SBAC-PAD'99 1lth Symposium on Computer Architecture and High Performance Computing - Natal - Brazil 149

Parallelizing the Microcanonical Optimization
Metaheuristic: A Case Study for the Task
Scheduling Problem

Stella C.S. Porto'* André M. Barroso!, José R. A. Torredo!

! Instituto de Computagio
Universidade Federal Fluminense
Rua Passo da Pdtria 156
24210-240 Niteroi, RJ, Brazil
{stella,melon,jrat} @caa.uff.br

Abstract—

The present work deals with the parallelization of the microcanon-
ical optimization metaheuristic (¢O), and implements a parallel algo-
rithm for the task scheduling problem on heterogeneous processors un-
der precedence constraints without communication delays. The O al-
gorithm consists of two iterative procedures - the initialization and the
sampling phases, which are alternately applied. Our parallel imple-
mentations are based on a scheme where p processes execute alternate
parallel versions of the initialization and sampling phases, coupled at a
synchronization point. They have been implemented on a network of
workstations using the MPI communication library, and an evaluation
of the quality of the solutions generated has been performed for dif-
ferent sets of the algorithm parameters. The solution quality has been
measured by the makespan reduction achieved in comparison with the
best greedy algorithm, and with tabu search, for the same problem in-
stances [7, 10]. The conditions under which the new algorithm is able to
show a superior performance are then highlighted by our preliminary
results.

Keywords— Metaheuristic parallelization, microcanonical optimiza-
tion, task scheduling, network of workstations

I. INTRODUCTION

For AN'P-hard combinatorial problems, exact search al-
gorithms degenerate into complete enumeration, with expo-
nential increase in CPU time, when problem size increases.
Therefore, in practice, heuristic search algorithms are neces-
sary for finding sub-optimal solutions to these problems [5].
Obtaining good solutions with a guided iterative local search
method, such as simulated annealing, is often hampered by
long computational times, due to the great number and/or
the computationally intensive character of the required it-
erations. Therefore, efficient parallel implementations of
the search algorithm can significantly increase the size of
the problems that can be tackled in plausible processing
times [1].

The microcanonical optimization heuristic (referred,
heretofore, as pO) was proposed by Torredo and Roe [14]

*The author has been partially supported by: Project SIAM/DCC/UFMG

(grant MCT/FINEF/PRONEX 76.97.1016.00), Project FINEP - Re-
cope/SAGE and CNPq Research Scholarship

for image processing applications, and later refined and em-
ployed in the solution of the traveling salesman problem,
yielding significant results [4]. The basic algorithm consists
of two iterative procedures — initialization and sampling —,
which are alternately applied. The initialization procedure
implements an iterative improvement search, in order to ap-
proach a local minimum solution, while the sampling pro-
cedure tries to free itself from that local minimum, but at
the same time keeping close to it, in terms of cost. The
1O heuristic shows good adaptability towards paralleliza-
tion, due to its alternating two-phase structure and to the ran-
domness of its move selection procedure, this latter aspect
also being responsible for its controlled diversification char-
acteristic.

Task scheduling is a challenging problem and is known
to be N'P-hard. It deals with the choice of the partial or-
der under which a certain number of tasks should be per-
formed, and with the assignment of such tasks to processors
in a parallel/distributed environment. The intractability of
this problem has led to the proposal of a large number of
heuristics. Porto and Menascé [7], for instance, proposed
greedy algorithms for processor assignment of parallel ap-
plications modeled by task precedence graphs in heteroge-
neous multiprocessor architectures without communication
delays. Porto and Ribeiro [10, 9] subsequently applied the
tabu search metaheuristic to the same problem using sequen-
tial and parallel implementations, which generated identical
best final solutions.

After proposing and describing general parallelization
strategies for O metaheuristic, we report on the results of
a preliminary study of these strategies applied to the task
scheduling problem. We have decided on two implemen-
tations, among some considered alternatives, where p pro-
cesses execute alternate versions of the initialization and
sampling phases, coupled at a synchronization point. We
have shown that the parallel pO heuristics, starting from a

150 SBAC-PAD’99 1Ith Symposium on Computer Architecture and High Performance Computing - Natal - Brazil

random initial solution, achieves the same quality results as
the earlier implementation [10] of tabu search starting from
the deterministic solution provided by the DES+MFT algo-
rithm.

The next section describes the microcanonical optimiza-
tion heuristic and discusses its parallelization potential. Sec-
tion III presents the scheduling model used in the context
of this work. In Section IV we describe the parallel algo-
rithm based on the pO heuristic for the scheduling problem.
Section V reports our preliminary findings concerning the
quality of the solutions obtained with our parallel algorithm,
for different parameter sets of the pO heuristic. Section VI
closes this paper with final remarks and directions for future
work.

II. THE MICROCANONICAL OPTIMIZATION (p0)
APPROACH

To describe the O heuristic, we first consider a general
combinatorial optimization problem, P,, formulated as
minimize ¢(s)
subjectto s € S,
where S is a discrete set of feasible solutions, and ¢(s) is said
to be the cost of a solution s.

A local search approach for solving problem P, starts from
an initial solution s° € S and, at each iteration, generates a
set of new solutions in the neighborhood, N (s), of the cur-
rent solution, s, through the application of slight perturba-
tions, called moves. A move is an atomic change which trans-
forms the current solution s into one of its neighbors, say §
(s @ move = 5). The movevalue = ¢(5) — ¢(s) is the differ-
ence between the value of the cost function after the move,
¢(3), and its value before the move, ¢(s). Ata given iteration,
the search procedure evaluates the movevalues correspond-
ing to the set of new solutions, and selects one of them as
the new current solution, according to a rule which tries to
guarantee that, after a plausible number of such iterations,
the function ¢(s) will be minimized.

There have been proposed a great number of local search
optimization heuristics along these lines, differing basically
on the nature of the move selection rule employed. pO is one
such general-purpose heuristic (metaheuristic) which, sim-
ilarly to the well-known simulated annealing algorithm, is
based on principles of statistical mechanics.

1O consists of two iterative procedures — the initializa-
tion and the sampling phases [4, 13, 14]- which are alter-
nately applied. The initialization phase searches randomly
through the solution space for a lower-cost solution. It may
be seen as a “hill-descending” procedure, since, at each iter-
ation, a move is randomly proposed which is accepted only
if it imposes a cost decrease on the current solution, i.e., if
movevalue < 0. The goal here is to quickly approach a
local-minimum solution. Optionally, an aggressive imple-

mentation of this phase can be chosen, meaning that the al-
gorithm, at each iteration, will pick the best candidate in a
subset of possible moves. During the initialization, a list of
the moves rejected (with a size given by size);s;) for lead-
ing to higher-cost solutions (movevalue > 0) is compiled,
to be used in the subsequent sampling phase. The initial-
ization ends when a certain number of consecutive moves,
marmove;,;, have been rejected, meaning that the algo-
rithm is close to a local minimum.

In the sampling phase, O aims at freeing itself from the
local minimum reached in the initialization, at the same time
trying not to stray too much, in terms of cost, from that so-
lution. Considering a 3D space as a metaphor of the search
space, one may envision the pO heuristic as trying to get
“around the hill”, instead of “hill climbing”, in order to break
free from the local minimum. This is achieved by implement-
ing the so-called Creutz algorithm of statistical physics [3],
where an extra degree of freedom — called the demon — gener-
ates controlled disturbances (moves) on the current solution.
Ateach sampling iteration, the randomly proposed move will
only be accepted if the demon can supply or receive the cost
variation (movevalue) implied by that move. The demon
thus restricts the maximum cost variation which is allowed
if a move is to be effected. It is defined by two parameters:
its capacity, dmaz, and its initial load (cost), d;. The sam-
pling phase generates a sequence of solutions of fixed cost,
except for small fluctuations which are modeled by the de-
mon. Calling ¢(s;) the cost of the solution s; obtained in the
initialization, and d and ¢(s), respectively, the costs of the
demon and of the solution s at a given instant in the sam-
pling, we will have ¢(s) + d = ¢(s;) + d; = constant. Thus,
the sampling phase generates solutions in the cost interval
[C(Si) — dmaz + d;‘,C(Si) + d,‘], with d;, dmaz << C(S,‘).

Therefore, d; and dp,,, are the main parameters of the
sampling phase. They are determined thus: the list of re-
jected moves compiled in the initialization is sorted in grow-
ing order of the cost jumps, and two of its lower entries are
chosen as the values of demon capacity and initial load. The
idea is that such values will be representative of the hills
found in the landscape of the solution space, in the region
being searched, thus being adequate for defining the magni-
tude of the perturbations required for the evolution of the cur-
rent solution in the sampling phase. This phase stops when a
given number of iterations, mazitersqomp has been reached,
after which a new initialization procedure is run. The algo-
rithm thus proceeds, alternating the two phases, until a stop-
ping condition (such as a certain number of iterations without
global improvement, mazitery,) is obtained.

A. Parallelizing the pO Metaheuristic

Efficient parallel implementations of search algorithms
can significantly increase the size of the problems that can

SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing - Natal - Brazil 151

be solved. Work on parallel heuristic search algorithms is
relatively recent [5] with some papers on parallelizing meta-
heuristics such as tabu search [9, 12].

In the case of the pO heuristic, one may envi-
sion different possibilities for parallel implementations
based on two distinct parallelization approaches, namely:
Neighborhood-Partitioning (NP) and Multi-Threading (MT).
Neighborhood-Partitioning represents the class of strategies
where p processes start the search from an unique single so-
lution, a neighborhood partition (a subset of the neighbor so-
lutions) is given to each process at the beginning of each iter-
ation and each process performs the local search strictly over
this previously determined partition, during this iteration.
Variations of such approach, for example, are based on (i)
the partitioning scheme which defines the subset of neighbor
solutions on which each process will work and (ii) the heuris-
tic parameter settings employed by each process. Taking into
account this latter feature, similarly as for tabu search in [2],
one may define two different trends: Single-Parameter-
Serting (SPS) and Multiple-Parameter-Setting (MPS). In a
single parameter setting, all processes use the same parame-
ter values, while, in the multiple parameter setting, processes
have different values for the heuristic parameters.

The Multi-Threading strategy, on the contrary, is initiated
from different starting solutions, one for each of the p paral-
lel processes, at the most. Each process performs the iterative
search over the entire neighborhood of its own starting solu-
tion point. Again, in this case, it is possible to establish vari-
ations based on the heuristic parameter settings determined
for each process, namely: the SPS and MPS approaches pre-
viously mentioned.

The parallel pO algorithm will be composed of parallel
initialization and parallel sampling phases. Between each
pair of alternating phases, one may implement what we call
interphase stages, during which certain interprocess commu-
nication patterns may take place before the next phase be-
gins. The intensity of the communication depends directly on
the parallel strategies being implemented for each phase. The
interphase stages, in some cases, play the role of synchro-
nization points, but on the other hand, may also not impose
any waiting barrier for the parallel processes. In this sense,
when building a parallelization strategy for the pO heuris-
tic, one must specify: (i) a parallel strategy for the initiliza-
tion phase, (i1) a parallel strategy for the sampling phase, and
(iil) the interprocess communication pattern at the interphase
stages. Figures 1 and 2 describe the pO initialization and
sampling phases, respectively. This description is generic
enough to encompass any parallel £O algorithm.

III. THE TASK SCHEDULING PROBLEM

Parallel applications with regular and well-known behav-
ior, where task execution time estimates are fairly reliable,

procedure Initialization_Phase (s, N P(s))
begin
Let N P(s) be the neighborhood partition to be worked on during the
initialization phase;
Empty list-of-rejected-moves;
Let mazmoves;ni¢ be the maximum number of consecutive rejected
moves;
Let s be the starting solution of the initilization phase;
num.moves + 0,
while (num_moves < marmoves;,;;) do
begin
Choose a feasible move randomly, such that s & move = s’ and
s' € NP(s):
movevalue + c(s') — ¢(s)
if (movevalue > 0) then
begin
Put move in the list-of-rejected-moves;
num.moves + num.moves + 1;
end if
else
begin
num._moves + 0
s+ s
end else
end while
end

Fig. 1. Procedure of the initialization phase

are suited for static task scheduling, which is the case of a
great majority of scientific applications. For these applica-
tions, the static scheduling algorithm is executed once, be-
fore the execution of the parallel program, which is then run
several times according to the previously obtained schedule.
Consequently, even if the scheduling algorithm is a costly
procedure, this cost will be amortized throughout the numer-
ous executions of the parallel application, since the obtained
schedule is repeatedly applied.

Processor heterogeneity, here represented by processors
with different processing speeds, has already demonstrated
the potentiality in reducing the performance degradation re-
sulting from the execution of the inherent serial fractions of
the parallel application on a homogeneous processor set [6].
Task scheduling on this heterogeneous environment is even
more complex than on a homogeneous one [7], since the as-
signment of a certain task to different processors may signif-
icantly affect the execution times.

For the sake of simplicity, the task scheduling (or proces-
sor assignment) problem considered in this work does not
explicitly represent intertask communication costs, Thus, in
our scheduling model, a parallel application II with a set of
n tasks T = {t;,---,t,} and a heterogeneous multipro-
cessor system composed by a set of m interconnected pro-
cessors P = {p1,---,Pm} can be represented by a task
precedence graph G(II) and an n x m matrix p, where

152 SBAC-PAD'99 1Ith Symposium on Computer Architecture and High Performance Computing - Natal - Brazil

procedure Sampling_Phase (s, N P(s))
begin
Let N P(s) be the neighborhood partition;
Select dmaz and d; from the list-of-rejected-moves;
Let mazitersamp be the maximum number of iterations;
Let s be the starting solution of the sampling phase;
num_iter + 0,
d « d;
while (num_iter < mazitersamp) do
begin
Choose a feasible move randomly,
such that s @ move = s’ and s’ € NP(s):
movevalue + c(s') — ¢(s)
if (movevalue < 0) then

begin
if (d — movevalue < dmez) then
begin
s+ s
d + d — movevalue;
end if
end if
else { movevalue > 0}
begin
if (d — movevalue > 0) then
begin
s+ s
d + d — movevalue;
end if
end else
num.iter «— num.iter + 1;
end while

end

Fig. 2. Procedure of the sampling phase

prj = p(te,p;) is the estimated execution time of a task
tx € T at processor p; € P. Each processor can run
one task at a time, all tasks can be executed by any proces-
sor, and processors are said to be uniform in the sense that
'“" = ﬂ‘- ,Vtg,t; € T,Vp;,p; € P. In a framework with
a smglc helcrogencous processor, the heterogeneity may be
expressed by a unique parameter called processor power ra-
tio, PP R, which is the ratio between the processing speed of
the fastest processor, and that of the remaining ones (those in
the subset of homogeneous processors).

Given a solution s for the scheduling problem, a proces-
sor assignment (task scheduling) function is designed as the
mapping A; : T — P. A task 1 is said to be assigned to
processor p; € P in solution s if Ag(tx) = p;. The task
scheduling problem can then be formulated as the search for
an optimal assignment of the set of tasks onto that of the
processors, in terms of the makespan of the parallel applica-
tion, i.e. the completion time of the last task being executed,
which is the cost of the solution s, ¢(s). At the end of the
scheduling process, each processor ends up with an ordered
list of tasks that will run on it as soon as they become ex-
ecutable. The neighborhood N (s) of the current solution s

is the set of all solutions differing from it by only a single
assignment. If § € N(s), then there is only one task t; € T
for which A,(t;) # A;s(t;). Each move may be character-
ized by a simple representation given by (A(t;),t:, p1), as
long as the position that task £; will occupy in the task list of
procesor py is uniquelly defined.

The computation of the makespan of a parallel applica-
tion [10] presents O(n?) time complexity, which determines
a high computational cost for the entire neighborhood evalu-
ation.

IV. THE PARALLEL O ALGORITHM

Following the parallelization trends discussed before, we
have developed two distinct parallel implementations for the
task scheduling problem with the O heuristic, both based on
a master-slave scheme where p processes execute alternate
parallel versions of the initialization and sampling phases,
coupled at an interphase stage which works as a synchro-
nization point coordinated by the master process. The name
given to both algorithms is based on the ordered acronyms of
the parallel strategies used during the initialization and sam-
pling phases respectively.

MT/NP parallel version In the first implementation, the
parallelization strategy of the initialization phase is
based on an MT-SPS approach, while the strategy used
for the sampling phase is based on an NP-SPS approach.
The first interphase stage, between initialization and
sampling, determines a synchronization point, where
the master gathers results from all the processes and de-
termines the starting solution of the following sampling
phase. The second interphase stage, between the sam-
pling and initialization phases, has no communication
between processes.Thus, the processes continue from
the sampling to the following initialization phase with-
out any delay.

During initialization, each process executes the ran-
dom “hill-descending” search procedure previously de-
scribed, over the entire solution space. At the synchro-
nization point, one of the processes, called the master
process, receives the results of the initialization phase
from all processes and selects the best solution. If the
master concludes that the search should proceed (stop-
ping conditions have not been attained), it broadcasts
the selected solution to all processes. Thus, every pro-
cess will start the sampling phase from the same solu-
tion. However, differently from the initialization phase,
the solution space is now divided into p disjoint and
equally sized regions, and each process is made respon-
sible for the search over one particular region during
the sampling phase. A region of the solution space is
defined by a given subset of the tasks (subject to the
scheduling) which are allowed to move (from one pro-

SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing - Natal - Brazil 153

cessor to another) during the heuristic search. In order
to assign similar workloads to each process, the subset
of tasks is randomly selected by the master in the be-
ginning of each sampling phase. There is no synchro-
nization between the sampling phase and the following
initialization phase, meaning that each process starts a
new initialization phase from the solution reached dur-
ing its previous sampling phase.
MT/MT parallel version This second implementation dis-
tinguishes itself from the previous one due exclusively
o the parallelization approach employed during the
sampling phase. In this case, the processes still start
from the same best solution found during the initial-
ization phase, but the neighborhood is not partitioned
among them. Each process is free to perform any feasi-
ble trial move in the sampling phase, without the restric-
tions imposed in the MT/NP parallel version. Initializa-
tion phase and interphase stages remain unchanged.
Figures 4 and 3 describe the master and slave algorithms
which implement the MT/NP parallel strategy described
above. The master and slave algorithms for the MT/MT par-
allel strategy are not separately presented because: (i) the
majority of our computational tests were done considering
the MT/NP version, and (ii) these algorithms are very sim-
ilar to the ones described in Figures 4 and 3, differing only
by the interphase stage, where for MT/MT strategy, the mas-
ter does not divide the neighborhood into partitions before
entering the sampling phase as explained above.

1O slave(p)-algorithm { slave process version }
begin
Let p be the slave process identification;
Obtain sp € S randomly;
Sp 4+ S0.
continue + TRUE,
while (continue = TRUE) do
begin
Inicialization_Phase (s);
Send to master (sp,list-of-rejected-moves(p)),
Receive from master message: (continue);
if(continue = T RU E) then
begin
Receive from master (Np(s),5p)
Sampling.Phase (sp.Np(s)):
end if
end

Fig. 3. Slave version of the parallel nO algorithm

V. PRELIMINARY NUMERICAL RESULTS

Different parameters are needed to fully specify the par-
allel O algorithm, and they were studied side-by-side, in
order to determine the conditions under which the algorithm

1O master-algorithm { master process version }
begin
Let m be the master process identification;
Obtain sg € S randomly;
Set maxiter,, to the max. num. of iter. of the algorithm,
without improvement on the best global solution, s*;
num.iterqig + 0;
8" %8,
s + S0,
while (num.itery, < maziteryy) do
begin
Inicialization.Phase (s, N (s));
{N(s) is the entire neighborhood}
for each slave process p do
{communication between slaves and the master process }
begin
Receive from p (sp.list-of-rejected-moves(p));
if (c(sp) < ¢(s)) then
$ + Spi
end for
if (c(s) < ¢(s*)) then
begin
§° =8,
num.iteryy + 0;
end if
else
num.iterylg + num.itergy + 1:
if (num_iter,)y > mazitergy) then
Send to all slaves message: (continue = FALSE);
else
begin
Send to all processes message: (continue = TRUE);
Determine N Py(s) for each process p (and master m);
for each slave process p do
Send to slave process p: (N Pp(s),s)
Sampling_Phase (s,N P (s));
end else
end while
end

Fig. 4. Master version of the parallel O algorithm

provides the best results. As the programs were executed
on a non-dedicated network of workstations (NoW) with
great variations of processor workload, response time was
not considered an appropriate metric for evaluating algorithm
performance, and thus are not reported here The parame-
ters under study are those already mentioned in Section II,
namely: (i) mazitery, is the maximum number of itera-
tions of the parallel 2O algorithm without improvement on
the best found solution, s*; (ii) mazmove;ni; is the maxi-
mum number of consecutive rejected moves during the ini-
tialization phase; (iii) maziter qmp is the maximum number
of iterations during the sampling phase; (iv) sizej;s is the
size of the list of rejected moves during initialization phase;
and (V) POSdemo 1S the position on the list of rejected moves
which provides the value of the demon capacity, dpqz, dur-
ing the sampling phase (we have assumed, in our implemen-

154 SBAC-PAD'99 1lth Symposium on Computer Architecture and High Performance Computing - Natal - Brazil

tations, that d; = daz).
The evaluation of solution quality is based on the rela-

tive cost reduction, computed as: R = ﬂs—?(fé)i’—l where s°
is the solution obtained by the greedy algorithm DES+MFT
(Deterministic Execution Simulation with Minimum Finish
Time) [7] and s* is the best solution found by the pO al-
gorithm. The DES+MFT algorithm was selected because it
produces deterministic final solutions, has previously shown
the best results published in recent literature, and has also
been used in [10] to evaluate the quality of the results yielded
by the tabu search algorithm (sequential and parallel) for the
same scheduling problem. The DES+MFT algorithm itera-
tively schedules tasks following their partial ordering (de-
scribed by the task precedence graph), according to the sim-
ulated execution of the parallel application (DES), which is
based on the estimated task execution times. Scheduling de-
cisions, at each iteration, are made according to the minimum
finishing time (MFT) strictly for the tasks which are consid-
ered to be schedulable, i.e. tho se whose predecessors have
already been executed during this simulation. The reader is
referred to [7] for a detailed description of the DES+MFT al-
gorithm.

A. Experimentation Framework

We have focused our preliminary numerical experimenta-
tion on two problem instances. Both use the task graph struc-
ture of the Mean Value Analysis (MVA) [11] solution pack-
age for product form queuing networks, which is a diamond-
shape graph and presents wavefront precedence relations.
The choice of this unique type of task precedence graph
is based on the results reported in [8], which demonstrated
and explained that for diamond-shaped graphs, tabu search
was able to achieve significantly superior values of relative
cost reduction (R) than with other graphs with fewer prece-
dence constraints (fewer task dependencies in execution or-
der). Problem instances may be distinguished by regular or
irregular estimated task execution times, thus: (i) MV A,y
is the MVA task precedence graph with n = 100 tasks, task
execution times equal 1, except for the tasks over the cen-
tral vertical axis [10], which assume task execution times
equal 2, number of processors to be assigned m = 5, and
PPR = 5; and (ii) MV A, 4nq is the MVA task precedence
graph with n = 100 tasks, task execution time are values
between [1.9, 2.1] for the tasks on the central vertical axis
of the graph, and between [0.9, 1.1] for the rest of the tasks,
number of processors to be assigned m = 4, and PPR = 4.
The values for m and P PR were selected based on the work
presented in [8] which has shown best results for the parallel
tabu search algorithm. The irregularity of task execution time
is considered here as a mean to study a less symmetric paral-
lel application, which presumably produces a more complex
solution space. The parallel pO algorithm was implemented

using C+MPI on 4 processors of a network of workstations.
We have also tested results of a sequential version, by ex-
ecuting the parallel algorithm on a single processor. In the
following, we report our main conclusions based on a series
of experiments, and present a sample of the obtained numer-
ical results.

B. Preliminary Solution Quality Evaluation

We have restricted ourselves to showing only the best re-
sults which are significant and lead to conclusions about the
behavior of the parallel £O algorithm. The results presented
in Tables I through IV were obtained using the MT/NP strat-
egy (parallel and sequential executions), while Table V com-
pares the results obtained with both MT/NP and MT/MT par-
allel algorithms.

Table I shows the solution quality results, measured
by the relative cost reduction, R, for different values
of mazitersamp, Marmove;nis and posSgemo parameters.
The best result (reduction of 25.4%) obtained using tabu
search [10] (which was primarily evaluated considering
exclusively regular MVA task precedence graphs) is also
achieved using the parallel £O algorithm. It it worth notic-
ing that in the case of tabu search, the algorithm has its initial
solution given by the greedy algorithm DES+MFT, which is
also used as comparison for both tabu search and pO. How-
ever, ;O starts from different random initial solutions, which
yield different final results. These tables also demonstrate
that the values of relative cost reduction decrease with in-
creasing values of mazitersamp and mazmoveini;. In gen-
eral, the best value for posgem, equals 10, but in some cases
greater values lead to higher relative cost reductions.

TABLE I
MT/NP ALGORITHM FOR MV Areq.

mazilerq g = 50; mazmove sy = 100;
sizepise = 250; posdemo = 10.
MazTitersamp 50 250 500

R (%) 21.83 | 23.24 | 23.94

mazitery gy = 50; mazitersamp = 250,

sizepise = 250; posgemo = 10.
MATIMOVEnit 50 100 500
R (%) 20.42 | 23.24 | 25.35

mazitery g = 50; mazmoveni = 100;

magzitersamp = 250; sizep;yy = 250.
POSdemo 3 10 50
R (%) 22.53 | 23.24 | 22.53

Similar conclusions also arise by observing the results ob-
tained using the MV A, 4,4 problem instance, as shown in

SBAC-PAD’99 11th Symposium on Computer Architecture and High Performance Computing - Natal - Brazil 155

Table II. However, in this case, relative cost reductions are
higher and differences are more subtle for distinct parameter
settings.

TABLEII
MT/NP ALGORITHM FOR MV A, n4.

mazitery g = 50; nazmove;nie = 100 ‘
sizejisy =50, poSdemo = 10.
mazitersamp 50 250 500
R (%) 37.39 | 37.07 | 37.17

maziteryy = 50; mazitersamp = 250;

sizepisy = 250; posgemo = 10.

MATMOVEinit 50 100 500
R (%) 36.81 | 37.07 | 37.95

magitery)y, = 50; mazitersamp = 250;
]

mazrmove;ni = 100; sizep; 5 = 250.
POSdemo 10 50 100
R (%) 37.07 | 37.13 | 37.04

In Table III, we observe the results obtained for the
MYV A,ey problem instance when running the algorithm se-
quentially (with a single processor). The results are inferior
for all parameter values. These results are not comparable to
those obtained with tabu search, showing the improvement
achieved with our parallel implementation. It is worth not-
ing that, for the sequential version, differences in the relative
cost reduction obtained with the various parameter sets are
even more significant.

TABLE 11l
SEQUENTIAL MT/NP ALGORITHM FOR MV Areq.

maziterq g = 50; mazmoveini = 100
stzeisy = 250; posgemo = 10.
maziteTsamp | 50 | 250 | 500

R (%) 17| 5.6 12.0

magzitersamp = 250; mazmoveinis = 100;

sizejise = 250; poSdemo = 10.
maziterai, 25 | 50 [100
R (%) 19.0 | 5.6 | 19.0

maxziterqy = 50; mazitersamp = 250;

sizeyisy = 250; poSdemo = 10.
mazmove;n;; | 50 | 100 | 500
R (%) 49 | 56 | 21.8

We have also tested this sequential execution when the ini-
tial solution is given by the DES+MFT greedy algorithm, as in

the tabu search implementation of [10]. Table IV shows the
results for different values of mazitersomp. As expected,
the relative cost reduction is significantly better than what
was obtained in the sequential execution with random initial
solutions, but are still inferior to those obtained in the parallel
executions.

TABLE IV
"SEQUENTIAL MTINP ALGORITHM WITH DES+MFT AND MV A, ¢q.

mazitery)y = 50; marmove;n ¢ = 100;

sizeyise = 250; poSdemo = 10.
mazitersamp | 50 | 250 | 400
R (%) 183 | 14.8 | 21.8

1000
19.01

Finally, in Table V we compare both parallel strategies
running with one master and four slaves. The MT/NP paral-
lel version achieves better results, which leads us to the con-
clusion that the imposed randomness on the posgemo values,
during the sampling phase, does not determine better solu-
tion quality.

TABLE V
MT/NP AND MT/MT ALGORITHMS FOR MV Arq.

mazitery g = 50, marmove;niy = 100;
sizeyise = 250; posgemo = 10.
mazitersamp 50 250 500
R (%)MT/NP | 21.83 | 23.24 | 23.94
R (%0)MT/MT | 21.83 | 22.53 | 21.83

maziteryly = 50; mazitersamp = 250;

sizegise = 250; poSdemo = 10.
MATIMOVEinit 50 100 500
R (%) MT/NP | 20.42 | 23.24 | 25.35
R (%) MT/MT | 19.7 | 2253 | 24.6

VI. FINAL REMARKS

This paper has discussed different parallelization trends
for the pO optimization metaheuristic. We have described
two different parallel strategies for the application of O
to the task scheduling problem on heterogenous processors.
Both strategies were implemented and tested on a network
of workstations, using the C+MPI platform. The implemen-
tation parameters of the heuristic were analysed for their ef-
fect on solution quality, highlighting when possible the con-
ditions under which the parallel algorithm is able to show a
superior performance. Solution quality was measured by the
makespan reduction relatively to the best greedy algorithm

156 SBAC-PAD’'99 1lth Symposium on Computer Architecture and High Performance Computing - Natal - Brazil

reported so far (DES+MFT) [7] for this problem. We have
shown that the parallel O heuristic, starting from a ran-
dom initial solution, achieves the same quality result as an
earlier implementation [10] of tabu search starting from the
deterministic solution provided by the DES+MFT algorithm.
Our ongoing work on this subject includes the performance
evaluation of the parallel O algorithm according to differ-
ent problem parameters, such as (i) the number of tasks n of
the parallel application, (ii) the processing power ratio PPR,
(iii) the number of processors m during the scheduling pro-
cess and (iv) the serial fraction F; of the parallel applica-
tion. Moreover, parallel implementations where the master
process starts from the solution provided by the DES+MFT
greedy algorithm are also to be considered. Having these
parallel procedures, and others, execute on a real parallel
computer may also enhance our performance evaluation with
numerical values relative to execution time and speedup.

REFERENCES

(1] R.CORREA, A. FERREIRAand S.C.S. PORTO, Selected Algorithmic
Techniques for Parallel Optimization, chapter in Handbook of Combi-
natorics, 1998, 407-456.

[2) T.G.CRAINIC,M. TOULOUSEe M. GENDREAU, “Towards a Taxon-
omy of Parallel Tabu Search Algorithms”, Research Report CRT-933,
Centre de Recherche sur les Transports, Université de Montréal, 1993,

[3] M. CRrREUTZ, "Microcanonical Monte Carlo Simulation”, Physical Re-
view Lerters 50 (1983), p.1411.

[4] A.LINHARES and J.R.A. TORREAO, “Microcanonical Optimization
Applied to the Traveling Salesman Problem”, Intl. Journal of Modern
Physies C 9(1) (1998), 133-146.

[5] T. MAVRIDOU, P.M. PARDALOS, L. PITSOULIS and M.G.C. RE-
SENDE, “Parallel Search for Combinatorial Optimization: Genetic Al-
gorithms, Simulated Annealing, Tabu Search and GRASP”, Proceed-
ings of the Workshop on Parallel Algorithms for Irregularly Structured
Problems, Lyon, France, September 4-6, 1995.

[6] D.A. MENASCE and V. ALMEIDA, “Cost-Performance Analysis of
Heterogeneity in Supercomputer Architectures”, Proceedings of the
Supercomputing’90 Conference, New York, 1990.

[7] D.A. MENASCE, S.C.S. PORTO and S. TRIPATHI, “Processor As-
signment in Heterogeneous Parallel Architectures”, Proceedings of the
IEEE International Parallel Processing Symposium, 186-191, Beverly
Hills, 1992.

[8] S.C.S. PorTO, J.P.W. KITAJIMA, and C.C. RIBEIRO, “Perfomance
Evaluation of a Parallel Tabu Search Task Scheduling Algorithm”, ac-
cept for the Special Issue on High-Performance Computing for Oper-
ational Research of the Parallel Computing (1999).

[9] S.C.S.PorTO and C.C. RIBEIRO, * Parallel Tabu Search Message-
Passing Synchronous Strategies for Task Scheduling under Precedence
Constraints”, Journal of Heuristics | (1996), 207-233.

[10] S.C.5. PorTO and C.C. RIBEIRO, “A Tabu Search Approach to
Task Scheduling on Heterogeneous Processors under Precedence Con-
straints”, International Journal of High-Speed Computing 7 (1995),
45-71.

[11] M. REISER e S.S. LAVENBERG, “Mean Value Analysis of Closed
Multichain Queueing Networks", Journal of the Association for Com-
puting Machinery 27 (1980), 313-322.

[12] E. TAILLARD, “Parallel Taboo Search Techniques for the Job Shop
Scheduling Problem”, ORSA Journal on Computing 6 (1994), 108-
117.

[13] J.R.A. TORREAO, J.C.B. LEITE, O.G. LOQUES, and A.M. BAR-
ROSO, An Experiment with a New Heuristic for Task Scheduling in
Real-Time Distributed Systems, Technical Report RT_01-97, Applied
Computing & Automation, Universidade Federal Fluminense, Niteréi,
Brasil, January 1997.

[14] J.R.A. TORREAO and E. ROE, “Microcanonical Optimization Ap-
plied to Visual Processing”, Physics Letters A 205 (1995), 377-382.

