
SBAC-PAD'99 IIth Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 149

Parallelizing the Microcanonical Optimization
Metaheuristic: A Case Study for the Task

Scheduling Problem
Stella C.S. Porto•: André M. Barroso1, José R. A. Torreão1

1 Instituto de Computação
Universidade Federal Auminense

Rua Passo da Pátria 156
24210-240 Niterói, RJ, Brazil
{ stella.melon,jrat} @caa.uff.br

Abstract-
The present work deals with the parallelization of the microcanon­

ical optimization metaheuristic (JJO), and implements a parallel algo­
rithm for the task scheduling problem on heterogencous processors un­
dcr precedence constraints without communication dclays. The Jl0 al­
gorithm consists of two iterative procedures - the initialization and lhe
sampling phases, which are alternately applied. Our parallel imple­
mentations are based on a scheme where p processes execute altemate
parallel versions of lhe initialization and sampling phases, coupled at a
synchronization point. They have becn implemented on a network of
workstations using lhe MPI communication library, and an evaluation
of lhe quality of lhe solulions generaled has been perfonned for dif­
ferent sets of lhe algorithm paramelers. The solulion qualily has been
measured by the makespan reduction achieved in comparison with the
best greedy algorithm, and with tabu search, for lhe same problem in­
stances [7, 10]. The condítions under which lhe new algorithm is able to
show a superior performance are then highlighted by our preliminary
results.

Ke)words- Metaheuristic parallelization, microcanonical optimiza­
tíon, task scheduling, nctwork o f workstations

I. INTRODUCTION

For NP-hard combinatorial problems, exact search al­
gorithms degeneratc into complete enumeration, with expo­
nential increase in CPU time, when problem size increases.
Therefore, in practice, heuristic search algorithms are neces­
sary for finding sub-optimal solutions to these problems [5].
Obtaining good solutions with a guided iterative local search
method, such as simulated annealing, is often hampered by
long computational times, due to· the great number and/or
the computationally intensive character of the required it­
crations. Therefore, efficient parallel implementations of
the search algorithm éan significantly increase the size of
the problems that can be tackled in plausible processing
times [I].

The microcanonical optimization heuristic (referred,
heretofore, as p.O) was proposed by Torreão and Roe [14]

·rhe author has becn partially supported by: Project SIAMIDCCIUFMG
(grant MCT/FINEP/PRONEX 76.97.1016.00), Project FINEP - Re­
cope/SAGE and CNPq Rcscarch Scholarship

for image processing applications, and !ater refined and em­
ployed in the solution of the traveling salesman problem,
yielding significant results [4]. The basic algorithm consists
of two iterative procedures - initialization and sampling -,
which are alternately applied. The initialization procedure
implements an iterative improvement search, in order to ap­
proach a local minimum solution, while the sampling pro­
cedure tries to free itsclf from that local minimum, but at
the same time keeping close to it, in terms of cost. The
p.O heuristic shows good adaptability towards paralleliza­
tion, dueto its alternating two-phase structure and to the ran­
dcimness of its move selection procedure, this latter aspect
also being responsible for its controlled diversification char­
acteristic.

Task scheduling is a challenging problem and is known
to be NP-hard. It deals with the choice of the partia! or­
der under which a certain number of tasks should be per­
formed, and with the assignment of such tasks to processors
in a parallel/distributed environment. The intractability of
this problem has led to the proposal of a large number of
heuristics. Porto and Menascé [7], for instance, proposed
greedy algorithms for processar assignment of parallel ap­
plications modeled by task precedence graphs in heteroge­
neous multiprocessar architectures without communication
delays. Porto and Ribeiro [1 O, 9] subsequently applied the
tabu search metaheuristic to the same problem using sequen­
tial and parallel implementations, which generated identical
best final solutions.

After proposing and describing general parallelization
strategies for p.O metaheuristic, we report on the results of
a preliminary study of these strategies applied to the task
schcduling problem. We have decided on two implemen­
tations, among some considered alternatives, where p pro­
cesses execute alternate versions of the initialization and
sampling phases, coupled at a synchronization point. We
have shown that the parallel p.O heuristics, starting from a

150 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

random initial solution, achieves the same quality results as
the earlier implementation [1 O] o f tabu search starting from
the deterrninistic solution provided by the DES+MFT algo­
rithm.

The next section describes the microcanonical optimiza­
tion heuristic and discusses its parallelization potential. Sec­
tion III presents the scheduling model used in the context
of this work. In Section IV we describe the parallel algo­
rithm based on the J.LO heuristic for the scheduling problem.
Section V reports our preliminary findings concerning the
quality o f the solutions obtained with our parallel algorithm,
for different parameter sets of the J.LO heuristic. Section VI
closes this paper with final remarks and dircctions for future
work.

Il. THE MICROCANONICAL ÜPTIMIZATION (J.L0)
APPROACH

To describe the J.LO heuristic, we first consider a general
combinatorial optimization problem, P0 , forrnulated as

minimize c(s)
subject to s E S,

where S is a discrete set o f feasible solutions, and c(s) is said
to be the cost of a solution s.

A local search approach for solving problem Po starts from
an initial solution s 0 E S and, at each iteration, generates a
set of new solutions in the neighborhood, N(s), of the cur­
rent solution, s, through the application of slight perturba­
tions, called moves. A moveis an atomic change which trans­
forrns the current solution s into one of its neighbors, say s
(s ffi move = s). Themovevalue = c(s)-c(s) isthe differ­
ence between the value of the cost function after the move,
c(s), and its value before the move, c(s). Ata given iteration,
the search procedure evaluates the movevalues correspond­
ing to the set of new solutions, and selects one of them as
the new current solution, according to a rule which tries to
guarantee that, after a plausible number of such iterations,
the function c(s) will be minimized.

There have been proposed a great number of local search
optimization heuristics along these !ines, differing basically
on the nature o f the move selection rui e employed. J.LO is one
such general-purpose heuristic (metaheuristic) which, sim­
ilarly to the well-known simulated annealing algorithm, is
based on principies of statistical mechanics.

J.LO consists of two iterative procedures - the initializa­
tion and the sampling .phases [4, 13, 14]- which are alter­
nately applied. The initialization phase searches randomly
through the solution space for a lower-cost solution. It may
be seen as a "hill-descending" procedure, since, at each iter­
ation, a move is randomly proposed which is accepted only
if it imposes a cost decrease on the current solution, i.e., if
movevalue < O. The goal here is to quickly approach a
local-minimum solution. Optionally, an aggressive imple-

mentation of this phase can be chosen, meaning that the al­
gorithm, at each iteration, will pick the best candidate in a
subset of possible moves. During the initialization, a list of
the moves rejected (with a size given by sizelist) for lead­
ing to higher-cost solutions (movevalue ~ 0) is compiled,
to be used in the subsequent sampling phase. The initial­
ization ends when a certain number of consecutive moves,
maxmoveinit. have been rejected, meaning that the algo­
rithm is close to a local minimum.

In the sampling phase, J.LO aims at freeing itself from the
local minimum reached in the initialization, at the same time
trying not to stray too much, in terms of cost, from that so­
lution. Considering a 30 space as a metaphor of the search
space, one may envision the J.LO heuristic as trying to get
"around the hill", instead o f "hill climbing", in order to break
free from the local minimum. This is achieved by implement­
ing the so-called Creutz algorithm of statistical physics [3).
where an extra degree o f freedom- called the demon- gener­
ates controlled disturbances (moves) on the current solution.
At each sampling iteration, the randomly proposed move will
only be accepted i f the demon can supply or receive the cost
variation (movevalue) implied by that move. The demon
thus restricts the maximum cost variation which is allowed
if a move is to be effected. It is defined by two parameters:
its capacity, dmax• and its initial load (cost), di. The sam­
pling phase generates a sequence of solutions of fixed cost,
except for small fluctuations which are modeled by the de­
mon. Calling c(si) the cost of the solution s; obtained in the
initialization, and d and c(s), respectively, the costs o f the
demon and of the solution s at a given instant in the sam­
pling, we will have c(s) + d = c(s;) + d; = constant. Thus,
the sampling phase generates solutions in the cost interval
(c(si) - dmax + di , c(s;) +di], with di, dmax < < c(s;).

Therefore, d; and dmaz are the main parameters of the
sampling phase. They are determined thus: the list of re­
jected moves compiled in the initialization is sorted in grow­
ing order of the cost jumps, and two of its lower entries are
chosen as the values of demon capacity and initial load. The
idea is that such values will be representative of the hills
found in the landscape of the solution space, in the region
being searched, thus being adequate for defining the magni­
tude o f the perturbations required for the evolution o f the cur­
rent solution in the sampling phase. This phase stops when a
given number o f iterations, maxiter samp has been reached,
after which a new initialization procedure is run. The algo­
rithm thus proceeds, alternating the two phases, until a stop­
ping condition (such as a certain number o f iterations without
global improvement, maxiteralg) is obtained.

A. Parallelizing the J.LO Metaheuristic

Efficient parallel implementations of search algorithms
can significantly increase the size of the problems that can

SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 151

be solved. Work on parallel heuristic search algorithms is
relatively recent [5] with some papers on parallelizing meta­
heuristics such as tabu search [9, 12].

In the case of the J.LO heuristic, one may envi­
sion different possibilities for parallel implementations
bascd on two distinct parallelization approaches, namely:
Neighborhood-Partitioning (NP) and Multi-Threading (MT).
Neighborhood-Partitioning represents the class of strategies
where p processes start the search from an unique singlc so­
lution, a neighborhood partition (a subset o f the neighbor so­
lutions) is given to each proccss atthe beginning of each iter­
ation and each process performs the local search strictly over
this previously determined partition, during this iteration .
Variations of such approach, for example, are based on (i)
the partitioning scheme which defines the subset o f neighbor
solutions on which each process will work and (i i) the heuris­
tic paramcter seuings employed by each process. Taking in to
accountthis lauer fcature, similarly as for tabu search in [2],
one may define two different trends: Single-Parameter­
Setting (SPS) and Mulriple-Parameter-Setting (MPS). In a
single parameter seuing, ali processes use the same parame­
ter values, while, in the multiple parameter seuing, processes
havc diffcrent values for the heuristic parameters.

The Multi-Threading strategy, on the contrary, is initiated
from different starting solutions, one for each of the p parai­
lei processes, a t the most. Each process performs the iterative
search ovcr the entire neighborhood of its own starting solu­
tion point. Again, in this case, it is possible to establish vari­
ations based on the heuristic parameter seuings determined
for each process, namely: the SPS and MPS approaches pre­
viously mentioned.

The parallel J.LO algorithm will be composed of parallel
initialization and parallel sampling phases. Between each
pair of alternating phases, one may implement what we call
interphase stages, during which certain interproccss commu­
nication pauerns may take placc beforc the next phase bc­
gins. The intensity o f the communication depends directly on
thc parallel strategies being implcmented for cach phase. The
interphase stagcs, in some cases, play the role of synchro­
nization points, but on the other hand, may also not impose
any waiting barrier for the parallel processes. In this sense,
when building a parallelization strategy for the J.LO heuris­
tic, one must specify: (i) a parallel strategy for the initiliza­
tion phase, (i i) a parallel strategy for the sampling phase, and
(iii) the interprocess communication pauern at the interphase
stages. Figures I and 2 describe the J.LO initialization and
sampling phases, respectively. This description is generic
enough to encompass any parallcl J.LO algorithm.

III. THE T ASK SC HEDULING PROBLEM

Parallel applications with regular and well-known behav­
ior, where task execution time estimates are fairly re liable,

procedure Initialization_Phase (s, N P (s))
begin

Let N P (s) be thc neighborhood partition to be worked on during the
initialization phase;

Empty list-of-rejected-moves ;
Let maxmoves;nit be the maximum number of consecutive rejccted

moves;
Lct s be thc starting solution of thc initilization phasc:
num_moves ~ O;
while (num_m oves < maxmovesinitl do
begin

Choosc a fcasible move randomly, such that s e move = s' and
s' E NP(s);

end

movevalue ~ c(s')- c(s)
if (movevalue :::;: 0) then
begin

Put move in the list-of-rejected-moves:
num_moves ~ num_moves + 1:

endif
else
begin

num_moves ~ O
s ~ s'

cnd elsc
end while

Fig. I . Proccdure of the initialization phase

are suitcd for static task scheduling, which is the case of a
great majority of scientific applications. For these applica­
tions, the static scheduling algorithm is executed once, be­
fore the execution of the parallel program, which is then run
severa! times according to the previously obtained schedulc.
Consequently, even if the scheduling algorithm is a costly
procedure, this cost will be amortized throughout the numer­
ous executions of the parallel application, since the obtained
schedule is repeatedly applied.

Processar heterogeneity, here represented by processors
with different processing speeds, has already demonstrated
the potentiality in reducing the performance degradation re­
sulting from the execution of the inherent serial fractions o f
the parallel application on a homogeneous processar set [6].
Task scheduling on this heterogeneous environment is even
more complex than on a homogeneous one [7], since the as­
signment o f a certain task to different processors may signif­
icantly affect the execution times.

For the sake of simplicity, the task scheduling (or proces­
sar assignment) problem considered in this work does not
explicitly represent intertask communication costs, Thus, in
our scheduling model, a parallel application II with a set of
n tasks T = { t 1 , · · · , tn} and a heterogeneous multipro­
cessar system composed by a set of m interconnected pro­
cessors P = {Pt , · · · , Pm} can be represented by a task
precedence graph G(II) and an n x m matrix f..L, where

152 SBA C-PAD '99 11th Symposium on Compu ter Architecture and High Performance Computing - Natal - Brazil

procedure Sampling. Phase (s, N P(s))
begin

end

Let N P(s) be the neighborhood panition;
Select dmar and d; from thc list-of-rejected-moves;
Lct maxiter $amp bc thc maximum number o f iterations;
Let s be thc staning solution of the sampling phase:
num.iter +- O;
d f- d;
while (num.iter < maxiter, 0 mp) do
begin

Choose a feasible move randomly,
such that se m ove= s' and s' E N P(s):
m ovevalue +- c(s') - c(s)
if (movevalue ::; 0) then
bcgin

if(d- movevalue :=; dmarl thcn
begin

s +- s' :
d +- d - movevalue;

end if
end if
else { movevalue > O }
begin

if (d - movevalue ~ 0) then
begin

s +- s' :
d +- d - m ovevalue:

end if
end else
num.iter +- num.iter + 1:

cnd while

Fig. 2. Proccdure o f thc sampling phase

/1-ki = p.(tk.Pi) is the estimated execution time of a task
tk E T at processar Pi E P. Each processar can run
one task at a time, ali tasks can be executed by any proces­
sar, and processors are said to be uniform in the sense that
~ = ~· Vtk. tt E T , Vp; ,pj E P . In a framcwork with
a single heterogeneous processar, the heterogeneity may be
expressed by a unique parameter called processo r power ra­
tio, P P R ; which is the ratio between the processing speed of
the fastest processar, and that o f the remaining ones (those in
the subset o f homogeneous processors).

Given a solution s for the scheduling problem, a proces­
sar assignment (task scheduling) function is designed as the
mapping As : T ~ P. A task tk is said to be assigned to
processar Pi E P in solution s if A s(tk) = Pi · The task
scheduling problem cail then be formulated as the search for
an optimal assignment of the set of tasks onto that of the
processors, in terms of the makespan of the parallel applica­
tion, i.e. the completion time o f the last task being executed,
which is the cost o f the solution s , c(s) . At the end o f the
scheduling process, each processar ends up with an ordered
list of tasks that will run on it as soon as they become ex­
ecutable. The neighborhood N(s) of the current solution s

is the set of ali solutions differing from it by only a single
assignment. If sE N(s) , then there is only one task t ; E T
for which As(t;) # A 1(t;). Each move may be character­
ized by a simple representation given by (As(t;), t; , pt), as
long as the position that task t; will occupy in the task list of
procesor Pt is uniquelly defined.

The computation of the makespan of a parallel applica­
tion [10] presents O(n2) time complexity, which determines
a high computational cost for the entire neighborhood evalu­
ation.

IV. THE PARALLEL p.O ALGORITHM

Following the parallelization trends discussed before, we
have developed two distinct parallel implementations for the
task scheduling problem with the p.O heuristic, both based on
a master-slave scheme where p processes execute alternate
parallel versions of the initialization and sampling phases,
coupled at an interphase stage which works as a synchro­
nization point coordinated by the master process. The name
given to both algorithms is based on the ordered acronyms o f
the parallel strategies used during the initialization and sam­
pling phases respectively.

MT/NP parallel version In the first implementation, the
parallelization strategy of the initialization phase is
based on an MT-SPS approach, while the strategy used
for the sampling phase is based on an NP-SPS approach.
The first interphase stage, between initialization and
sampling, determines a synchronization point, where
the master gathers results from ali the processes and de­
termines the starting solution o f the following sampling
phase. The second interphase stage, between the sam­
pling and initialization phases, has no communication
between processes.Thus, the processes continue from
the sampling to the following initialization phase with­
out any delay.
During initialization, each process executes the ran­
dom "hill-descending" search procedure previously de­
scribed, over the entire solution space. At the synchro­
nization point, one of the processes, called the master
process, receives the results of the initialization phase
from ali processes and selects the best solution. If the
master concludes that the search should proceed (stop­
ping conditions have not been attained), it broadcasts
the selected solution to ali processes. Thus, every pro­
cess will startthe sampling phase from the same solu­
tion. However, differently from the initialization phase,
the solution space is now divided into p disjoint and
equally sized regions, and each process is made respon­
sible for the search over one particular region during
the sampling phase. A region of the solution space is
defined by a given subset of the tasks (subject to the
scheduling) which are allowed to move (from one pro-

SBAC-PAD'99 11th Symposium on Computer Architecture and High Perfonnance Computing- Natal- Bral.il 153

cessor to another) during the heuristic search. In order
to assign similar workloads to each process, the subset
of tasks is randomly selected by the master in the be­
ginning of each sampling phase. There is no synchro­
nization between the sampling phase and the following
initialization phase, meaning that each process starts a
new initialization phase from the solution reached dur­
ing its previous sampling phase.

MT/MT parallel version This second implementation dis­
tinguishes itself from the previous one due exclusively
to the parallelization approach employed during the
sampling phase. In this case, the processes still start
from the same best solution found during the initial­
ization phase, but the neighborhood is not partitioned
among them. Each process is free to perform any feasi­
ble trial move in the sampling phase, without the restric­
tions imposed in the MT/NP parallel version. Initializa­
tion phase and interphase stages remain unchanged.

Figures 4 and 3 describe the master and slave algorithms
which implement the MT/NP parallel strategy described
above. The master and slave algorithms for the MT/MT par­
aliei strategy are not separately presented because: (i) the
majority of our computational tests were done considering
the MT/NP version, and (ii) these algorithms are very sim­
ilar to the ones described in Figures 4 and 3, differing only
by the interphase stage, where for MT/MT strategy, the mas­
ter does not divide the neighborhood into partitions before
entering the sampling phase as explained above.

J.LO slave(p)-algorithm { slave proccss version }
begin

end

Let p be the slave process identification;
Obtain so E S randomly;
sp ~ so:
continue ~ T RUE;
while (continue = T RUE) do
begin

lnicialization.Phase (s);
Send to master (Sp.list-of-rejected-moves(p));
Receive from master message: (continue);
if(continue = T RUE) then
begin

Receive from master (Np(s),sp)
Sampling.Phase (sp.Np(s));

end if

Fig. 3. Slave version of the paralleiJJ.O algorithm

V. PRELIMINARY NUMERICAL RESULTS

Different parameters are needed to fully specify the par­
aliei p.O algorithm, and they were studied side-by-side, in
order to determine the conditions under which the algorithm

J.LO master-algorithm { master process version }
begin

end

Let m be the master process identification;
Obtain so E S randomly;
Set maxiteratg to the max. num. ofiter. ofthe algorithm,
without improvement on the best global solution, s·;
num.iteratg ~O;
s· ~ so;
s ~ so;
while (num.iteratg < maxitera/g) do
begin

lnicialization.Phase (s ,N(s));
{ N (s) is the entire neighborhood}
for each slave process p do
{ communication between si aves and the master process}
begin

Receive from p (sp.list-ofrejected-moves(p));
if (c(sp) < c(s)) then

end for
if(c(s) < c(s .)) then
begin

s· ~ s;
num.iter alg ~ 0;

endif
e !se

num.i teralg ~ num.iteratg + 1;
if(num. iteratg ~ maxiter0 , 9) then

Send to ali slaves message: (continue = F ALS E);
e !se
begin

Send to ali processes message: (continue = T RUE);
Determine N Pp(s) for each process p (and master m);
for each slave process p do

Send to slavc process p: (N Pp(s),s)
Sampling.Phase (s,N Pm (s));

end else
end while

Fig. 4. Master version of the para! lei JJ.O algorithm

provides the best results. As the programs were executed
on a non-dedicated network o f workstations (No W) with
great variations of processor workload, response time was
not considered an appropriate metric for evaluating algorithm
performance, and thus are not reported here The parame­
ters under study are those already mentioned in Section II,
namely: (i) maxiteralg is the maximum number of itera­
tions of the parallel p.O algorithm without improvement on
the best found solution, s•; (ii) maxmoveinit is the maxi­
mum number of consecutive rejected moves during the ini­
tialization phase; (iii) maxiter samp is the maximum number
of iterations during the sampling phase; (iv) sizelist is the
size of the list of rejected moves during initialization phase;
and (v) posd~mo is the position on the list of rejected moves
which provides the value of the demon capacity, dmax• dur­
ing the sampling phase (we have assumed, in our implemen-

154 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

tations, that di = dma:z:).

The evaluation of solution quality is based on the reJa­

tive COSI reduction, COmputed as: 'R = c(so}(~tis" } where s0

is the solution obtained by the greedy algorithm DES+MFT
(Detem1inistic Execution Simulation with Minimum Finish
Ttme) [7] and s· is the best solution found by the J-LO al­
gorithm. The DES+MFT algorithm was selected because it
produces deterministic final solutions, has previously shown
the best results published in recent literature, and has also
been used in [I O] to evaluate the quality o f the results yielded
by the tabu search algorithm (sequential and parallel) for thc
same scheduling problem. The DES+MFT algorithm itera­
tively schedules tasks following their partia) ordering (de­
scribed by the task precedence graph), according to thc sim­
ulatcd cxecution of the parallel application (DES), which is
based on the estimated task execution times. Scheduling de­
cisions, at each iteration, are made according to the minimum
finishing time (MFT) strictly for the tasks which are consid­
ered to be schedulable, i.e. tho se whose predecessors havc
already been executed during this simulation. The reader is
referred to [7) for a detailed description of the DES+MFT al­
gorithm.

A. Experimentation Framework

We have focused our preliminary numerical experimenta­
tion on two problcm instances. Both use the task graph struc­
ture o f the Mean V alue Analysis (MVA) [I I] solution pack­
agc for product form queuing networks, which is a diamond­
shape graph and prescnts wavefront precedence relations.
The choice of this unique type of task precedence graph
is based on thc results reported in [8], which demonstratcd
and explained that for diamond-shaped graphs, tabu search
was able to achieve significantly superior values of relative
cost reduction ('R) than with other graphs with fewer prece­
dence constraints (fewer task dependencies in execution or­
der). Problem instances may be distinguished by regular or
irregular estimated task execution times, thus: (i) MV Areg
is the MVA task precedence graph with n = 100 tasks, task
execution times equal I , except for the tasks o ver the cen­
tral vertical axis [10). which assume task execution times
equal 2, number of processors to be assigned m = 5, and
P P R = 5; and (ii) MV Arand is the MVA task precedence
graph with n = 100 tasks, task execution time are values
between [1.9, 2.1] for the tasks on the central vertical axis
of the graph, and between [0.9, 1.1] for the rest of the tasks,
number of processors to be assigned m = 4, and P P R = 4.
The values for m and P P R were selected based on the work
presented in [8) which has shown best results for the parallel
tabu search algorithm. The irregularity oftask execution time
is considered here as a mean to study a less symmetric parai­
lei application, which presumably produces a more complex
solution space. The parallel J-LO algorithm was implemented

using C+MPI on 4 processors of a network of workstations.
We have also tested results of a sequential version, by ex­
ecuting the parallel algorithm on a single processar. In the
following, we report our main conclusions based on a series
o f experiments, and present a sample o f the obtained numer­
ical results.

B. Preliminary Solurion Qualiry Evaluarion

We have restricted ourselves to showing only the best re­
sults which are significant and Iead to conclusions about the
behavior of the parallel J-LO algorithm. The results presented
in Tables I through IV were obtained using the MT/NP strat­
egy (parallel and sequential executions), while Table V com­
pares the results obtained with both MT/NP and MT/MT par­
aliei algorithms.

Table I shows the solution quality results, measured
by the relative cost reduction, n, for different values
o f maxiter samp• maxmove init and posdemo parameters.
The best result (reduction of 25.4%) obtained using tabu
search [I 0) (which was primarily evaluated considering
exclusively regular MVA task precedence graphs) is also
achieved using the parallel J-LO algorithm. It it worth notic­
ing that in the case oftabu search, the algorithm has its initial
solution given by the greedy algorithm DES+MFT, which is
also used as comparison for both tabu search and J-LO. How­
ever, J-LO starts from different random initial solutions, which
yield different final results. These tables also demonstrate
that the values of relative cost reduction decrease with in­
creasing values o f maxiter samp and maxmoveinit. In gen­
eral, the best value for posdemo equals I O, but in some cases
greater values lead to higher rclative cost reductions.

TABLEI
MT/NP ALGORITHM FOR MV Areg ·

maxiter4 19 =50: maxmoveinit = 100:

sizeli•t = 250: posdemo = 10.

maxiter s4 mp I 50 I 250 I 500
'R(%) 1 21.83 1 23.24 1 23.94

maxiteralg =50: maxiter•amp = 250:

sizeli•t = 250: posdemo = 10.

maxmoveinit I 50 I 100 l 500
'R(%) 1 20.42 1 23.24 1 25.35

maxiteralg =50; maxmoveinit = 100:

maxiter•amp = 250; sizeli•t = 250.

posdemo I 3 I 10 I 50
'R(%) 1 22.53 l 23.24 1 22.53

Similar conclusions also arise by observing the results ob­
tained using the MV Arand problem instance, as shown in

SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 155

Table li. However, in this case, relative cost reductions are
higher and differences are more subtle for distinct parameter
settings.

TABLE 11
MT/NP ALGORITHM FOR MV Arand·

maxiteralg =50: maxmoveinit = 100:

sizeti•t =50: posdemo = 10.

maxiter samp I 50 I 250 I 500
R(%) I 37.39 1 37.07 1 37.17

maxiteratg = 50; maxiter,amp = 250;

sizetiJ t = 250: posdemo = 10.

maxmoveinit I 50 I 100 I 500
R(%) 1 36.8 1 1 37.o7 1 37.95

maxiteratg =50: maxiter,amp = 250:

maxmove;nit = 100: sizeti•t = 250.

posdemo I !O I 50 I 100
R(%) 1 37.07 1 37. 13 1 37.04

In Tablc III, we observe the results obtained for the
lv/V Areg problem instance when running the algorithm se­
quentially (with a sing1e processar). The results are inferior
for ali parameter values. These results are not comparable to
those obtained with tabu search, showing the improvement
achieved wi th our parallel implementation. It is worth not­
ing that, for the sequential version, differences in the relative
cost reduction obtained with the various parameter sets are
even more significant.

TABLE 111
SEQUENTIAL MT/NP ALGORITiiM FOR MV Areg ·

maxiteralg =50: maxmoveinit = 100:

sizetiJt = 250; p0Sdemo = 10.

maxiter samp I 50 1 250 1 500
R(%) 1 -7.7 1 5.6 1 12.0

maxiter,amp = 250: maxmoveinit = 100:

sizeti•t = 250; posdemo = 10.

maxiteralg I 25 I 50 1 100
R(%) 1 19.0 1 5.6 1 19.0

maxiteratg =50; maxiter,amp = 250;

SÍZCti•t = 250; posdemo = 10.

maxmoveinit I 5o 1 100 1 500
R(%) I 4.9 1 5.6 1 2t.8

We have also tested this sequential execution when the ini­
tial solution is given by the DES+MFT greedy algorithm, as in

the tabu search implementation of [10]. Table IV shows the
results for different values of maxitersamp· As expected,
the relative cost reduction is significantly better than what
was obtained in the sequential execution with random initial
solutions, but are still inferior to those obtained in the parallel
executions.

TABLE IV
SEQUENTIAL MT/NP ALGORITHM WITH DES+MFT ANO MV Areg·

maxiteralg =50: maxmoveinit = 100:

sizeti•t = 250: posdemo = 10.

maxiter samp I 50 1 250 1 4oo 1 1ooo
R(%) 1 I8.3J 14.8 1 2t.8 1 19.0 1

Finally, in Table V we compare both parallel strategies
running with one master and four slaves. The MT/NP parai­
lei version achieves better results, which leads us to the con­
clusion thatthe imposed randomness on the posdcmo values,
during the sampling phase, does not determine better solu­
tion quality.

TABLEV
MT/NP ANO MT/MT ALGORITHMS FOR MV A reg·

maxiteratg =50: maxmoveinit = 100:

sizeli•t = 250: posdemo = 10.

maxiter samp 50 250 500
R (o/o)MT/NP 21.83 23.24 23.94
R(o/o)MT/MT 2 1.83 22.53 21.83

maxiteratg =50: maxiter, amp = 250:

sizeti•t = 250; posdemo = 10.

maxmoveinit 50 100 500
R(o/o)MT/NP 20.42 23.24 25.35
R(o/o)MT/MT 19.7 22.53 24.6

VI. FINAL REMARKS

This paper has discussed different parallelization trends
for the p.O optimization metaheuristic. We have described
two different parallel strategies for the application of p.O
to the task scheduling problem on heterogenous processors.
Both strategies were implemented and tested on a network
of workstations, using the C+MPI platform. The implemen­
tation parameters of the heuristic were analysed for their ef­
fect on solution quality, highlighting when possible the con­
ditions under which the parallel algorithm is able to show a
superior performance. Solution quality was measured by the
makespan reduction relatively to the best greedy algorithm

156 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

reported so far (DES+MFT) [7] for this problem. We have
shown that the parallel JJ-0 heuristic, starting from a ran­
dom initial solution, achieves the same quality result as an
earlier implementation [I O] o f tabu search starting from the
deterministic solution provided by the DES+MFT algorithm.
Our ongoing work on this subject includes the performance
evaluation of the parallel JJ-0 algorithm according to differ­
ent problem parameters, such as (i) the number o f tasks n o f
the parallel application, (i i) the processing power ratio P P R,
(iii) the number of processors m during the scheduling pro­
cess and (iv) the serial fraction Fs of the parallel applica­
tion. Moreover, parallel implementations where the master
process starts from the solution provided by the DES+MFT

greedy algorithm are a\so to be considered. Having these
parallel procedures, and others, execute on a real parallel
computer may also enhance ou r performance evaluation with
numerica\ values relative to execution time and speedup.

REFERENCES

(I] R . CORRÊA. A. FERREIRAand S.C.S. PORTO, Selected Algorithmic
Techniques for Parnllel Optimization, chapter in Handbook ofCombi­
naroric.f, 1998, 407-456.

(2] T.G . CRAINIC, M. TOULOUSEe M . GENDREAU, "Towards a Taxon­
omy of Parnllel Tabu Search Algorithms", Research Repon CRT-933.
Centre de Rechcrchc sur les Transpon s. Universilé de Montréal, 1993.

[3] M. CREUTZ. "Microcanonical Monte Carlo Simulation", Physical Re­
view Le11ers 50 (1983). p. l4 11.

[4] A. LI NHARES and J .R .A. TORREÃO, "Microcanonic:tl OptimiUltion
Applied to thc Traveling Salesman Problem", Inrl. Joumal of Modem
Physics C 9(I)(1998). 133- 146.

(5] T. MAVRIDOU. P.M . PARDALOS, L . PITSOULIS and M .G.C. RE­
SEN DE, "Parallel Search forCombinatorial Optimization: Genetic Al­
gorithms. Simulated Annealing, Tabu Search and GRASP", Proceed­
ings o f the Workshop on Parai/e/ Algoritluns for Jrregularly Structured
Problems. Lyon, France, September 4-6, 1995.

[6] D.A. MENASCÉ and V. ALMEIDA, "Cosi-Performance Analysis of
Heterogeneity in S upercomputcr Architectures". Procudings of rhe
Supercomputing'90 Conference, New York, 1990.

[7] O .A. MENASCÉ, S .C .S. PORTO and S. TRIPATHI. "Processor As­
signment in Hcterogcncous Parnllcl Architectures", Proceedings ofthe
IEEE lnternational Parai/e/ Processing Symposium, 186-191, Beverly
Hills. 1992.

[8] S .C .S. PORTO, J .P.W. KITAJIMA, and C.C . RIBEIRO, "Perfomance
Evaluation of a Parallel Tabu Search Task Scheduling Algorithm". ac­
ccpt for the Special lssue on High-Performance Computing for Oper­
ational Research of the Parai/ti Computing (1999).

(9] S.C.S. PORTO and C.C. RIBEIRO," Parallel Tabu Search Message­
Passing Synchronous Strategies for Task Scheduling under Precedence
Constraints". Joumal of Heuristics I (1996). 207-233.

[10] S .C.S. PORTO and C .C. RIBEIRO. "A Tabu Search Approach to
Task Scheduling on Heterogeneous Processors under Preeedence Con­
straints", lntemational Journal of High-Speed Computing 7 {1995),
45- 71.

(li] M . REISER e S .S . LAVENBERG, "Mean Valuc Analysis of Closed
Multichain Queueing Networks". Journal ofthe Associationfor Com­
puting Machinery 27 (1980), 3 13-322.

[12] E . TAILLARD. "Parallel Taboo Search Techniques for the Job Shop
Scheduling Problem", ORSA Journal on Computing 6 {1994), 108-
117.

(13] J .R.A . TORREÃO, J.C .B. LEITE, O .G. LOQUES, and A.M . BAR­
ROSO, An Experimetll witlr a New Heuristic for Task Sclreduling in
Real-7ime Distributed Systems, Technical Report RT.Ol -97, Applied
Computing & Automation, Universidade Federal Auminense. Niterói.
Brasil, January 1997.

(14] J .R. A. TORREÃO and E . ROE, "Microcanonical Optimization Ap­
plied to Visual Processing", Plrysics Le11ers A 205 (1995). 377-382.

