT/NP ANO MT/MT ALGORITHMS FOR MV A reg· 

maxiteratg =50: maxmoveinit = 100: 

sizeli•t = 250: posdemo = 10. 

maxiter samp 50 250 500 
R (o/o)MT/NP 21.83 23.24 23.94 
R(o/o)MT/MT 2 1.83 22.53 21.83 

maxiteratg =50: maxiter, amp = 250: 

sizeti•t = 250; posdemo = 10. 

maxmoveinit 50 100 500 
R(o/o)MT/NP 20.42 23.24 25.35 
R(o/o)MT/MT 19.7 22.53 24.6 

VI. FINAL REMARKS 

This paper has discussed different parallelization trends 
for the p.O optimization metaheuristic. We have described 
two different parallel strategies for the application of p.O 
to the task scheduling problem on heterogenous processors. 
Both strategies were implemented and tested on a network 
of workstations, using the C+MPI platform. The implemen­
tation parameters of the heuristic were analysed for their ef­
fect on solution quality, highlighting when possible the con­
ditions under which the parallel algorithm is able to show a 
superior performance. Solution quality was measured by the 
makespan reduction relatively to the best greedy algorithm 



156 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 

reported so far (DES+MFT) [7] for this problem. We have 
shown that the parallel JJ-0 heuristic, starting from a ran­
dom initial solution, achieves the same quality result as an 
earlier implementation [I O] o f tabu search starting from the 
deterministic solution provided by the DES+MFT algorithm. 
Our ongoing work on this subject includes the performance 
evaluation of the parallel JJ-0 algorithm according to differ­
ent problem parameters, such as (i) the number o f tasks n o f 
the parallel application, (i i) the processing power ratio P P R, 
(iii) the number of processors m during the scheduling pro­
cess and (iv) the serial fraction Fs of the parallel applica­
tion. Moreover, parallel implementations where the master 
process starts from the solution provided by the DES+MFT 

greedy algorithm are a\so to be considered. Having these 
parallel procedures, and others, execute on a real parallel 
computer may also enhance ou r performance evaluation with 
numerica\ values relative to execution time and speedup. 
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